Properties

Label 1152.4.l.a.863.13
Level $1152$
Weight $4$
Character 1152.863
Analytic conductor $67.970$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,4,Mod(287,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.287"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 863.13
Character \(\chi\) \(=\) 1152.863
Dual form 1152.4.l.a.287.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.40838 + 2.40838i) q^{5} +11.7205 q^{7} +(34.7409 - 34.7409i) q^{11} +(3.17950 + 3.17950i) q^{13} -98.0797i q^{17} +(-15.9562 + 15.9562i) q^{19} +69.6819i q^{23} -113.399i q^{25} +(-15.9649 + 15.9649i) q^{29} -121.295i q^{31} +(28.2275 + 28.2275i) q^{35} +(37.0567 - 37.0567i) q^{37} -59.3202 q^{41} +(-241.737 - 241.737i) q^{43} -395.106 q^{47} -205.629 q^{49} +(458.194 + 458.194i) q^{53} +167.339 q^{55} +(257.629 - 257.629i) q^{59} +(373.295 + 373.295i) q^{61} +15.3149i q^{65} +(-648.397 + 648.397i) q^{67} -787.139i q^{71} -1074.96i q^{73} +(407.181 - 407.181i) q^{77} -382.146i q^{79} +(491.315 + 491.315i) q^{83} +(236.213 - 236.213i) q^{85} -624.448 q^{89} +(37.2653 + 37.2653i) q^{91} -76.8575 q^{95} +1665.45 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{19} + 864 q^{43} + 2352 q^{49} + 576 q^{55} - 1824 q^{61} + 816 q^{67} + 480 q^{85} - 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.40838 + 2.40838i 0.215412 + 0.215412i 0.806562 0.591150i \(-0.201326\pi\)
−0.591150 + 0.806562i \(0.701326\pi\)
\(6\) 0 0
\(7\) 11.7205 0.632848 0.316424 0.948618i \(-0.397518\pi\)
0.316424 + 0.948618i \(0.397518\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 34.7409 34.7409i 0.952252 0.952252i −0.0466586 0.998911i \(-0.514857\pi\)
0.998911 + 0.0466586i \(0.0148573\pi\)
\(12\) 0 0
\(13\) 3.17950 + 3.17950i 0.0678333 + 0.0678333i 0.740210 0.672376i \(-0.234726\pi\)
−0.672376 + 0.740210i \(0.734726\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 98.0797i 1.39928i −0.714494 0.699642i \(-0.753343\pi\)
0.714494 0.699642i \(-0.246657\pi\)
\(18\) 0 0
\(19\) −15.9562 + 15.9562i −0.192664 + 0.192664i −0.796846 0.604182i \(-0.793500\pi\)
0.604182 + 0.796846i \(0.293500\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 69.6819i 0.631725i 0.948805 + 0.315863i \(0.102294\pi\)
−0.948805 + 0.315863i \(0.897706\pi\)
\(24\) 0 0
\(25\) 113.399i 0.907195i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −15.9649 + 15.9649i −0.102228 + 0.102228i −0.756371 0.654143i \(-0.773029\pi\)
0.654143 + 0.756371i \(0.273029\pi\)
\(30\) 0 0
\(31\) 121.295i 0.702748i −0.936235 0.351374i \(-0.885715\pi\)
0.936235 0.351374i \(-0.114285\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 28.2275 + 28.2275i 0.136323 + 0.136323i
\(36\) 0 0
\(37\) 37.0567 37.0567i 0.164651 0.164651i −0.619973 0.784623i \(-0.712856\pi\)
0.784623 + 0.619973i \(0.212856\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −59.3202 −0.225958 −0.112979 0.993597i \(-0.536039\pi\)
−0.112979 + 0.993597i \(0.536039\pi\)
\(42\) 0 0
\(43\) −241.737 241.737i −0.857314 0.857314i 0.133707 0.991021i \(-0.457312\pi\)
−0.991021 + 0.133707i \(0.957312\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −395.106 −1.22622 −0.613108 0.789999i \(-0.710081\pi\)
−0.613108 + 0.789999i \(0.710081\pi\)
\(48\) 0 0
\(49\) −205.629 −0.599503
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 458.194 + 458.194i 1.18751 + 1.18751i 0.977755 + 0.209750i \(0.0672650\pi\)
0.209750 + 0.977755i \(0.432735\pi\)
\(54\) 0 0
\(55\) 167.339 0.410254
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 257.629 257.629i 0.568483 0.568483i −0.363220 0.931703i \(-0.618323\pi\)
0.931703 + 0.363220i \(0.118323\pi\)
\(60\) 0 0
\(61\) 373.295 + 373.295i 0.783533 + 0.783533i 0.980425 0.196892i \(-0.0630848\pi\)
−0.196892 + 0.980425i \(0.563085\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 15.3149i 0.0292243i
\(66\) 0 0
\(67\) −648.397 + 648.397i −1.18230 + 1.18230i −0.203157 + 0.979146i \(0.565120\pi\)
−0.979146 + 0.203157i \(0.934880\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 787.139i 1.31572i −0.753140 0.657861i \(-0.771462\pi\)
0.753140 0.657861i \(-0.228538\pi\)
\(72\) 0 0
\(73\) 1074.96i 1.72349i −0.507340 0.861746i \(-0.669371\pi\)
0.507340 0.861746i \(-0.330629\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 407.181 407.181i 0.602631 0.602631i
\(78\) 0 0
\(79\) 382.146i 0.544238i −0.962264 0.272119i \(-0.912276\pi\)
0.962264 0.272119i \(-0.0877245\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 491.315 + 491.315i 0.649744 + 0.649744i 0.952931 0.303187i \(-0.0980506\pi\)
−0.303187 + 0.952931i \(0.598051\pi\)
\(84\) 0 0
\(85\) 236.213 236.213i 0.301423 0.301423i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −624.448 −0.743723 −0.371862 0.928288i \(-0.621280\pi\)
−0.371862 + 0.928288i \(0.621280\pi\)
\(90\) 0 0
\(91\) 37.2653 + 37.2653i 0.0429282 + 0.0429282i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −76.8575 −0.0830043
\(96\) 0 0
\(97\) 1665.45 1.74331 0.871654 0.490122i \(-0.163048\pi\)
0.871654 + 0.490122i \(0.163048\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 625.952 + 625.952i 0.616678 + 0.616678i 0.944678 0.327999i \(-0.106374\pi\)
−0.327999 + 0.944678i \(0.606374\pi\)
\(102\) 0 0
\(103\) −1641.52 −1.57033 −0.785163 0.619289i \(-0.787421\pi\)
−0.785163 + 0.619289i \(0.787421\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 956.649 956.649i 0.864325 0.864325i −0.127512 0.991837i \(-0.540699\pi\)
0.991837 + 0.127512i \(0.0406991\pi\)
\(108\) 0 0
\(109\) −1221.44 1221.44i −1.07333 1.07333i −0.997089 0.0762403i \(-0.975708\pi\)
−0.0762403 0.997089i \(-0.524292\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 360.983i 0.300517i 0.988647 + 0.150258i \(0.0480105\pi\)
−0.988647 + 0.150258i \(0.951989\pi\)
\(114\) 0 0
\(115\) −167.821 + 167.821i −0.136081 + 0.136081i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1149.54i 0.885534i
\(120\) 0 0
\(121\) 1082.86i 0.813569i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 574.157 574.157i 0.410833 0.410833i
\(126\) 0 0
\(127\) 1713.36i 1.19713i −0.801073 0.598566i \(-0.795737\pi\)
0.801073 0.598566i \(-0.204263\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −191.155 191.155i −0.127491 0.127491i 0.640482 0.767973i \(-0.278735\pi\)
−0.767973 + 0.640482i \(0.778735\pi\)
\(132\) 0 0
\(133\) −187.015 + 187.015i −0.121927 + 0.121927i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2130.50 1.32862 0.664311 0.747456i \(-0.268725\pi\)
0.664311 + 0.747456i \(0.268725\pi\)
\(138\) 0 0
\(139\) −423.046 423.046i −0.258146 0.258146i 0.566154 0.824300i \(-0.308431\pi\)
−0.824300 + 0.566154i \(0.808431\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 220.917 0.129189
\(144\) 0 0
\(145\) −76.8994 −0.0440424
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2020.44 + 2020.44i 1.11088 + 1.11088i 0.993032 + 0.117844i \(0.0375982\pi\)
0.117844 + 0.993032i \(0.462402\pi\)
\(150\) 0 0
\(151\) −2605.57 −1.40423 −0.702115 0.712064i \(-0.747761\pi\)
−0.702115 + 0.712064i \(0.747761\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 292.124 292.124i 0.151381 0.151381i
\(156\) 0 0
\(157\) −815.970 815.970i −0.414787 0.414787i 0.468615 0.883402i \(-0.344753\pi\)
−0.883402 + 0.468615i \(0.844753\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 816.708i 0.399786i
\(162\) 0 0
\(163\) 268.825 268.825i 0.129178 0.129178i −0.639562 0.768740i \(-0.720884\pi\)
0.768740 + 0.639562i \(0.220884\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1537.53i 0.712440i −0.934402 0.356220i \(-0.884065\pi\)
0.934402 0.356220i \(-0.115935\pi\)
\(168\) 0 0
\(169\) 2176.78i 0.990797i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 598.582 598.582i 0.263060 0.263060i −0.563236 0.826296i \(-0.690444\pi\)
0.826296 + 0.563236i \(0.190444\pi\)
\(174\) 0 0
\(175\) 1329.10i 0.574117i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −285.351 285.351i −0.119152 0.119152i 0.645017 0.764168i \(-0.276850\pi\)
−0.764168 + 0.645017i \(0.776850\pi\)
\(180\) 0 0
\(181\) 2919.93 2919.93i 1.19910 1.19910i 0.224660 0.974437i \(-0.427873\pi\)
0.974437 0.224660i \(-0.0721270\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 178.493 0.0709356
\(186\) 0 0
\(187\) −3407.38 3407.38i −1.33247 1.33247i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1085.25 0.411129 0.205564 0.978644i \(-0.434097\pi\)
0.205564 + 0.978644i \(0.434097\pi\)
\(192\) 0 0
\(193\) 1150.76 0.429191 0.214595 0.976703i \(-0.431157\pi\)
0.214595 + 0.976703i \(0.431157\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2302.47 2302.47i −0.832713 0.832713i 0.155174 0.987887i \(-0.450406\pi\)
−0.987887 + 0.155174i \(0.950406\pi\)
\(198\) 0 0
\(199\) −1300.97 −0.463432 −0.231716 0.972783i \(-0.574434\pi\)
−0.231716 + 0.972783i \(0.574434\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −187.117 + 187.117i −0.0646949 + 0.0646949i
\(204\) 0 0
\(205\) −142.866 142.866i −0.0486740 0.0486740i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1108.67i 0.366929i
\(210\) 0 0
\(211\) −1702.90 + 1702.90i −0.555604 + 0.555604i −0.928053 0.372448i \(-0.878518\pi\)
0.372448 + 0.928053i \(0.378518\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1164.39i 0.369352i
\(216\) 0 0
\(217\) 1421.64i 0.444733i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 311.844 311.844i 0.0949180 0.0949180i
\(222\) 0 0
\(223\) 5316.70i 1.59656i 0.602288 + 0.798279i \(0.294256\pi\)
−0.602288 + 0.798279i \(0.705744\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3132.85 3132.85i −0.916013 0.916013i 0.0807239 0.996737i \(-0.474277\pi\)
−0.996737 + 0.0807239i \(0.974277\pi\)
\(228\) 0 0
\(229\) 4530.55 4530.55i 1.30737 1.30737i 0.384059 0.923308i \(-0.374526\pi\)
0.923308 0.384059i \(-0.125474\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5381.47 1.51310 0.756549 0.653937i \(-0.226884\pi\)
0.756549 + 0.653937i \(0.226884\pi\)
\(234\) 0 0
\(235\) −951.566 951.566i −0.264142 0.264142i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4955.44 1.34117 0.670587 0.741831i \(-0.266042\pi\)
0.670587 + 0.741831i \(0.266042\pi\)
\(240\) 0 0
\(241\) −589.625 −0.157598 −0.0787989 0.996891i \(-0.525109\pi\)
−0.0787989 + 0.996891i \(0.525109\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −495.234 495.234i −0.129140 0.129140i
\(246\) 0 0
\(247\) −101.466 −0.0261381
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2418.09 2418.09i 0.608082 0.608082i −0.334362 0.942445i \(-0.608521\pi\)
0.942445 + 0.334362i \(0.108521\pi\)
\(252\) 0 0
\(253\) 2420.81 + 2420.81i 0.601562 + 0.601562i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 976.607i 0.237039i −0.992952 0.118520i \(-0.962185\pi\)
0.992952 0.118520i \(-0.0378148\pi\)
\(258\) 0 0
\(259\) 434.323 434.323i 0.104199 0.104199i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1820.40i 0.426809i 0.976964 + 0.213404i \(0.0684552\pi\)
−0.976964 + 0.213404i \(0.931545\pi\)
\(264\) 0 0
\(265\) 2207.01i 0.511606i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4795.34 + 4795.34i −1.08690 + 1.08690i −0.0910580 + 0.995846i \(0.529025\pi\)
−0.995846 + 0.0910580i \(0.970975\pi\)
\(270\) 0 0
\(271\) 1294.24i 0.290108i −0.989424 0.145054i \(-0.953664\pi\)
0.989424 0.145054i \(-0.0463356\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3939.60 3939.60i −0.863879 0.863879i
\(276\) 0 0
\(277\) −701.252 + 701.252i −0.152109 + 0.152109i −0.779059 0.626950i \(-0.784303\pi\)
0.626950 + 0.779059i \(0.284303\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5755.44 1.22185 0.610927 0.791687i \(-0.290797\pi\)
0.610927 + 0.791687i \(0.290797\pi\)
\(282\) 0 0
\(283\) −3908.33 3908.33i −0.820939 0.820939i 0.165303 0.986243i \(-0.447140\pi\)
−0.986243 + 0.165303i \(0.947140\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −695.264 −0.142997
\(288\) 0 0
\(289\) −4706.62 −0.957993
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3513.72 + 3513.72i 0.700592 + 0.700592i 0.964538 0.263946i \(-0.0850239\pi\)
−0.263946 + 0.964538i \(0.585024\pi\)
\(294\) 0 0
\(295\) 1240.94 0.244916
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −221.553 + 221.553i −0.0428520 + 0.0428520i
\(300\) 0 0
\(301\) −2833.28 2833.28i −0.542550 0.542550i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1798.07i 0.337565i
\(306\) 0 0
\(307\) 2537.12 2537.12i 0.471666 0.471666i −0.430788 0.902453i \(-0.641764\pi\)
0.902453 + 0.430788i \(0.141764\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7063.50i 1.28789i 0.765071 + 0.643946i \(0.222704\pi\)
−0.765071 + 0.643946i \(0.777296\pi\)
\(312\) 0 0
\(313\) 579.160i 0.104588i −0.998632 0.0522940i \(-0.983347\pi\)
0.998632 0.0522940i \(-0.0166533\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 340.991 340.991i 0.0604164 0.0604164i −0.676253 0.736669i \(-0.736397\pi\)
0.736669 + 0.676253i \(0.236397\pi\)
\(318\) 0 0
\(319\) 1109.27i 0.194694i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1564.98 + 1564.98i 0.269591 + 0.269591i
\(324\) 0 0
\(325\) 360.553 360.553i 0.0615381 0.0615381i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4630.85 −0.776009
\(330\) 0 0
\(331\) 2509.44 + 2509.44i 0.416711 + 0.416711i 0.884068 0.467358i \(-0.154794\pi\)
−0.467358 + 0.884068i \(0.654794\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3123.18 −0.509365
\(336\) 0 0
\(337\) 1805.84 0.291899 0.145950 0.989292i \(-0.453376\pi\)
0.145950 + 0.989292i \(0.453376\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4213.89 4213.89i −0.669193 0.669193i
\(342\) 0 0
\(343\) −6430.22 −1.01224
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3463.32 + 3463.32i −0.535795 + 0.535795i −0.922291 0.386496i \(-0.873685\pi\)
0.386496 + 0.922291i \(0.373685\pi\)
\(348\) 0 0
\(349\) −5797.35 5797.35i −0.889183 0.889183i 0.105261 0.994445i \(-0.466432\pi\)
−0.994445 + 0.105261i \(0.966432\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2793.32i 0.421172i −0.977575 0.210586i \(-0.932463\pi\)
0.977575 0.210586i \(-0.0675372\pi\)
\(354\) 0 0
\(355\) 1895.73 1895.73i 0.283423 0.283423i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6896.95i 1.01395i −0.861962 0.506974i \(-0.830764\pi\)
0.861962 0.506974i \(-0.169236\pi\)
\(360\) 0 0
\(361\) 6349.80i 0.925761i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2588.92 2588.92i 0.371261 0.371261i
\(366\) 0 0
\(367\) 1724.22i 0.245242i −0.992454 0.122621i \(-0.960870\pi\)
0.992454 0.122621i \(-0.0391299\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5370.27 + 5370.27i 0.751511 + 0.751511i
\(372\) 0 0
\(373\) −5937.62 + 5937.62i −0.824231 + 0.824231i −0.986712 0.162481i \(-0.948051\pi\)
0.162481 + 0.986712i \(0.448051\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −101.521 −0.0138689
\(378\) 0 0
\(379\) 8009.60 + 8009.60i 1.08556 + 1.08556i 0.995980 + 0.0895751i \(0.0285509\pi\)
0.0895751 + 0.995980i \(0.471449\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12372.3 1.65064 0.825319 0.564667i \(-0.190995\pi\)
0.825319 + 0.564667i \(0.190995\pi\)
\(384\) 0 0
\(385\) 1961.30 0.259628
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3950.83 3950.83i −0.514948 0.514948i 0.401090 0.916039i \(-0.368631\pi\)
−0.916039 + 0.401090i \(0.868631\pi\)
\(390\) 0 0
\(391\) 6834.38 0.883962
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 920.355 920.355i 0.117236 0.117236i
\(396\) 0 0
\(397\) 9644.39 + 9644.39i 1.21924 + 1.21924i 0.967899 + 0.251341i \(0.0808715\pi\)
0.251341 + 0.967899i \(0.419129\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3647.28i 0.454206i 0.973871 + 0.227103i \(0.0729254\pi\)
−0.973871 + 0.227103i \(0.927075\pi\)
\(402\) 0 0
\(403\) 385.656 385.656i 0.0476697 0.0476697i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2574.76i 0.313578i
\(408\) 0 0
\(409\) 860.719i 0.104058i −0.998646 0.0520291i \(-0.983431\pi\)
0.998646 0.0520291i \(-0.0165689\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3019.55 3019.55i 0.359763 0.359763i
\(414\) 0 0
\(415\) 2366.55i 0.279926i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1158.11 1158.11i −0.135029 0.135029i 0.636362 0.771391i \(-0.280439\pi\)
−0.771391 + 0.636362i \(0.780439\pi\)
\(420\) 0 0
\(421\) −2410.72 + 2410.72i −0.279076 + 0.279076i −0.832740 0.553664i \(-0.813229\pi\)
0.553664 + 0.832740i \(0.313229\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11122.2 −1.26942
\(426\) 0 0
\(427\) 4375.21 + 4375.21i 0.495858 + 0.495858i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10544.5 −1.17844 −0.589221 0.807972i \(-0.700565\pi\)
−0.589221 + 0.807972i \(0.700565\pi\)
\(432\) 0 0
\(433\) 1205.31 0.133773 0.0668864 0.997761i \(-0.478693\pi\)
0.0668864 + 0.997761i \(0.478693\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1111.86 1111.86i −0.121711 0.121711i
\(438\) 0 0
\(439\) 16643.3 1.80943 0.904716 0.426015i \(-0.140083\pi\)
0.904716 + 0.426015i \(0.140083\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7621.94 + 7621.94i −0.817448 + 0.817448i −0.985738 0.168290i \(-0.946176\pi\)
0.168290 + 0.985738i \(0.446176\pi\)
\(444\) 0 0
\(445\) −1503.91 1503.91i −0.160207 0.160207i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1505.28i 0.158215i 0.996866 + 0.0791077i \(0.0252071\pi\)
−0.996866 + 0.0791077i \(0.974793\pi\)
\(450\) 0 0
\(451\) −2060.84 + 2060.84i −0.215169 + 0.215169i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 179.498i 0.0184945i
\(456\) 0 0
\(457\) 6918.12i 0.708131i 0.935221 + 0.354065i \(0.115201\pi\)
−0.935221 + 0.354065i \(0.884799\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3348.19 3348.19i 0.338266 0.338266i −0.517448 0.855715i \(-0.673118\pi\)
0.855715 + 0.517448i \(0.173118\pi\)
\(462\) 0 0
\(463\) 2122.03i 0.213000i 0.994313 + 0.106500i \(0.0339644\pi\)
−0.994313 + 0.106500i \(0.966036\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12230.3 + 12230.3i 1.21189 + 1.21189i 0.970405 + 0.241482i \(0.0776334\pi\)
0.241482 + 0.970405i \(0.422367\pi\)
\(468\) 0 0
\(469\) −7599.55 + 7599.55i −0.748219 + 0.748219i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16796.3 −1.63276
\(474\) 0 0
\(475\) 1809.43 + 1809.43i 0.174784 + 0.174784i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20589.9 −1.96404 −0.982020 0.188779i \(-0.939547\pi\)
−0.982020 + 0.188779i \(0.939547\pi\)
\(480\) 0 0
\(481\) 235.643 0.0223376
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4011.04 + 4011.04i 0.375530 + 0.375530i
\(486\) 0 0
\(487\) −8672.88 −0.806994 −0.403497 0.914981i \(-0.632205\pi\)
−0.403497 + 0.914981i \(0.632205\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1815.32 + 1815.32i −0.166852 + 0.166852i −0.785594 0.618742i \(-0.787643\pi\)
0.618742 + 0.785594i \(0.287643\pi\)
\(492\) 0 0
\(493\) 1565.84 + 1565.84i 0.143046 + 0.143046i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9225.68i 0.832652i
\(498\) 0 0
\(499\) −2716.12 + 2716.12i −0.243668 + 0.243668i −0.818366 0.574698i \(-0.805120\pi\)
0.574698 + 0.818366i \(0.305120\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17354.3i 1.53835i 0.639040 + 0.769173i \(0.279332\pi\)
−0.639040 + 0.769173i \(0.720668\pi\)
\(504\) 0 0
\(505\) 3015.06i 0.265680i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8211.14 + 8211.14i −0.715034 + 0.715034i −0.967584 0.252550i \(-0.918731\pi\)
0.252550 + 0.967584i \(0.418731\pi\)
\(510\) 0 0
\(511\) 12599.1i 1.09071i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3953.41 3953.41i −0.338268 0.338268i
\(516\) 0 0
\(517\) −13726.3 + 13726.3i −1.16767 + 1.16767i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9350.18 −0.786255 −0.393127 0.919484i \(-0.628607\pi\)
−0.393127 + 0.919484i \(0.628607\pi\)
\(522\) 0 0
\(523\) 11818.7 + 11818.7i 0.988140 + 0.988140i 0.999930 0.0117907i \(-0.00375319\pi\)
−0.0117907 + 0.999930i \(0.503753\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11896.5 −0.983343
\(528\) 0 0
\(529\) 7311.43 0.600923
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −188.608 188.608i −0.0153275 0.0153275i
\(534\) 0 0
\(535\) 4607.96 0.372373
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7143.75 + 7143.75i −0.570878 + 0.570878i
\(540\) 0 0
\(541\) 10764.1 + 10764.1i 0.855422 + 0.855422i 0.990795 0.135373i \(-0.0432232\pi\)
−0.135373 + 0.990795i \(0.543223\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5883.40i 0.462417i
\(546\) 0 0
\(547\) 2093.77 2093.77i 0.163662 0.163662i −0.620525 0.784187i \(-0.713080\pi\)
0.784187 + 0.620525i \(0.213080\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 509.481i 0.0393913i
\(552\) 0 0
\(553\) 4478.95i 0.344420i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5245.63 + 5245.63i −0.399038 + 0.399038i −0.877894 0.478855i \(-0.841052\pi\)
0.478855 + 0.877894i \(0.341052\pi\)
\(558\) 0 0
\(559\) 1537.20i 0.116309i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7593.93 + 7593.93i 0.568465 + 0.568465i 0.931698 0.363233i \(-0.118327\pi\)
−0.363233 + 0.931698i \(0.618327\pi\)
\(564\) 0 0
\(565\) −869.384 + 869.384i −0.0647350 + 0.0647350i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3416.36 0.251707 0.125853 0.992049i \(-0.459833\pi\)
0.125853 + 0.992049i \(0.459833\pi\)
\(570\) 0 0
\(571\) 1823.75 + 1823.75i 0.133663 + 0.133663i 0.770773 0.637110i \(-0.219870\pi\)
−0.637110 + 0.770773i \(0.719870\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7901.88 0.573098
\(576\) 0 0
\(577\) −23143.8 −1.66982 −0.834912 0.550383i \(-0.814482\pi\)
−0.834912 + 0.550383i \(0.814482\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5758.46 + 5758.46i 0.411190 + 0.411190i
\(582\) 0 0
\(583\) 31836.1 2.26161
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16398.7 16398.7i 1.15306 1.15306i 0.167122 0.985936i \(-0.446553\pi\)
0.985936 0.167122i \(-0.0534473\pi\)
\(588\) 0 0
\(589\) 1935.41 + 1935.41i 0.135394 + 0.135394i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13256.2i 0.917989i −0.888439 0.458994i \(-0.848210\pi\)
0.888439 0.458994i \(-0.151790\pi\)
\(594\) 0 0
\(595\) 2768.54 2768.54i 0.190755 0.190755i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9973.40i 0.680304i 0.940370 + 0.340152i \(0.110479\pi\)
−0.940370 + 0.340152i \(0.889521\pi\)
\(600\) 0 0
\(601\) 22549.7i 1.53048i 0.643744 + 0.765241i \(0.277380\pi\)
−0.643744 + 0.765241i \(0.722620\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2607.94 2607.94i 0.175253 0.175253i
\(606\) 0 0
\(607\) 21635.2i 1.44670i 0.690482 + 0.723350i \(0.257398\pi\)
−0.690482 + 0.723350i \(0.742602\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1256.24 1256.24i −0.0831783 0.0831783i
\(612\) 0 0
\(613\) −2977.25 + 2977.25i −0.196166 + 0.196166i −0.798354 0.602188i \(-0.794296\pi\)
0.602188 + 0.798354i \(0.294296\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6649.18 −0.433851 −0.216925 0.976188i \(-0.569603\pi\)
−0.216925 + 0.976188i \(0.569603\pi\)
\(618\) 0 0
\(619\) −2920.44 2920.44i −0.189632 0.189632i 0.605905 0.795537i \(-0.292811\pi\)
−0.795537 + 0.605905i \(0.792811\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7318.86 −0.470664
\(624\) 0 0
\(625\) −11409.3 −0.730198
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3634.50 3634.50i −0.230393 0.230393i
\(630\) 0 0
\(631\) 3289.01 0.207501 0.103751 0.994603i \(-0.466916\pi\)
0.103751 + 0.994603i \(0.466916\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4126.42 4126.42i 0.257877 0.257877i
\(636\) 0 0
\(637\) −653.798 653.798i −0.0406663 0.0406663i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9161.75i 0.564536i −0.959336 0.282268i \(-0.908913\pi\)
0.959336 0.282268i \(-0.0910867\pi\)
\(642\) 0 0
\(643\) 6165.52 6165.52i 0.378141 0.378141i −0.492290 0.870431i \(-0.663840\pi\)
0.870431 + 0.492290i \(0.163840\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6481.62i 0.393846i 0.980419 + 0.196923i \(0.0630950\pi\)
−0.980419 + 0.196923i \(0.936905\pi\)
\(648\) 0 0
\(649\) 17900.5i 1.08268i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 772.442 772.442i 0.0462910 0.0462910i −0.683582 0.729873i \(-0.739579\pi\)
0.729873 + 0.683582i \(0.239579\pi\)
\(654\) 0 0
\(655\) 920.751i 0.0549263i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1416.83 1416.83i −0.0837510 0.0837510i 0.663990 0.747741i \(-0.268862\pi\)
−0.747741 + 0.663990i \(0.768862\pi\)
\(660\) 0 0
\(661\) 7384.66 7384.66i 0.434539 0.434539i −0.455630 0.890169i \(-0.650586\pi\)
0.890169 + 0.455630i \(0.150586\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −900.809 −0.0525291
\(666\) 0 0
\(667\) −1112.47 1112.47i −0.0645801 0.0645801i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25937.2 1.49224
\(672\) 0 0
\(673\) 8695.15 0.498029 0.249014 0.968500i \(-0.419893\pi\)
0.249014 + 0.968500i \(0.419893\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19700.8 19700.8i −1.11841 1.11841i −0.991975 0.126436i \(-0.959646\pi\)
−0.126436 0.991975i \(-0.540354\pi\)
\(678\) 0 0
\(679\) 19519.9 1.10325
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6263.20 + 6263.20i −0.350885 + 0.350885i −0.860439 0.509554i \(-0.829811\pi\)
0.509554 + 0.860439i \(0.329811\pi\)
\(684\) 0 0
\(685\) 5131.07 + 5131.07i 0.286202 + 0.286202i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2913.65i 0.161105i
\(690\) 0 0
\(691\) −21784.7 + 21784.7i −1.19932 + 1.19932i −0.224945 + 0.974371i \(0.572220\pi\)
−0.974371 + 0.224945i \(0.927780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2037.71i 0.111216i
\(696\) 0 0
\(697\) 5818.11i 0.316179i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6306.61 + 6306.61i −0.339797 + 0.339797i −0.856291 0.516494i \(-0.827237\pi\)
0.516494 + 0.856291i \(0.327237\pi\)
\(702\) 0 0
\(703\) 1182.57i 0.0634445i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7336.48 + 7336.48i 0.390264 + 0.390264i
\(708\) 0 0
\(709\) −6829.13 + 6829.13i −0.361740 + 0.361740i −0.864453 0.502713i \(-0.832335\pi\)
0.502713 + 0.864453i \(0.332335\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8452.05 0.443944
\(714\) 0 0
\(715\) 532.053 + 532.053i 0.0278289 + 0.0278289i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3688.19 −0.191302 −0.0956511 0.995415i \(-0.530493\pi\)
−0.0956511 + 0.995415i \(0.530493\pi\)
\(720\) 0 0
\(721\) −19239.4 −0.993779
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1810.41 + 1810.41i 0.0927408 + 0.0927408i
\(726\) 0 0
\(727\) −28693.9 −1.46382 −0.731911 0.681400i \(-0.761371\pi\)
−0.731911 + 0.681400i \(0.761371\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −23709.5 + 23709.5i −1.19963 + 1.19963i
\(732\) 0 0
\(733\) 4890.55 + 4890.55i 0.246434 + 0.246434i 0.819506 0.573071i \(-0.194248\pi\)
−0.573071 + 0.819506i \(0.694248\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 45051.8i 2.25170i
\(738\) 0 0
\(739\) 23911.6 23911.6i 1.19026 1.19026i 0.213269 0.976993i \(-0.431589\pi\)
0.976993 0.213269i \(-0.0684111\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14426.5i 0.712323i −0.934424 0.356162i \(-0.884085\pi\)
0.934424 0.356162i \(-0.115915\pi\)
\(744\) 0 0
\(745\) 9731.96i 0.478593i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11212.4 11212.4i 0.546987 0.546987i
\(750\) 0 0
\(751\) 17255.7i 0.838439i −0.907885 0.419220i \(-0.862304\pi\)
0.907885 0.419220i \(-0.137696\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6275.22 6275.22i −0.302488 0.302488i
\(756\) 0 0
\(757\) 12874.2 12874.2i 0.618124 0.618124i −0.326926 0.945050i \(-0.606013\pi\)
0.945050 + 0.326926i \(0.106013\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4694.94 0.223642 0.111821 0.993728i \(-0.464332\pi\)
0.111821 + 0.993728i \(0.464332\pi\)
\(762\) 0 0
\(763\) −14315.9 14315.9i −0.679255 0.679255i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1638.26 0.0771242
\(768\) 0 0
\(769\) 27268.7 1.27872 0.639359 0.768908i \(-0.279200\pi\)
0.639359 + 0.768908i \(0.279200\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10010.2 + 10010.2i 0.465772 + 0.465772i 0.900542 0.434769i \(-0.143170\pi\)
−0.434769 + 0.900542i \(0.643170\pi\)
\(774\) 0 0
\(775\) −13754.8 −0.637529
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 946.527 946.527i 0.0435338 0.0435338i
\(780\) 0 0
\(781\) −27345.9 27345.9i −1.25290 1.25290i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3930.34i 0.178700i
\(786\) 0 0
\(787\) 1703.37 1703.37i 0.0771521 0.0771521i −0.667478 0.744630i \(-0.732626\pi\)
0.744630 + 0.667478i \(0.232626\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4230.90i 0.190182i
\(792\) 0 0
\(793\) 2373.78i 0.106299i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13767.6 + 13767.6i −0.611886 + 0.611886i −0.943437 0.331551i \(-0.892428\pi\)
0.331551 + 0.943437i \(0.392428\pi\)
\(798\) 0 0
\(799\) 38751.9i 1.71582i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −37345.2 37345.2i −1.64120 1.64120i
\(804\) 0 0
\(805\) −1966.95 + 1966.95i −0.0861189 + 0.0861189i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34122.6 1.48292 0.741462 0.670995i \(-0.234133\pi\)
0.741462 + 0.670995i \(0.234133\pi\)
\(810\) 0 0
\(811\) 19921.8 + 19921.8i 0.862576 + 0.862576i 0.991637 0.129061i \(-0.0411962\pi\)
−0.129061 + 0.991637i \(0.541196\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1294.87 0.0556529
\(816\) 0 0
\(817\) 7714.42 0.330347
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3546.97 3546.97i −0.150780 0.150780i 0.627687 0.778466i \(-0.284002\pi\)
−0.778466 + 0.627687i \(0.784002\pi\)
\(822\) 0 0
\(823\) −33931.8 −1.43717 −0.718583 0.695442i \(-0.755209\pi\)
−0.718583 + 0.695442i \(0.755209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5818.78 5818.78i 0.244666 0.244666i −0.574111 0.818777i \(-0.694652\pi\)
0.818777 + 0.574111i \(0.194652\pi\)
\(828\) 0 0
\(829\) −7895.08 7895.08i −0.330769 0.330769i 0.522110 0.852878i \(-0.325145\pi\)
−0.852878 + 0.522110i \(0.825145\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20168.1i 0.838874i
\(834\) 0 0
\(835\) 3702.95 3702.95i 0.153468 0.153468i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23123.0i 0.951485i −0.879585 0.475743i \(-0.842179\pi\)
0.879585 0.475743i \(-0.157821\pi\)
\(840\) 0 0
\(841\) 23879.2i 0.979099i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5242.52 5242.52i 0.213430 0.213430i
\(846\) 0 0
\(847\) 12691.7i 0.514866i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2582.18 + 2582.18i 0.104014 + 0.104014i
\(852\) 0 0
\(853\) 10555.7 10555.7i 0.423707 0.423707i −0.462771 0.886478i \(-0.653145\pi\)
0.886478 + 0.462771i \(0.153145\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14835.9 0.591349 0.295674 0.955289i \(-0.404456\pi\)
0.295674 + 0.955289i \(0.404456\pi\)
\(858\) 0 0
\(859\) −21200.1 21200.1i −0.842069 0.842069i 0.147059 0.989128i \(-0.453019\pi\)
−0.989128 + 0.147059i \(0.953019\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38729.6 1.52766 0.763830 0.645418i \(-0.223317\pi\)
0.763830 + 0.645418i \(0.223317\pi\)
\(864\) 0 0
\(865\) 2883.23 0.113333
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13276.1 13276.1i −0.518252 0.518252i
\(870\) 0 0
\(871\) −4123.15 −0.160399
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6729.42 6729.42i 0.259995 0.259995i
\(876\) 0 0
\(877\) −3724.13 3724.13i −0.143392 0.143392i 0.631766 0.775159i \(-0.282330\pi\)
−0.775159 + 0.631766i \(0.782330\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10798.5i 0.412951i −0.978452 0.206475i \(-0.933801\pi\)
0.978452 0.206475i \(-0.0661993\pi\)
\(882\) 0 0
\(883\) 3539.05 3539.05i 0.134879 0.134879i −0.636444 0.771323i \(-0.719595\pi\)
0.771323 + 0.636444i \(0.219595\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22802.5i 0.863172i 0.902072 + 0.431586i \(0.142046\pi\)
−0.902072 + 0.431586i \(0.857954\pi\)
\(888\) 0 0
\(889\) 20081.4i 0.757604i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6304.40 6304.40i 0.236247 0.236247i
\(894\) 0 0
\(895\) 1374.47i 0.0513334i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1936.46 + 1936.46i 0.0718406 + 0.0718406i
\(900\) 0 0
\(901\) 44939.5 44939.5i 1.66166 1.66166i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14064.6 0.516600
\(906\) 0 0
\(907\) −6649.86 6649.86i −0.243445 0.243445i 0.574829 0.818274i \(-0.305069\pi\)
−0.818274 + 0.574829i \(0.805069\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2309.48 −0.0839917 −0.0419958 0.999118i \(-0.513372\pi\)
−0.0419958 + 0.999118i \(0.513372\pi\)
\(912\) 0 0
\(913\) 34137.4 1.23744
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2240.44 2240.44i −0.0806825 0.0806825i
\(918\) 0 0
\(919\) −48567.3 −1.74329 −0.871646 0.490135i \(-0.836947\pi\)
−0.871646 + 0.490135i \(0.836947\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2502.70 2502.70i 0.0892498 0.0892498i
\(924\) 0 0
\(925\) −4202.20 4202.20i −0.149370 0.149370i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 55572.0i 1.96260i −0.192477 0.981302i \(-0.561652\pi\)
0.192477 0.981302i \(-0.438348\pi\)
\(930\) 0 0
\(931\) 3281.07 3281.07i 0.115502 0.115502i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16412.5i 0.574061i
\(936\) 0 0
\(937\) 46921.8i 1.63593i −0.575268 0.817965i \(-0.695102\pi\)
0.575268 0.817965i \(-0.304898\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15833.3 + 15833.3i −0.548514 + 0.548514i −0.926011 0.377497i \(-0.876785\pi\)
0.377497 + 0.926011i \(0.376785\pi\)
\(942\) 0 0
\(943\) 4133.55i 0.142743i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4616.34 4616.34i −0.158406 0.158406i 0.623454 0.781860i \(-0.285729\pi\)
−0.781860 + 0.623454i \(0.785729\pi\)
\(948\) 0 0
\(949\) 3417.84 3417.84i 0.116910 0.116910i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −7702.58 −0.261816 −0.130908 0.991394i \(-0.541789\pi\)
−0.130908 + 0.991394i \(0.541789\pi\)
\(954\) 0 0
\(955\) 2613.69 + 2613.69i 0.0885622 + 0.0885622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24970.6 0.840817
\(960\) 0 0
\(961\) 15078.6 0.506145
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2771.48 + 2771.48i 0.0924530 + 0.0924530i
\(966\) 0 0
\(967\) 3885.39 0.129210 0.0646048 0.997911i \(-0.479421\pi\)
0.0646048 + 0.997911i \(0.479421\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 27634.4 27634.4i 0.913315 0.913315i −0.0832167 0.996531i \(-0.526519\pi\)
0.996531 + 0.0832167i \(0.0265194\pi\)
\(972\) 0 0
\(973\) −4958.31 4958.31i −0.163367 0.163367i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 59115.6i 1.93580i 0.251336 + 0.967900i \(0.419130\pi\)
−0.251336 + 0.967900i \(0.580870\pi\)
\(978\) 0 0
\(979\) −21693.9 + 21693.9i −0.708212 + 0.708212i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13689.3i 0.444172i −0.975027 0.222086i \(-0.928713\pi\)
0.975027 0.222086i \(-0.0712866\pi\)
\(984\) 0 0
\(985\) 11090.5i 0.358753i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16844.7 16844.7i 0.541587 0.541587i
\(990\) 0 0
\(991\) 37624.8i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3133.22 3133.22i −0.0998290 0.0998290i
\(996\) 0 0
\(997\) −11609.6 + 11609.6i −0.368786 + 0.368786i −0.867034 0.498248i \(-0.833977\pi\)
0.498248 + 0.867034i \(0.333977\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.l.a.863.13 48
3.2 odd 2 inner 1152.4.l.a.863.12 48
4.3 odd 2 1152.4.l.b.863.13 48
8.3 odd 2 144.4.l.a.35.12 48
8.5 even 2 576.4.l.a.431.12 48
12.11 even 2 1152.4.l.b.863.12 48
16.3 odd 4 576.4.l.a.143.13 48
16.5 even 4 1152.4.l.b.287.12 48
16.11 odd 4 inner 1152.4.l.a.287.12 48
16.13 even 4 144.4.l.a.107.13 yes 48
24.5 odd 2 576.4.l.a.431.13 48
24.11 even 2 144.4.l.a.35.13 yes 48
48.5 odd 4 1152.4.l.b.287.13 48
48.11 even 4 inner 1152.4.l.a.287.13 48
48.29 odd 4 144.4.l.a.107.12 yes 48
48.35 even 4 576.4.l.a.143.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.12 48 8.3 odd 2
144.4.l.a.35.13 yes 48 24.11 even 2
144.4.l.a.107.12 yes 48 48.29 odd 4
144.4.l.a.107.13 yes 48 16.13 even 4
576.4.l.a.143.12 48 48.35 even 4
576.4.l.a.143.13 48 16.3 odd 4
576.4.l.a.431.12 48 8.5 even 2
576.4.l.a.431.13 48 24.5 odd 2
1152.4.l.a.287.12 48 16.11 odd 4 inner
1152.4.l.a.287.13 48 48.11 even 4 inner
1152.4.l.a.863.12 48 3.2 odd 2 inner
1152.4.l.a.863.13 48 1.1 even 1 trivial
1152.4.l.b.287.12 48 16.5 even 4
1152.4.l.b.287.13 48 48.5 odd 4
1152.4.l.b.863.12 48 12.11 even 2
1152.4.l.b.863.13 48 4.3 odd 2