Properties

Label 576.4.l.a.143.13
Level $576$
Weight $4$
Character 576.143
Analytic conductor $33.985$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(143,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.143"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.13
Character \(\chi\) \(=\) 576.143
Dual form 576.4.l.a.431.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.40838 - 2.40838i) q^{5} +11.7205 q^{7} +(34.7409 + 34.7409i) q^{11} +(-3.17950 + 3.17950i) q^{13} -98.0797i q^{17} +(15.9562 + 15.9562i) q^{19} +69.6819i q^{23} +113.399i q^{25} +(-15.9649 - 15.9649i) q^{29} +121.295i q^{31} +(28.2275 - 28.2275i) q^{35} +(-37.0567 - 37.0567i) q^{37} +59.3202 q^{41} +(241.737 - 241.737i) q^{43} +395.106 q^{47} -205.629 q^{49} +(458.194 - 458.194i) q^{53} +167.339 q^{55} +(257.629 + 257.629i) q^{59} +(-373.295 + 373.295i) q^{61} +15.3149i q^{65} +(648.397 + 648.397i) q^{67} -787.139i q^{71} +1074.96i q^{73} +(407.181 + 407.181i) q^{77} +382.146i q^{79} +(491.315 - 491.315i) q^{83} +(-236.213 - 236.213i) q^{85} +624.448 q^{89} +(-37.2653 + 37.2653i) q^{91} +76.8575 q^{95} +1665.45 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{19} - 864 q^{43} + 2352 q^{49} + 576 q^{55} + 1824 q^{61} - 816 q^{67} - 480 q^{85} + 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.40838 2.40838i 0.215412 0.215412i −0.591150 0.806562i \(-0.701326\pi\)
0.806562 + 0.591150i \(0.201326\pi\)
\(6\) 0 0
\(7\) 11.7205 0.632848 0.316424 0.948618i \(-0.397518\pi\)
0.316424 + 0.948618i \(0.397518\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 34.7409 + 34.7409i 0.952252 + 0.952252i 0.998911 0.0466586i \(-0.0148573\pi\)
−0.0466586 + 0.998911i \(0.514857\pi\)
\(12\) 0 0
\(13\) −3.17950 + 3.17950i −0.0678333 + 0.0678333i −0.740210 0.672376i \(-0.765274\pi\)
0.672376 + 0.740210i \(0.265274\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 98.0797i 1.39928i −0.714494 0.699642i \(-0.753343\pi\)
0.714494 0.699642i \(-0.246657\pi\)
\(18\) 0 0
\(19\) 15.9562 + 15.9562i 0.192664 + 0.192664i 0.796846 0.604182i \(-0.206500\pi\)
−0.604182 + 0.796846i \(0.706500\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 69.6819i 0.631725i 0.948805 + 0.315863i \(0.102294\pi\)
−0.948805 + 0.315863i \(0.897706\pi\)
\(24\) 0 0
\(25\) 113.399i 0.907195i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −15.9649 15.9649i −0.102228 0.102228i 0.654143 0.756371i \(-0.273029\pi\)
−0.756371 + 0.654143i \(0.773029\pi\)
\(30\) 0 0
\(31\) 121.295i 0.702748i 0.936235 + 0.351374i \(0.114285\pi\)
−0.936235 + 0.351374i \(0.885715\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 28.2275 28.2275i 0.136323 0.136323i
\(36\) 0 0
\(37\) −37.0567 37.0567i −0.164651 0.164651i 0.619973 0.784623i \(-0.287144\pi\)
−0.784623 + 0.619973i \(0.787144\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 59.3202 0.225958 0.112979 0.993597i \(-0.463961\pi\)
0.112979 + 0.993597i \(0.463961\pi\)
\(42\) 0 0
\(43\) 241.737 241.737i 0.857314 0.857314i −0.133707 0.991021i \(-0.542688\pi\)
0.991021 + 0.133707i \(0.0426880\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 395.106 1.22622 0.613108 0.789999i \(-0.289919\pi\)
0.613108 + 0.789999i \(0.289919\pi\)
\(48\) 0 0
\(49\) −205.629 −0.599503
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 458.194 458.194i 1.18751 1.18751i 0.209750 0.977755i \(-0.432735\pi\)
0.977755 0.209750i \(-0.0672650\pi\)
\(54\) 0 0
\(55\) 167.339 0.410254
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 257.629 + 257.629i 0.568483 + 0.568483i 0.931703 0.363220i \(-0.118323\pi\)
−0.363220 + 0.931703i \(0.618323\pi\)
\(60\) 0 0
\(61\) −373.295 + 373.295i −0.783533 + 0.783533i −0.980425 0.196892i \(-0.936915\pi\)
0.196892 + 0.980425i \(0.436915\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 15.3149i 0.0292243i
\(66\) 0 0
\(67\) 648.397 + 648.397i 1.18230 + 1.18230i 0.979146 + 0.203157i \(0.0651203\pi\)
0.203157 + 0.979146i \(0.434880\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 787.139i 1.31572i −0.753140 0.657861i \(-0.771462\pi\)
0.753140 0.657861i \(-0.228538\pi\)
\(72\) 0 0
\(73\) 1074.96i 1.72349i 0.507340 + 0.861746i \(0.330629\pi\)
−0.507340 + 0.861746i \(0.669371\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 407.181 + 407.181i 0.602631 + 0.602631i
\(78\) 0 0
\(79\) 382.146i 0.544238i 0.962264 + 0.272119i \(0.0877245\pi\)
−0.962264 + 0.272119i \(0.912276\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 491.315 491.315i 0.649744 0.649744i −0.303187 0.952931i \(-0.598051\pi\)
0.952931 + 0.303187i \(0.0980506\pi\)
\(84\) 0 0
\(85\) −236.213 236.213i −0.301423 0.301423i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 624.448 0.743723 0.371862 0.928288i \(-0.378720\pi\)
0.371862 + 0.928288i \(0.378720\pi\)
\(90\) 0 0
\(91\) −37.2653 + 37.2653i −0.0429282 + 0.0429282i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 76.8575 0.0830043
\(96\) 0 0
\(97\) 1665.45 1.74331 0.871654 0.490122i \(-0.163048\pi\)
0.871654 + 0.490122i \(0.163048\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 625.952 625.952i 0.616678 0.616678i −0.327999 0.944678i \(-0.606374\pi\)
0.944678 + 0.327999i \(0.106374\pi\)
\(102\) 0 0
\(103\) −1641.52 −1.57033 −0.785163 0.619289i \(-0.787421\pi\)
−0.785163 + 0.619289i \(0.787421\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 956.649 + 956.649i 0.864325 + 0.864325i 0.991837 0.127512i \(-0.0406991\pi\)
−0.127512 + 0.991837i \(0.540699\pi\)
\(108\) 0 0
\(109\) 1221.44 1221.44i 1.07333 1.07333i 0.0762403 0.997089i \(-0.475708\pi\)
0.997089 0.0762403i \(-0.0242916\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 360.983i 0.300517i 0.988647 + 0.150258i \(0.0480105\pi\)
−0.988647 + 0.150258i \(0.951989\pi\)
\(114\) 0 0
\(115\) 167.821 + 167.821i 0.136081 + 0.136081i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1149.54i 0.885534i
\(120\) 0 0
\(121\) 1082.86i 0.813569i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 574.157 + 574.157i 0.410833 + 0.410833i
\(126\) 0 0
\(127\) 1713.36i 1.19713i 0.801073 + 0.598566i \(0.204263\pi\)
−0.801073 + 0.598566i \(0.795737\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −191.155 + 191.155i −0.127491 + 0.127491i −0.767973 0.640482i \(-0.778735\pi\)
0.640482 + 0.767973i \(0.278735\pi\)
\(132\) 0 0
\(133\) 187.015 + 187.015i 0.121927 + 0.121927i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2130.50 −1.32862 −0.664311 0.747456i \(-0.731275\pi\)
−0.664311 + 0.747456i \(0.731275\pi\)
\(138\) 0 0
\(139\) 423.046 423.046i 0.258146 0.258146i −0.566154 0.824300i \(-0.691569\pi\)
0.824300 + 0.566154i \(0.191569\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −220.917 −0.129189
\(144\) 0 0
\(145\) −76.8994 −0.0440424
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2020.44 2020.44i 1.11088 1.11088i 0.117844 0.993032i \(-0.462402\pi\)
0.993032 0.117844i \(-0.0375982\pi\)
\(150\) 0 0
\(151\) −2605.57 −1.40423 −0.702115 0.712064i \(-0.747761\pi\)
−0.702115 + 0.712064i \(0.747761\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 292.124 + 292.124i 0.151381 + 0.151381i
\(156\) 0 0
\(157\) 815.970 815.970i 0.414787 0.414787i −0.468615 0.883402i \(-0.655247\pi\)
0.883402 + 0.468615i \(0.155247\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 816.708i 0.399786i
\(162\) 0 0
\(163\) −268.825 268.825i −0.129178 0.129178i 0.639562 0.768740i \(-0.279116\pi\)
−0.768740 + 0.639562i \(0.779116\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1537.53i 0.712440i −0.934402 0.356220i \(-0.884065\pi\)
0.934402 0.356220i \(-0.115935\pi\)
\(168\) 0 0
\(169\) 2176.78i 0.990797i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 598.582 + 598.582i 0.263060 + 0.263060i 0.826296 0.563236i \(-0.190444\pi\)
−0.563236 + 0.826296i \(0.690444\pi\)
\(174\) 0 0
\(175\) 1329.10i 0.574117i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −285.351 + 285.351i −0.119152 + 0.119152i −0.764168 0.645017i \(-0.776850\pi\)
0.645017 + 0.764168i \(0.276850\pi\)
\(180\) 0 0
\(181\) −2919.93 2919.93i −1.19910 1.19910i −0.974437 0.224660i \(-0.927873\pi\)
−0.224660 0.974437i \(-0.572127\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −178.493 −0.0709356
\(186\) 0 0
\(187\) 3407.38 3407.38i 1.33247 1.33247i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1085.25 −0.411129 −0.205564 0.978644i \(-0.565903\pi\)
−0.205564 + 0.978644i \(0.565903\pi\)
\(192\) 0 0
\(193\) 1150.76 0.429191 0.214595 0.976703i \(-0.431157\pi\)
0.214595 + 0.976703i \(0.431157\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2302.47 + 2302.47i −0.832713 + 0.832713i −0.987887 0.155174i \(-0.950406\pi\)
0.155174 + 0.987887i \(0.450406\pi\)
\(198\) 0 0
\(199\) −1300.97 −0.463432 −0.231716 0.972783i \(-0.574434\pi\)
−0.231716 + 0.972783i \(0.574434\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −187.117 187.117i −0.0646949 0.0646949i
\(204\) 0 0
\(205\) 142.866 142.866i 0.0486740 0.0486740i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1108.67i 0.366929i
\(210\) 0 0
\(211\) 1702.90 + 1702.90i 0.555604 + 0.555604i 0.928053 0.372448i \(-0.121482\pi\)
−0.372448 + 0.928053i \(0.621482\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1164.39i 0.369352i
\(216\) 0 0
\(217\) 1421.64i 0.444733i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 311.844 + 311.844i 0.0949180 + 0.0949180i
\(222\) 0 0
\(223\) 5316.70i 1.59656i −0.602288 0.798279i \(-0.705744\pi\)
0.602288 0.798279i \(-0.294256\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3132.85 + 3132.85i −0.916013 + 0.916013i −0.996737 0.0807239i \(-0.974277\pi\)
0.0807239 + 0.996737i \(0.474277\pi\)
\(228\) 0 0
\(229\) −4530.55 4530.55i −1.30737 1.30737i −0.923308 0.384059i \(-0.874526\pi\)
−0.384059 0.923308i \(-0.625474\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5381.47 −1.51310 −0.756549 0.653937i \(-0.773116\pi\)
−0.756549 + 0.653937i \(0.773116\pi\)
\(234\) 0 0
\(235\) 951.566 951.566i 0.264142 0.264142i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4955.44 −1.34117 −0.670587 0.741831i \(-0.733958\pi\)
−0.670587 + 0.741831i \(0.733958\pi\)
\(240\) 0 0
\(241\) −589.625 −0.157598 −0.0787989 0.996891i \(-0.525109\pi\)
−0.0787989 + 0.996891i \(0.525109\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −495.234 + 495.234i −0.129140 + 0.129140i
\(246\) 0 0
\(247\) −101.466 −0.0261381
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2418.09 + 2418.09i 0.608082 + 0.608082i 0.942445 0.334362i \(-0.108521\pi\)
−0.334362 + 0.942445i \(0.608521\pi\)
\(252\) 0 0
\(253\) −2420.81 + 2420.81i −0.601562 + 0.601562i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 976.607i 0.237039i −0.992952 0.118520i \(-0.962185\pi\)
0.992952 0.118520i \(-0.0378148\pi\)
\(258\) 0 0
\(259\) −434.323 434.323i −0.104199 0.104199i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1820.40i 0.426809i 0.976964 + 0.213404i \(0.0684552\pi\)
−0.976964 + 0.213404i \(0.931545\pi\)
\(264\) 0 0
\(265\) 2207.01i 0.511606i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4795.34 4795.34i −1.08690 1.08690i −0.995846 0.0910580i \(-0.970975\pi\)
−0.0910580 0.995846i \(-0.529025\pi\)
\(270\) 0 0
\(271\) 1294.24i 0.290108i 0.989424 + 0.145054i \(0.0463356\pi\)
−0.989424 + 0.145054i \(0.953664\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3939.60 + 3939.60i −0.863879 + 0.863879i
\(276\) 0 0
\(277\) 701.252 + 701.252i 0.152109 + 0.152109i 0.779059 0.626950i \(-0.215697\pi\)
−0.626950 + 0.779059i \(0.715697\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5755.44 −1.22185 −0.610927 0.791687i \(-0.709203\pi\)
−0.610927 + 0.791687i \(0.709203\pi\)
\(282\) 0 0
\(283\) 3908.33 3908.33i 0.820939 0.820939i −0.165303 0.986243i \(-0.552860\pi\)
0.986243 + 0.165303i \(0.0528603\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 695.264 0.142997
\(288\) 0 0
\(289\) −4706.62 −0.957993
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3513.72 3513.72i 0.700592 0.700592i −0.263946 0.964538i \(-0.585024\pi\)
0.964538 + 0.263946i \(0.0850239\pi\)
\(294\) 0 0
\(295\) 1240.94 0.244916
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −221.553 221.553i −0.0428520 0.0428520i
\(300\) 0 0
\(301\) 2833.28 2833.28i 0.542550 0.542550i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1798.07i 0.337565i
\(306\) 0 0
\(307\) −2537.12 2537.12i −0.471666 0.471666i 0.430788 0.902453i \(-0.358236\pi\)
−0.902453 + 0.430788i \(0.858236\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7063.50i 1.28789i 0.765071 + 0.643946i \(0.222704\pi\)
−0.765071 + 0.643946i \(0.777296\pi\)
\(312\) 0 0
\(313\) 579.160i 0.104588i 0.998632 + 0.0522940i \(0.0166533\pi\)
−0.998632 + 0.0522940i \(0.983347\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 340.991 + 340.991i 0.0604164 + 0.0604164i 0.736669 0.676253i \(-0.236397\pi\)
−0.676253 + 0.736669i \(0.736397\pi\)
\(318\) 0 0
\(319\) 1109.27i 0.194694i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1564.98 1564.98i 0.269591 0.269591i
\(324\) 0 0
\(325\) −360.553 360.553i −0.0615381 0.0615381i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4630.85 0.776009
\(330\) 0 0
\(331\) −2509.44 + 2509.44i −0.416711 + 0.416711i −0.884068 0.467358i \(-0.845206\pi\)
0.467358 + 0.884068i \(0.345206\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3123.18 0.509365
\(336\) 0 0
\(337\) 1805.84 0.291899 0.145950 0.989292i \(-0.453376\pi\)
0.145950 + 0.989292i \(0.453376\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4213.89 + 4213.89i −0.669193 + 0.669193i
\(342\) 0 0
\(343\) −6430.22 −1.01224
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3463.32 3463.32i −0.535795 0.535795i 0.386496 0.922291i \(-0.373685\pi\)
−0.922291 + 0.386496i \(0.873685\pi\)
\(348\) 0 0
\(349\) 5797.35 5797.35i 0.889183 0.889183i −0.105261 0.994445i \(-0.533568\pi\)
0.994445 + 0.105261i \(0.0335679\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2793.32i 0.421172i −0.977575 0.210586i \(-0.932463\pi\)
0.977575 0.210586i \(-0.0675372\pi\)
\(354\) 0 0
\(355\) −1895.73 1895.73i −0.283423 0.283423i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6896.95i 1.01395i −0.861962 0.506974i \(-0.830764\pi\)
0.861962 0.506974i \(-0.169236\pi\)
\(360\) 0 0
\(361\) 6349.80i 0.925761i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2588.92 + 2588.92i 0.371261 + 0.371261i
\(366\) 0 0
\(367\) 1724.22i 0.245242i 0.992454 + 0.122621i \(0.0391299\pi\)
−0.992454 + 0.122621i \(0.960870\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5370.27 5370.27i 0.751511 0.751511i
\(372\) 0 0
\(373\) 5937.62 + 5937.62i 0.824231 + 0.824231i 0.986712 0.162481i \(-0.0519495\pi\)
−0.162481 + 0.986712i \(0.551949\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 101.521 0.0138689
\(378\) 0 0
\(379\) −8009.60 + 8009.60i −1.08556 + 1.08556i −0.0895751 + 0.995980i \(0.528551\pi\)
−0.995980 + 0.0895751i \(0.971449\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12372.3 −1.65064 −0.825319 0.564667i \(-0.809005\pi\)
−0.825319 + 0.564667i \(0.809005\pi\)
\(384\) 0 0
\(385\) 1961.30 0.259628
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3950.83 + 3950.83i −0.514948 + 0.514948i −0.916039 0.401090i \(-0.868631\pi\)
0.401090 + 0.916039i \(0.368631\pi\)
\(390\) 0 0
\(391\) 6834.38 0.883962
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 920.355 + 920.355i 0.117236 + 0.117236i
\(396\) 0 0
\(397\) −9644.39 + 9644.39i −1.21924 + 1.21924i −0.251341 + 0.967899i \(0.580871\pi\)
−0.967899 + 0.251341i \(0.919129\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3647.28i 0.454206i 0.973871 + 0.227103i \(0.0729254\pi\)
−0.973871 + 0.227103i \(0.927075\pi\)
\(402\) 0 0
\(403\) −385.656 385.656i −0.0476697 0.0476697i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2574.76i 0.313578i
\(408\) 0 0
\(409\) 860.719i 0.104058i 0.998646 + 0.0520291i \(0.0165689\pi\)
−0.998646 + 0.0520291i \(0.983431\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3019.55 + 3019.55i 0.359763 + 0.359763i
\(414\) 0 0
\(415\) 2366.55i 0.279926i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1158.11 + 1158.11i −0.135029 + 0.135029i −0.771391 0.636362i \(-0.780439\pi\)
0.636362 + 0.771391i \(0.280439\pi\)
\(420\) 0 0
\(421\) 2410.72 + 2410.72i 0.279076 + 0.279076i 0.832740 0.553664i \(-0.186771\pi\)
−0.553664 + 0.832740i \(0.686771\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11122.2 1.26942
\(426\) 0 0
\(427\) −4375.21 + 4375.21i −0.495858 + 0.495858i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10544.5 1.17844 0.589221 0.807972i \(-0.299435\pi\)
0.589221 + 0.807972i \(0.299435\pi\)
\(432\) 0 0
\(433\) 1205.31 0.133773 0.0668864 0.997761i \(-0.478693\pi\)
0.0668864 + 0.997761i \(0.478693\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1111.86 + 1111.86i −0.121711 + 0.121711i
\(438\) 0 0
\(439\) 16643.3 1.80943 0.904716 0.426015i \(-0.140083\pi\)
0.904716 + 0.426015i \(0.140083\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7621.94 7621.94i −0.817448 0.817448i 0.168290 0.985738i \(-0.446176\pi\)
−0.985738 + 0.168290i \(0.946176\pi\)
\(444\) 0 0
\(445\) 1503.91 1503.91i 0.160207 0.160207i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1505.28i 0.158215i 0.996866 + 0.0791077i \(0.0252071\pi\)
−0.996866 + 0.0791077i \(0.974793\pi\)
\(450\) 0 0
\(451\) 2060.84 + 2060.84i 0.215169 + 0.215169i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 179.498i 0.0184945i
\(456\) 0 0
\(457\) 6918.12i 0.708131i −0.935221 0.354065i \(-0.884799\pi\)
0.935221 0.354065i \(-0.115201\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3348.19 + 3348.19i 0.338266 + 0.338266i 0.855715 0.517448i \(-0.173118\pi\)
−0.517448 + 0.855715i \(0.673118\pi\)
\(462\) 0 0
\(463\) 2122.03i 0.213000i −0.994313 0.106500i \(-0.966036\pi\)
0.994313 0.106500i \(-0.0339644\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12230.3 12230.3i 1.21189 1.21189i 0.241482 0.970405i \(-0.422367\pi\)
0.970405 0.241482i \(-0.0776334\pi\)
\(468\) 0 0
\(469\) 7599.55 + 7599.55i 0.748219 + 0.748219i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16796.3 1.63276
\(474\) 0 0
\(475\) −1809.43 + 1809.43i −0.174784 + 0.174784i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20589.9 1.96404 0.982020 0.188779i \(-0.0604529\pi\)
0.982020 + 0.188779i \(0.0604529\pi\)
\(480\) 0 0
\(481\) 235.643 0.0223376
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4011.04 4011.04i 0.375530 0.375530i
\(486\) 0 0
\(487\) −8672.88 −0.806994 −0.403497 0.914981i \(-0.632205\pi\)
−0.403497 + 0.914981i \(0.632205\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1815.32 1815.32i −0.166852 0.166852i 0.618742 0.785594i \(-0.287643\pi\)
−0.785594 + 0.618742i \(0.787643\pi\)
\(492\) 0 0
\(493\) −1565.84 + 1565.84i −0.143046 + 0.143046i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9225.68i 0.832652i
\(498\) 0 0
\(499\) 2716.12 + 2716.12i 0.243668 + 0.243668i 0.818366 0.574698i \(-0.194880\pi\)
−0.574698 + 0.818366i \(0.694880\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17354.3i 1.53835i 0.639040 + 0.769173i \(0.279332\pi\)
−0.639040 + 0.769173i \(0.720668\pi\)
\(504\) 0 0
\(505\) 3015.06i 0.265680i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8211.14 8211.14i −0.715034 0.715034i 0.252550 0.967584i \(-0.418731\pi\)
−0.967584 + 0.252550i \(0.918731\pi\)
\(510\) 0 0
\(511\) 12599.1i 1.09071i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3953.41 + 3953.41i −0.338268 + 0.338268i
\(516\) 0 0
\(517\) 13726.3 + 13726.3i 1.16767 + 1.16767i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9350.18 0.786255 0.393127 0.919484i \(-0.371393\pi\)
0.393127 + 0.919484i \(0.371393\pi\)
\(522\) 0 0
\(523\) −11818.7 + 11818.7i −0.988140 + 0.988140i −0.999930 0.0117907i \(-0.996247\pi\)
0.0117907 + 0.999930i \(0.496247\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11896.5 0.983343
\(528\) 0 0
\(529\) 7311.43 0.600923
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −188.608 + 188.608i −0.0153275 + 0.0153275i
\(534\) 0 0
\(535\) 4607.96 0.372373
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7143.75 7143.75i −0.570878 0.570878i
\(540\) 0 0
\(541\) −10764.1 + 10764.1i −0.855422 + 0.855422i −0.990795 0.135373i \(-0.956777\pi\)
0.135373 + 0.990795i \(0.456777\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5883.40i 0.462417i
\(546\) 0 0
\(547\) −2093.77 2093.77i −0.163662 0.163662i 0.620525 0.784187i \(-0.286920\pi\)
−0.784187 + 0.620525i \(0.786920\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 509.481i 0.0393913i
\(552\) 0 0
\(553\) 4478.95i 0.344420i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5245.63 5245.63i −0.399038 0.399038i 0.478855 0.877894i \(-0.341052\pi\)
−0.877894 + 0.478855i \(0.841052\pi\)
\(558\) 0 0
\(559\) 1537.20i 0.116309i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7593.93 7593.93i 0.568465 0.568465i −0.363233 0.931698i \(-0.618327\pi\)
0.931698 + 0.363233i \(0.118327\pi\)
\(564\) 0 0
\(565\) 869.384 + 869.384i 0.0647350 + 0.0647350i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3416.36 −0.251707 −0.125853 0.992049i \(-0.540167\pi\)
−0.125853 + 0.992049i \(0.540167\pi\)
\(570\) 0 0
\(571\) −1823.75 + 1823.75i −0.133663 + 0.133663i −0.770773 0.637110i \(-0.780130\pi\)
0.637110 + 0.770773i \(0.280130\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7901.88 −0.573098
\(576\) 0 0
\(577\) −23143.8 −1.66982 −0.834912 0.550383i \(-0.814482\pi\)
−0.834912 + 0.550383i \(0.814482\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5758.46 5758.46i 0.411190 0.411190i
\(582\) 0 0
\(583\) 31836.1 2.26161
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16398.7 + 16398.7i 1.15306 + 1.15306i 0.985936 + 0.167122i \(0.0534473\pi\)
0.167122 + 0.985936i \(0.446553\pi\)
\(588\) 0 0
\(589\) −1935.41 + 1935.41i −0.135394 + 0.135394i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13256.2i 0.917989i −0.888439 0.458994i \(-0.848210\pi\)
0.888439 0.458994i \(-0.151790\pi\)
\(594\) 0 0
\(595\) −2768.54 2768.54i −0.190755 0.190755i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9973.40i 0.680304i 0.940370 + 0.340152i \(0.110479\pi\)
−0.940370 + 0.340152i \(0.889521\pi\)
\(600\) 0 0
\(601\) 22549.7i 1.53048i −0.643744 0.765241i \(-0.722620\pi\)
0.643744 0.765241i \(-0.277380\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2607.94 + 2607.94i 0.175253 + 0.175253i
\(606\) 0 0
\(607\) 21635.2i 1.44670i −0.690482 0.723350i \(-0.742602\pi\)
0.690482 0.723350i \(-0.257398\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1256.24 + 1256.24i −0.0831783 + 0.0831783i
\(612\) 0 0
\(613\) 2977.25 + 2977.25i 0.196166 + 0.196166i 0.798354 0.602188i \(-0.205704\pi\)
−0.602188 + 0.798354i \(0.705704\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6649.18 0.433851 0.216925 0.976188i \(-0.430397\pi\)
0.216925 + 0.976188i \(0.430397\pi\)
\(618\) 0 0
\(619\) 2920.44 2920.44i 0.189632 0.189632i −0.605905 0.795537i \(-0.707189\pi\)
0.795537 + 0.605905i \(0.207189\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7318.86 0.470664
\(624\) 0 0
\(625\) −11409.3 −0.730198
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3634.50 + 3634.50i −0.230393 + 0.230393i
\(630\) 0 0
\(631\) 3289.01 0.207501 0.103751 0.994603i \(-0.466916\pi\)
0.103751 + 0.994603i \(0.466916\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4126.42 + 4126.42i 0.257877 + 0.257877i
\(636\) 0 0
\(637\) 653.798 653.798i 0.0406663 0.0406663i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9161.75i 0.564536i −0.959336 0.282268i \(-0.908913\pi\)
0.959336 0.282268i \(-0.0910867\pi\)
\(642\) 0 0
\(643\) −6165.52 6165.52i −0.378141 0.378141i 0.492290 0.870431i \(-0.336160\pi\)
−0.870431 + 0.492290i \(0.836160\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6481.62i 0.393846i 0.980419 + 0.196923i \(0.0630950\pi\)
−0.980419 + 0.196923i \(0.936905\pi\)
\(648\) 0 0
\(649\) 17900.5i 1.08268i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 772.442 + 772.442i 0.0462910 + 0.0462910i 0.729873 0.683582i \(-0.239579\pi\)
−0.683582 + 0.729873i \(0.739579\pi\)
\(654\) 0 0
\(655\) 920.751i 0.0549263i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1416.83 + 1416.83i −0.0837510 + 0.0837510i −0.747741 0.663990i \(-0.768862\pi\)
0.663990 + 0.747741i \(0.268862\pi\)
\(660\) 0 0
\(661\) −7384.66 7384.66i −0.434539 0.434539i 0.455630 0.890169i \(-0.349414\pi\)
−0.890169 + 0.455630i \(0.849414\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 900.809 0.0525291
\(666\) 0 0
\(667\) 1112.47 1112.47i 0.0645801 0.0645801i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −25937.2 −1.49224
\(672\) 0 0
\(673\) 8695.15 0.498029 0.249014 0.968500i \(-0.419893\pi\)
0.249014 + 0.968500i \(0.419893\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19700.8 + 19700.8i −1.11841 + 1.11841i −0.126436 + 0.991975i \(0.540354\pi\)
−0.991975 + 0.126436i \(0.959646\pi\)
\(678\) 0 0
\(679\) 19519.9 1.10325
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6263.20 6263.20i −0.350885 0.350885i 0.509554 0.860439i \(-0.329811\pi\)
−0.860439 + 0.509554i \(0.829811\pi\)
\(684\) 0 0
\(685\) −5131.07 + 5131.07i −0.286202 + 0.286202i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2913.65i 0.161105i
\(690\) 0 0
\(691\) 21784.7 + 21784.7i 1.19932 + 1.19932i 0.974371 + 0.224945i \(0.0722203\pi\)
0.224945 + 0.974371i \(0.427780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2037.71i 0.111216i
\(696\) 0 0
\(697\) 5818.11i 0.316179i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6306.61 6306.61i −0.339797 0.339797i 0.516494 0.856291i \(-0.327237\pi\)
−0.856291 + 0.516494i \(0.827237\pi\)
\(702\) 0 0
\(703\) 1182.57i 0.0634445i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7336.48 7336.48i 0.390264 0.390264i
\(708\) 0 0
\(709\) 6829.13 + 6829.13i 0.361740 + 0.361740i 0.864453 0.502713i \(-0.167665\pi\)
−0.502713 + 0.864453i \(0.667665\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8452.05 −0.443944
\(714\) 0 0
\(715\) −532.053 + 532.053i −0.0278289 + 0.0278289i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3688.19 0.191302 0.0956511 0.995415i \(-0.469507\pi\)
0.0956511 + 0.995415i \(0.469507\pi\)
\(720\) 0 0
\(721\) −19239.4 −0.993779
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1810.41 1810.41i 0.0927408 0.0927408i
\(726\) 0 0
\(727\) −28693.9 −1.46382 −0.731911 0.681400i \(-0.761371\pi\)
−0.731911 + 0.681400i \(0.761371\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −23709.5 23709.5i −1.19963 1.19963i
\(732\) 0 0
\(733\) −4890.55 + 4890.55i −0.246434 + 0.246434i −0.819506 0.573071i \(-0.805752\pi\)
0.573071 + 0.819506i \(0.305752\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 45051.8i 2.25170i
\(738\) 0 0
\(739\) −23911.6 23911.6i −1.19026 1.19026i −0.976993 0.213269i \(-0.931589\pi\)
−0.213269 0.976993i \(-0.568411\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14426.5i 0.712323i −0.934424 0.356162i \(-0.884085\pi\)
0.934424 0.356162i \(-0.115915\pi\)
\(744\) 0 0
\(745\) 9731.96i 0.478593i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11212.4 + 11212.4i 0.546987 + 0.546987i
\(750\) 0 0
\(751\) 17255.7i 0.838439i 0.907885 + 0.419220i \(0.137696\pi\)
−0.907885 + 0.419220i \(0.862304\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6275.22 + 6275.22i −0.302488 + 0.302488i
\(756\) 0 0
\(757\) −12874.2 12874.2i −0.618124 0.618124i 0.326926 0.945050i \(-0.393987\pi\)
−0.945050 + 0.326926i \(0.893987\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4694.94 −0.223642 −0.111821 0.993728i \(-0.535668\pi\)
−0.111821 + 0.993728i \(0.535668\pi\)
\(762\) 0 0
\(763\) 14315.9 14315.9i 0.679255 0.679255i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1638.26 −0.0771242
\(768\) 0 0
\(769\) 27268.7 1.27872 0.639359 0.768908i \(-0.279200\pi\)
0.639359 + 0.768908i \(0.279200\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10010.2 10010.2i 0.465772 0.465772i −0.434769 0.900542i \(-0.643170\pi\)
0.900542 + 0.434769i \(0.143170\pi\)
\(774\) 0 0
\(775\) −13754.8 −0.637529
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 946.527 + 946.527i 0.0435338 + 0.0435338i
\(780\) 0 0
\(781\) 27345.9 27345.9i 1.25290 1.25290i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3930.34i 0.178700i
\(786\) 0 0
\(787\) −1703.37 1703.37i −0.0771521 0.0771521i 0.667478 0.744630i \(-0.267374\pi\)
−0.744630 + 0.667478i \(0.767374\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4230.90i 0.190182i
\(792\) 0 0
\(793\) 2373.78i 0.106299i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13767.6 13767.6i −0.611886 0.611886i 0.331551 0.943437i \(-0.392428\pi\)
−0.943437 + 0.331551i \(0.892428\pi\)
\(798\) 0 0
\(799\) 38751.9i 1.71582i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −37345.2 + 37345.2i −1.64120 + 1.64120i
\(804\) 0 0
\(805\) 1966.95 + 1966.95i 0.0861189 + 0.0861189i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −34122.6 −1.48292 −0.741462 0.670995i \(-0.765867\pi\)
−0.741462 + 0.670995i \(0.765867\pi\)
\(810\) 0 0
\(811\) −19921.8 + 19921.8i −0.862576 + 0.862576i −0.991637 0.129061i \(-0.958804\pi\)
0.129061 + 0.991637i \(0.458804\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1294.87 −0.0556529
\(816\) 0 0
\(817\) 7714.42 0.330347
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3546.97 + 3546.97i −0.150780 + 0.150780i −0.778466 0.627687i \(-0.784002\pi\)
0.627687 + 0.778466i \(0.284002\pi\)
\(822\) 0 0
\(823\) −33931.8 −1.43717 −0.718583 0.695442i \(-0.755209\pi\)
−0.718583 + 0.695442i \(0.755209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5818.78 + 5818.78i 0.244666 + 0.244666i 0.818777 0.574111i \(-0.194652\pi\)
−0.574111 + 0.818777i \(0.694652\pi\)
\(828\) 0 0
\(829\) 7895.08 7895.08i 0.330769 0.330769i −0.522110 0.852878i \(-0.674855\pi\)
0.852878 + 0.522110i \(0.174855\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20168.1i 0.838874i
\(834\) 0 0
\(835\) −3702.95 3702.95i −0.153468 0.153468i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23123.0i 0.951485i −0.879585 0.475743i \(-0.842179\pi\)
0.879585 0.475743i \(-0.157821\pi\)
\(840\) 0 0
\(841\) 23879.2i 0.979099i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5242.52 + 5242.52i 0.213430 + 0.213430i
\(846\) 0 0
\(847\) 12691.7i 0.514866i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2582.18 2582.18i 0.104014 0.104014i
\(852\) 0 0
\(853\) −10555.7 10555.7i −0.423707 0.423707i 0.462771 0.886478i \(-0.346855\pi\)
−0.886478 + 0.462771i \(0.846855\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14835.9 −0.591349 −0.295674 0.955289i \(-0.595544\pi\)
−0.295674 + 0.955289i \(0.595544\pi\)
\(858\) 0 0
\(859\) 21200.1 21200.1i 0.842069 0.842069i −0.147059 0.989128i \(-0.546981\pi\)
0.989128 + 0.147059i \(0.0469806\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −38729.6 −1.52766 −0.763830 0.645418i \(-0.776683\pi\)
−0.763830 + 0.645418i \(0.776683\pi\)
\(864\) 0 0
\(865\) 2883.23 0.113333
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13276.1 + 13276.1i −0.518252 + 0.518252i
\(870\) 0 0
\(871\) −4123.15 −0.160399
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6729.42 + 6729.42i 0.259995 + 0.259995i
\(876\) 0 0
\(877\) 3724.13 3724.13i 0.143392 0.143392i −0.631766 0.775159i \(-0.717670\pi\)
0.775159 + 0.631766i \(0.217670\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10798.5i 0.412951i −0.978452 0.206475i \(-0.933801\pi\)
0.978452 0.206475i \(-0.0661993\pi\)
\(882\) 0 0
\(883\) −3539.05 3539.05i −0.134879 0.134879i 0.636444 0.771323i \(-0.280405\pi\)
−0.771323 + 0.636444i \(0.780405\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22802.5i 0.863172i 0.902072 + 0.431586i \(0.142046\pi\)
−0.902072 + 0.431586i \(0.857954\pi\)
\(888\) 0 0
\(889\) 20081.4i 0.757604i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6304.40 + 6304.40i 0.236247 + 0.236247i
\(894\) 0 0
\(895\) 1374.47i 0.0513334i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1936.46 1936.46i 0.0718406 0.0718406i
\(900\) 0 0
\(901\) −44939.5 44939.5i −1.66166 1.66166i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14064.6 −0.516600
\(906\) 0 0
\(907\) 6649.86 6649.86i 0.243445 0.243445i −0.574829 0.818274i \(-0.694931\pi\)
0.818274 + 0.574829i \(0.194931\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2309.48 0.0839917 0.0419958 0.999118i \(-0.486628\pi\)
0.0419958 + 0.999118i \(0.486628\pi\)
\(912\) 0 0
\(913\) 34137.4 1.23744
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2240.44 + 2240.44i −0.0806825 + 0.0806825i
\(918\) 0 0
\(919\) −48567.3 −1.74329 −0.871646 0.490135i \(-0.836947\pi\)
−0.871646 + 0.490135i \(0.836947\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2502.70 + 2502.70i 0.0892498 + 0.0892498i
\(924\) 0 0
\(925\) 4202.20 4202.20i 0.149370 0.149370i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 55572.0i 1.96260i −0.192477 0.981302i \(-0.561652\pi\)
0.192477 0.981302i \(-0.438348\pi\)
\(930\) 0 0
\(931\) −3281.07 3281.07i −0.115502 0.115502i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16412.5i 0.574061i
\(936\) 0 0
\(937\) 46921.8i 1.63593i 0.575268 + 0.817965i \(0.304898\pi\)
−0.575268 + 0.817965i \(0.695102\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15833.3 15833.3i −0.548514 0.548514i 0.377497 0.926011i \(-0.376785\pi\)
−0.926011 + 0.377497i \(0.876785\pi\)
\(942\) 0 0
\(943\) 4133.55i 0.142743i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4616.34 + 4616.34i −0.158406 + 0.158406i −0.781860 0.623454i \(-0.785729\pi\)
0.623454 + 0.781860i \(0.285729\pi\)
\(948\) 0 0
\(949\) −3417.84 3417.84i −0.116910 0.116910i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7702.58 0.261816 0.130908 0.991394i \(-0.458211\pi\)
0.130908 + 0.991394i \(0.458211\pi\)
\(954\) 0 0
\(955\) −2613.69 + 2613.69i −0.0885622 + 0.0885622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24970.6 −0.840817
\(960\) 0 0
\(961\) 15078.6 0.506145
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2771.48 2771.48i 0.0924530 0.0924530i
\(966\) 0 0
\(967\) 3885.39 0.129210 0.0646048 0.997911i \(-0.479421\pi\)
0.0646048 + 0.997911i \(0.479421\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 27634.4 + 27634.4i 0.913315 + 0.913315i 0.996531 0.0832167i \(-0.0265194\pi\)
−0.0832167 + 0.996531i \(0.526519\pi\)
\(972\) 0 0
\(973\) 4958.31 4958.31i 0.163367 0.163367i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 59115.6i 1.93580i 0.251336 + 0.967900i \(0.419130\pi\)
−0.251336 + 0.967900i \(0.580870\pi\)
\(978\) 0 0
\(979\) 21693.9 + 21693.9i 0.708212 + 0.708212i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13689.3i 0.444172i −0.975027 0.222086i \(-0.928713\pi\)
0.975027 0.222086i \(-0.0712866\pi\)
\(984\) 0 0
\(985\) 11090.5i 0.358753i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16844.7 + 16844.7i 0.541587 + 0.541587i
\(990\) 0 0
\(991\) 37624.8i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3133.22 + 3133.22i −0.0998290 + 0.0998290i
\(996\) 0 0
\(997\) 11609.6 + 11609.6i 0.368786 + 0.368786i 0.867034 0.498248i \(-0.166023\pi\)
−0.498248 + 0.867034i \(0.666023\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.l.a.143.13 48
3.2 odd 2 inner 576.4.l.a.143.12 48
4.3 odd 2 144.4.l.a.107.13 yes 48
8.3 odd 2 1152.4.l.b.287.12 48
8.5 even 2 1152.4.l.a.287.12 48
12.11 even 2 144.4.l.a.107.12 yes 48
16.3 odd 4 inner 576.4.l.a.431.12 48
16.5 even 4 1152.4.l.b.863.13 48
16.11 odd 4 1152.4.l.a.863.13 48
16.13 even 4 144.4.l.a.35.12 48
24.5 odd 2 1152.4.l.a.287.13 48
24.11 even 2 1152.4.l.b.287.13 48
48.5 odd 4 1152.4.l.b.863.12 48
48.11 even 4 1152.4.l.a.863.12 48
48.29 odd 4 144.4.l.a.35.13 yes 48
48.35 even 4 inner 576.4.l.a.431.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.12 48 16.13 even 4
144.4.l.a.35.13 yes 48 48.29 odd 4
144.4.l.a.107.12 yes 48 12.11 even 2
144.4.l.a.107.13 yes 48 4.3 odd 2
576.4.l.a.143.12 48 3.2 odd 2 inner
576.4.l.a.143.13 48 1.1 even 1 trivial
576.4.l.a.431.12 48 16.3 odd 4 inner
576.4.l.a.431.13 48 48.35 even 4 inner
1152.4.l.a.287.12 48 8.5 even 2
1152.4.l.a.287.13 48 24.5 odd 2
1152.4.l.a.863.12 48 48.11 even 4
1152.4.l.a.863.13 48 16.11 odd 4
1152.4.l.b.287.12 48 8.3 odd 2
1152.4.l.b.287.13 48 24.11 even 2
1152.4.l.b.863.12 48 48.5 odd 4
1152.4.l.b.863.13 48 16.5 even 4