Properties

Label 144.4.l.a.35.12
Level $144$
Weight $4$
Character 144.35
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 35.12
Character \(\chi\) \(=\) 144.35
Dual form 144.4.l.a.107.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0720364 + 2.82751i) q^{2} +(-7.98962 - 0.407367i) q^{4} +(-2.40838 - 2.40838i) q^{5} -11.7205 q^{7} +(1.72738 - 22.5614i) q^{8} +(6.98322 - 6.63623i) q^{10} +(34.7409 - 34.7409i) q^{11} +(-3.17950 - 3.17950i) q^{13} +(0.844304 - 33.1399i) q^{14} +(63.6681 + 6.50942i) q^{16} -98.0797i q^{17} +(-15.9562 + 15.9562i) q^{19} +(18.2610 + 20.2232i) q^{20} +(95.7276 + 100.733i) q^{22} -69.6819i q^{23} -113.399i q^{25} +(9.21909 - 8.76101i) q^{26} +(93.6425 + 4.77456i) q^{28} +(15.9649 - 15.9649i) q^{29} +121.295i q^{31} +(-22.9919 + 179.553i) q^{32} +(277.321 + 7.06531i) q^{34} +(28.2275 + 28.2275i) q^{35} +(-37.0567 + 37.0567i) q^{37} +(-43.9670 - 46.2658i) q^{38} +(-58.4966 + 50.1763i) q^{40} -59.3202 q^{41} +(-241.737 - 241.737i) q^{43} +(-291.719 + 263.414i) q^{44} +(197.026 + 5.01964i) q^{46} +395.106 q^{47} -205.629 q^{49} +(320.638 + 8.16889i) q^{50} +(24.1077 + 26.6982i) q^{52} +(-458.194 - 458.194i) q^{53} -167.339 q^{55} +(-20.2458 + 264.431i) q^{56} +(43.9910 + 46.2911i) q^{58} +(257.629 - 257.629i) q^{59} +(-373.295 - 373.295i) q^{61} +(-342.962 - 8.73764i) q^{62} +(-506.032 - 77.9441i) q^{64} +15.3149i q^{65} +(-648.397 + 648.397i) q^{67} +(-39.9545 + 783.619i) q^{68} +(-81.8469 + 77.7801i) q^{70} +787.139i q^{71} -1074.96i q^{73} +(-102.109 - 107.447i) q^{74} +(133.984 - 120.984i) q^{76} +(-407.181 + 407.181i) q^{77} +382.146i q^{79} +(-137.660 - 169.014i) q^{80} +(4.27322 - 167.728i) q^{82} +(491.315 + 491.315i) q^{83} +(-236.213 + 236.213i) q^{85} +(700.927 - 666.099i) q^{86} +(-723.792 - 843.814i) q^{88} -624.448 q^{89} +(37.2653 + 37.2653i) q^{91} +(-28.3861 + 556.732i) q^{92} +(-28.4620 + 1117.17i) q^{94} +76.8575 q^{95} +1665.45 q^{97} +(14.8128 - 581.419i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0720364 + 2.82751i −0.0254687 + 0.999676i
\(3\) 0 0
\(4\) −7.98962 0.407367i −0.998703 0.0509209i
\(5\) −2.40838 2.40838i −0.215412 0.215412i 0.591150 0.806562i \(-0.298674\pi\)
−0.806562 + 0.591150i \(0.798674\pi\)
\(6\) 0 0
\(7\) −11.7205 −0.632848 −0.316424 0.948618i \(-0.602482\pi\)
−0.316424 + 0.948618i \(0.602482\pi\)
\(8\) 1.72738 22.5614i 0.0763401 0.997082i
\(9\) 0 0
\(10\) 6.98322 6.63623i 0.220829 0.209856i
\(11\) 34.7409 34.7409i 0.952252 0.952252i −0.0466586 0.998911i \(-0.514857\pi\)
0.998911 + 0.0466586i \(0.0148573\pi\)
\(12\) 0 0
\(13\) −3.17950 3.17950i −0.0678333 0.0678333i 0.672376 0.740210i \(-0.265274\pi\)
−0.740210 + 0.672376i \(0.765274\pi\)
\(14\) 0.844304 33.1399i 0.0161178 0.632643i
\(15\) 0 0
\(16\) 63.6681 + 6.50942i 0.994814 + 0.101710i
\(17\) 98.0797i 1.39928i −0.714494 0.699642i \(-0.753343\pi\)
0.714494 0.699642i \(-0.246657\pi\)
\(18\) 0 0
\(19\) −15.9562 + 15.9562i −0.192664 + 0.192664i −0.796846 0.604182i \(-0.793500\pi\)
0.604182 + 0.796846i \(0.293500\pi\)
\(20\) 18.2610 + 20.2232i 0.204164 + 0.226102i
\(21\) 0 0
\(22\) 95.7276 + 100.733i 0.927691 + 0.976196i
\(23\) 69.6819i 0.631725i −0.948805 0.315863i \(-0.897706\pi\)
0.948805 0.315863i \(-0.102294\pi\)
\(24\) 0 0
\(25\) 113.399i 0.907195i
\(26\) 9.21909 8.76101i 0.0695390 0.0660837i
\(27\) 0 0
\(28\) 93.6425 + 4.77456i 0.632027 + 0.0322252i
\(29\) 15.9649 15.9649i 0.102228 0.102228i −0.654143 0.756371i \(-0.726971\pi\)
0.756371 + 0.654143i \(0.226971\pi\)
\(30\) 0 0
\(31\) 121.295i 0.702748i 0.936235 + 0.351374i \(0.114285\pi\)
−0.936235 + 0.351374i \(0.885715\pi\)
\(32\) −22.9919 + 179.553i −0.127013 + 0.991901i
\(33\) 0 0
\(34\) 277.321 + 7.06531i 1.39883 + 0.0356380i
\(35\) 28.2275 + 28.2275i 0.136323 + 0.136323i
\(36\) 0 0
\(37\) −37.0567 + 37.0567i −0.164651 + 0.164651i −0.784623 0.619973i \(-0.787144\pi\)
0.619973 + 0.784623i \(0.287144\pi\)
\(38\) −43.9670 46.2658i −0.187694 0.197508i
\(39\) 0 0
\(40\) −58.4966 + 50.1763i −0.231228 + 0.198339i
\(41\) −59.3202 −0.225958 −0.112979 0.993597i \(-0.536039\pi\)
−0.112979 + 0.993597i \(0.536039\pi\)
\(42\) 0 0
\(43\) −241.737 241.737i −0.857314 0.857314i 0.133707 0.991021i \(-0.457312\pi\)
−0.991021 + 0.133707i \(0.957312\pi\)
\(44\) −291.719 + 263.414i −0.999506 + 0.902527i
\(45\) 0 0
\(46\) 197.026 + 5.01964i 0.631520 + 0.0160892i
\(47\) 395.106 1.22622 0.613108 0.789999i \(-0.289919\pi\)
0.613108 + 0.789999i \(0.289919\pi\)
\(48\) 0 0
\(49\) −205.629 −0.599503
\(50\) 320.638 + 8.16889i 0.906901 + 0.0231051i
\(51\) 0 0
\(52\) 24.1077 + 26.6982i 0.0642912 + 0.0711995i
\(53\) −458.194 458.194i −1.18751 1.18751i −0.977755 0.209750i \(-0.932735\pi\)
−0.209750 0.977755i \(-0.567265\pi\)
\(54\) 0 0
\(55\) −167.339 −0.410254
\(56\) −20.2458 + 264.431i −0.0483117 + 0.631002i
\(57\) 0 0
\(58\) 43.9910 + 46.2911i 0.0995913 + 0.104799i
\(59\) 257.629 257.629i 0.568483 0.568483i −0.363220 0.931703i \(-0.618323\pi\)
0.931703 + 0.363220i \(0.118323\pi\)
\(60\) 0 0
\(61\) −373.295 373.295i −0.783533 0.783533i 0.196892 0.980425i \(-0.436915\pi\)
−0.980425 + 0.196892i \(0.936915\pi\)
\(62\) −342.962 8.73764i −0.702520 0.0178981i
\(63\) 0 0
\(64\) −506.032 77.9441i −0.988344 0.152235i
\(65\) 15.3149i 0.0292243i
\(66\) 0 0
\(67\) −648.397 + 648.397i −1.18230 + 1.18230i −0.203157 + 0.979146i \(0.565120\pi\)
−0.979146 + 0.203157i \(0.934880\pi\)
\(68\) −39.9545 + 783.619i −0.0712528 + 1.39747i
\(69\) 0 0
\(70\) −81.8469 + 77.7801i −0.139751 + 0.132807i
\(71\) 787.139i 1.31572i 0.753140 + 0.657861i \(0.228538\pi\)
−0.753140 + 0.657861i \(0.771462\pi\)
\(72\) 0 0
\(73\) 1074.96i 1.72349i −0.507340 0.861746i \(-0.669371\pi\)
0.507340 0.861746i \(-0.330629\pi\)
\(74\) −102.109 107.447i −0.160404 0.168791i
\(75\) 0 0
\(76\) 133.984 120.984i 0.202224 0.182603i
\(77\) −407.181 + 407.181i −0.602631 + 0.602631i
\(78\) 0 0
\(79\) 382.146i 0.544238i 0.962264 + 0.272119i \(0.0877245\pi\)
−0.962264 + 0.272119i \(0.912276\pi\)
\(80\) −137.660 169.014i −0.192386 0.236205i
\(81\) 0 0
\(82\) 4.27322 167.728i 0.00575485 0.225884i
\(83\) 491.315 + 491.315i 0.649744 + 0.649744i 0.952931 0.303187i \(-0.0980506\pi\)
−0.303187 + 0.952931i \(0.598051\pi\)
\(84\) 0 0
\(85\) −236.213 + 236.213i −0.301423 + 0.301423i
\(86\) 700.927 666.099i 0.878871 0.835201i
\(87\) 0 0
\(88\) −723.792 843.814i −0.876778 1.02217i
\(89\) −624.448 −0.743723 −0.371862 0.928288i \(-0.621280\pi\)
−0.371862 + 0.928288i \(0.621280\pi\)
\(90\) 0 0
\(91\) 37.2653 + 37.2653i 0.0429282 + 0.0429282i
\(92\) −28.3861 + 556.732i −0.0321680 + 0.630906i
\(93\) 0 0
\(94\) −28.4620 + 1117.17i −0.0312301 + 1.22582i
\(95\) 76.8575 0.0830043
\(96\) 0 0
\(97\) 1665.45 1.74331 0.871654 0.490122i \(-0.163048\pi\)
0.871654 + 0.490122i \(0.163048\pi\)
\(98\) 14.8128 581.419i 0.0152686 0.599308i
\(99\) 0 0
\(100\) −46.1952 + 906.018i −0.0461952 + 0.906018i
\(101\) −625.952 625.952i −0.616678 0.616678i 0.327999 0.944678i \(-0.393626\pi\)
−0.944678 + 0.327999i \(0.893626\pi\)
\(102\) 0 0
\(103\) 1641.52 1.57033 0.785163 0.619289i \(-0.212579\pi\)
0.785163 + 0.619289i \(0.212579\pi\)
\(104\) −77.2260 + 66.2416i −0.0728138 + 0.0624570i
\(105\) 0 0
\(106\) 1328.55 1262.54i 1.21736 1.15688i
\(107\) 956.649 956.649i 0.864325 0.864325i −0.127512 0.991837i \(-0.540699\pi\)
0.991837 + 0.127512i \(0.0406991\pi\)
\(108\) 0 0
\(109\) 1221.44 + 1221.44i 1.07333 + 1.07333i 0.997089 + 0.0762403i \(0.0242916\pi\)
0.0762403 + 0.997089i \(0.475708\pi\)
\(110\) 12.0545 473.152i 0.0104486 0.410121i
\(111\) 0 0
\(112\) −746.223 76.2938i −0.629567 0.0643668i
\(113\) 360.983i 0.300517i 0.988647 + 0.150258i \(0.0480105\pi\)
−0.988647 + 0.150258i \(0.951989\pi\)
\(114\) 0 0
\(115\) −167.821 + 167.821i −0.136081 + 0.136081i
\(116\) −134.057 + 121.050i −0.107301 + 0.0968899i
\(117\) 0 0
\(118\) 709.891 + 747.008i 0.553820 + 0.582777i
\(119\) 1149.54i 0.885534i
\(120\) 0 0
\(121\) 1082.86i 0.813569i
\(122\) 1082.39 1028.60i 0.803235 0.763323i
\(123\) 0 0
\(124\) 49.4115 969.099i 0.0357846 0.701836i
\(125\) −574.157 + 574.157i −0.410833 + 0.410833i
\(126\) 0 0
\(127\) 1713.36i 1.19713i 0.801073 + 0.598566i \(0.204263\pi\)
−0.801073 + 0.598566i \(0.795737\pi\)
\(128\) 256.841 1425.20i 0.177357 0.984147i
\(129\) 0 0
\(130\) −43.3030 1.10323i −0.0292148 0.000744305i
\(131\) −191.155 191.155i −0.127491 0.127491i 0.640482 0.767973i \(-0.278735\pi\)
−0.767973 + 0.640482i \(0.778735\pi\)
\(132\) 0 0
\(133\) 187.015 187.015i 0.121927 0.121927i
\(134\) −1786.64 1880.06i −1.15181 1.21203i
\(135\) 0 0
\(136\) −2212.81 169.421i −1.39520 0.106821i
\(137\) 2130.50 1.32862 0.664311 0.747456i \(-0.268725\pi\)
0.664311 + 0.747456i \(0.268725\pi\)
\(138\) 0 0
\(139\) −423.046 423.046i −0.258146 0.258146i 0.566154 0.824300i \(-0.308431\pi\)
−0.824300 + 0.566154i \(0.808431\pi\)
\(140\) −214.028 237.026i −0.129205 0.143088i
\(141\) 0 0
\(142\) −2225.64 56.7027i −1.31529 0.0335097i
\(143\) −220.917 −0.129189
\(144\) 0 0
\(145\) −76.8994 −0.0440424
\(146\) 3039.47 + 77.4365i 1.72293 + 0.0438951i
\(147\) 0 0
\(148\) 311.164 280.973i 0.172821 0.156053i
\(149\) −2020.44 2020.44i −1.11088 1.11088i −0.993032 0.117844i \(-0.962402\pi\)
−0.117844 0.993032i \(-0.537598\pi\)
\(150\) 0 0
\(151\) 2605.57 1.40423 0.702115 0.712064i \(-0.252239\pi\)
0.702115 + 0.712064i \(0.252239\pi\)
\(152\) 332.432 + 387.557i 0.177394 + 0.206810i
\(153\) 0 0
\(154\) −1121.98 1180.64i −0.587088 0.617784i
\(155\) 292.124 292.124i 0.151381 0.151381i
\(156\) 0 0
\(157\) 815.970 + 815.970i 0.414787 + 0.414787i 0.883402 0.468615i \(-0.155247\pi\)
−0.468615 + 0.883402i \(0.655247\pi\)
\(158\) −1080.52 27.5285i −0.544062 0.0138611i
\(159\) 0 0
\(160\) 487.806 377.060i 0.241028 0.186307i
\(161\) 816.708i 0.399786i
\(162\) 0 0
\(163\) 268.825 268.825i 0.129178 0.129178i −0.639562 0.768740i \(-0.720884\pi\)
0.768740 + 0.639562i \(0.220884\pi\)
\(164\) 473.946 + 24.1651i 0.225664 + 0.0115060i
\(165\) 0 0
\(166\) −1424.59 + 1353.80i −0.666082 + 0.632986i
\(167\) 1537.53i 0.712440i 0.934402 + 0.356220i \(0.115935\pi\)
−0.934402 + 0.356220i \(0.884065\pi\)
\(168\) 0 0
\(169\) 2176.78i 0.990797i
\(170\) −650.880 684.912i −0.293648 0.309002i
\(171\) 0 0
\(172\) 1832.91 + 2029.86i 0.812547 + 0.899857i
\(173\) −598.582 + 598.582i −0.263060 + 0.263060i −0.826296 0.563236i \(-0.809556\pi\)
0.563236 + 0.826296i \(0.309556\pi\)
\(174\) 0 0
\(175\) 1329.10i 0.574117i
\(176\) 2438.03 1985.74i 1.04417 0.850461i
\(177\) 0 0
\(178\) 44.9830 1765.63i 0.0189417 0.743482i
\(179\) −285.351 285.351i −0.119152 0.119152i 0.645017 0.764168i \(-0.276850\pi\)
−0.764168 + 0.645017i \(0.776850\pi\)
\(180\) 0 0
\(181\) −2919.93 + 2919.93i −1.19910 + 1.19910i −0.224660 + 0.974437i \(0.572127\pi\)
−0.974437 + 0.224660i \(0.927873\pi\)
\(182\) −108.053 + 102.684i −0.0440076 + 0.0418210i
\(183\) 0 0
\(184\) −1572.12 120.367i −0.629882 0.0482260i
\(185\) 178.493 0.0709356
\(186\) 0 0
\(187\) −3407.38 3407.38i −1.33247 1.33247i
\(188\) −3156.75 160.953i −1.22462 0.0624400i
\(189\) 0 0
\(190\) −5.53654 + 217.315i −0.00211401 + 0.0829774i
\(191\) −1085.25 −0.411129 −0.205564 0.978644i \(-0.565903\pi\)
−0.205564 + 0.978644i \(0.565903\pi\)
\(192\) 0 0
\(193\) 1150.76 0.429191 0.214595 0.976703i \(-0.431157\pi\)
0.214595 + 0.976703i \(0.431157\pi\)
\(194\) −119.973 + 4709.08i −0.0443998 + 1.74274i
\(195\) 0 0
\(196\) 1642.90 + 83.7667i 0.598725 + 0.0305272i
\(197\) 2302.47 + 2302.47i 0.832713 + 0.832713i 0.987887 0.155174i \(-0.0495939\pi\)
−0.155174 + 0.987887i \(0.549594\pi\)
\(198\) 0 0
\(199\) 1300.97 0.463432 0.231716 0.972783i \(-0.425566\pi\)
0.231716 + 0.972783i \(0.425566\pi\)
\(200\) −2558.45 195.884i −0.904548 0.0692554i
\(201\) 0 0
\(202\) 1814.98 1724.79i 0.632184 0.600772i
\(203\) −187.117 + 187.117i −0.0646949 + 0.0646949i
\(204\) 0 0
\(205\) 142.866 + 142.866i 0.0486740 + 0.0486740i
\(206\) −118.249 + 4641.41i −0.0399942 + 1.56982i
\(207\) 0 0
\(208\) −181.736 223.129i −0.0605822 0.0743809i
\(209\) 1108.67i 0.366929i
\(210\) 0 0
\(211\) −1702.90 + 1702.90i −0.555604 + 0.555604i −0.928053 0.372448i \(-0.878518\pi\)
0.372448 + 0.928053i \(0.378518\pi\)
\(212\) 3474.14 + 3847.45i 1.12550 + 1.24643i
\(213\) 0 0
\(214\) 2636.02 + 2773.85i 0.842031 + 0.886058i
\(215\) 1164.39i 0.369352i
\(216\) 0 0
\(217\) 1421.64i 0.444733i
\(218\) −3541.63 + 3365.65i −1.10032 + 1.04565i
\(219\) 0 0
\(220\) 1336.97 + 68.1684i 0.409722 + 0.0208905i
\(221\) −311.844 + 311.844i −0.0949180 + 0.0949180i
\(222\) 0 0
\(223\) 5316.70i 1.59656i −0.602288 0.798279i \(-0.705744\pi\)
0.602288 0.798279i \(-0.294256\pi\)
\(224\) 269.477 2104.46i 0.0803802 0.627723i
\(225\) 0 0
\(226\) −1020.68 26.0039i −0.300419 0.00765378i
\(227\) −3132.85 3132.85i −0.916013 0.916013i 0.0807239 0.996737i \(-0.474277\pi\)
−0.996737 + 0.0807239i \(0.974277\pi\)
\(228\) 0 0
\(229\) −4530.55 + 4530.55i −1.30737 + 1.30737i −0.384059 + 0.923308i \(0.625474\pi\)
−0.923308 + 0.384059i \(0.874526\pi\)
\(230\) −462.425 486.604i −0.132571 0.139503i
\(231\) 0 0
\(232\) −332.614 387.769i −0.0941257 0.109734i
\(233\) 5381.47 1.51310 0.756549 0.653937i \(-0.226884\pi\)
0.756549 + 0.653937i \(0.226884\pi\)
\(234\) 0 0
\(235\) −951.566 951.566i −0.264142 0.264142i
\(236\) −2163.31 + 1953.41i −0.596693 + 0.538798i
\(237\) 0 0
\(238\) −3250.35 82.8091i −0.885247 0.0225534i
\(239\) −4955.44 −1.34117 −0.670587 0.741831i \(-0.733958\pi\)
−0.670587 + 0.741831i \(0.733958\pi\)
\(240\) 0 0
\(241\) −589.625 −0.157598 −0.0787989 0.996891i \(-0.525109\pi\)
−0.0787989 + 0.996891i \(0.525109\pi\)
\(242\) 3061.80 + 78.0054i 0.813305 + 0.0207206i
\(243\) 0 0
\(244\) 2830.42 + 3134.55i 0.742619 + 0.822415i
\(245\) 495.234 + 495.234i 0.129140 + 0.129140i
\(246\) 0 0
\(247\) 101.466 0.0261381
\(248\) 2736.58 + 209.522i 0.700697 + 0.0536478i
\(249\) 0 0
\(250\) −1582.07 1664.79i −0.400237 0.421163i
\(251\) 2418.09 2418.09i 0.608082 0.608082i −0.334362 0.942445i \(-0.608521\pi\)
0.942445 + 0.334362i \(0.108521\pi\)
\(252\) 0 0
\(253\) −2420.81 2420.81i −0.601562 0.601562i
\(254\) −4844.53 123.424i −1.19674 0.0304894i
\(255\) 0 0
\(256\) 4011.25 + 828.885i 0.979310 + 0.202365i
\(257\) 976.607i 0.237039i −0.992952 0.118520i \(-0.962185\pi\)
0.992952 0.118520i \(-0.0378148\pi\)
\(258\) 0 0
\(259\) 434.323 434.323i 0.104199 0.104199i
\(260\) 6.23878 122.360i 0.00148813 0.0291864i
\(261\) 0 0
\(262\) 554.264 526.724i 0.130697 0.124203i
\(263\) 1820.40i 0.426809i −0.976964 0.213404i \(-0.931545\pi\)
0.976964 0.213404i \(-0.0684552\pi\)
\(264\) 0 0
\(265\) 2207.01i 0.511606i
\(266\) 515.316 + 542.260i 0.118782 + 0.124993i
\(267\) 0 0
\(268\) 5444.58 4916.31i 1.24097 1.12057i
\(269\) 4795.34 4795.34i 1.08690 1.08690i 0.0910580 0.995846i \(-0.470975\pi\)
0.995846 0.0910580i \(-0.0290249\pi\)
\(270\) 0 0
\(271\) 1294.24i 0.290108i 0.989424 + 0.145054i \(0.0463356\pi\)
−0.989424 + 0.145054i \(0.953664\pi\)
\(272\) 638.442 6244.55i 0.142321 1.39203i
\(273\) 0 0
\(274\) −153.474 + 6024.02i −0.0338383 + 1.32819i
\(275\) −3939.60 3939.60i −0.863879 0.863879i
\(276\) 0 0
\(277\) 701.252 701.252i 0.152109 0.152109i −0.626950 0.779059i \(-0.715697\pi\)
0.779059 + 0.626950i \(0.215697\pi\)
\(278\) 1226.64 1165.69i 0.264637 0.251487i
\(279\) 0 0
\(280\) 685.611 588.092i 0.146332 0.125519i
\(281\) 5755.44 1.22185 0.610927 0.791687i \(-0.290797\pi\)
0.610927 + 0.791687i \(0.290797\pi\)
\(282\) 0 0
\(283\) −3908.33 3908.33i −0.820939 0.820939i 0.165303 0.986243i \(-0.447140\pi\)
−0.986243 + 0.165303i \(0.947140\pi\)
\(284\) 320.655 6288.94i 0.0669977 1.31401i
\(285\) 0 0
\(286\) 15.9141 624.645i 0.00329028 0.129147i
\(287\) 695.264 0.142997
\(288\) 0 0
\(289\) −4706.62 −0.957993
\(290\) 5.53956 217.434i 0.00112170 0.0440281i
\(291\) 0 0
\(292\) −437.905 + 8588.55i −0.0877618 + 1.72126i
\(293\) −3513.72 3513.72i −0.700592 0.700592i 0.263946 0.964538i \(-0.414976\pi\)
−0.964538 + 0.263946i \(0.914976\pi\)
\(294\) 0 0
\(295\) −1240.94 −0.244916
\(296\) 772.039 + 900.060i 0.151601 + 0.176740i
\(297\) 0 0
\(298\) 5858.34 5567.25i 1.13881 1.08222i
\(299\) −221.553 + 221.553i −0.0428520 + 0.0428520i
\(300\) 0 0
\(301\) 2833.28 + 2833.28i 0.542550 + 0.542550i
\(302\) −187.696 + 7367.29i −0.0357639 + 1.40377i
\(303\) 0 0
\(304\) −1119.77 + 912.037i −0.211260 + 0.172069i
\(305\) 1798.07i 0.337565i
\(306\) 0 0
\(307\) 2537.12 2537.12i 0.471666 0.471666i −0.430788 0.902453i \(-0.641764\pi\)
0.902453 + 0.430788i \(0.141764\pi\)
\(308\) 3419.10 3087.35i 0.632536 0.571163i
\(309\) 0 0
\(310\) 804.941 + 847.028i 0.147476 + 0.155187i
\(311\) 7063.50i 1.28789i −0.765071 0.643946i \(-0.777296\pi\)
0.765071 0.643946i \(-0.222704\pi\)
\(312\) 0 0
\(313\) 579.160i 0.104588i −0.998632 0.0522940i \(-0.983347\pi\)
0.998632 0.0522940i \(-0.0166533\pi\)
\(314\) −2365.94 + 2248.38i −0.425216 + 0.404088i
\(315\) 0 0
\(316\) 155.674 3053.21i 0.0277131 0.543532i
\(317\) −340.991 + 340.991i −0.0604164 + 0.0604164i −0.736669 0.676253i \(-0.763603\pi\)
0.676253 + 0.736669i \(0.263603\pi\)
\(318\) 0 0
\(319\) 1109.27i 0.194694i
\(320\) 1031.00 + 1406.44i 0.180108 + 0.245695i
\(321\) 0 0
\(322\) −2309.25 58.8327i −0.399657 0.0101820i
\(323\) 1564.98 + 1564.98i 0.269591 + 0.269591i
\(324\) 0 0
\(325\) −360.553 + 360.553i −0.0615381 + 0.0615381i
\(326\) 740.739 + 779.469i 0.125846 + 0.132426i
\(327\) 0 0
\(328\) −102.468 + 1338.35i −0.0172496 + 0.225298i
\(329\) −4630.85 −0.776009
\(330\) 0 0
\(331\) 2509.44 + 2509.44i 0.416711 + 0.416711i 0.884068 0.467358i \(-0.154794\pi\)
−0.467358 + 0.884068i \(0.654794\pi\)
\(332\) −3725.27 4125.56i −0.615816 0.681987i
\(333\) 0 0
\(334\) −4347.37 110.758i −0.712209 0.0181449i
\(335\) 3123.18 0.509365
\(336\) 0 0
\(337\) 1805.84 0.291899 0.145950 0.989292i \(-0.453376\pi\)
0.145950 + 0.989292i \(0.453376\pi\)
\(338\) 6154.87 + 156.808i 0.990476 + 0.0252343i
\(339\) 0 0
\(340\) 1983.48 1791.03i 0.316381 0.285683i
\(341\) 4213.89 + 4213.89i 0.669193 + 0.669193i
\(342\) 0 0
\(343\) 6430.22 1.01224
\(344\) −5871.49 + 5036.35i −0.920260 + 0.789365i
\(345\) 0 0
\(346\) −1649.38 1735.62i −0.256275 0.269674i
\(347\) −3463.32 + 3463.32i −0.535795 + 0.535795i −0.922291 0.386496i \(-0.873685\pi\)
0.386496 + 0.922291i \(0.373685\pi\)
\(348\) 0 0
\(349\) 5797.35 + 5797.35i 0.889183 + 0.889183i 0.994445 0.105261i \(-0.0335679\pi\)
−0.105261 + 0.994445i \(0.533568\pi\)
\(350\) −3758.04 95.7436i −0.573931 0.0146220i
\(351\) 0 0
\(352\) 5439.08 + 7036.60i 0.823591 + 1.06549i
\(353\) 2793.32i 0.421172i −0.977575 0.210586i \(-0.932463\pi\)
0.977575 0.210586i \(-0.0675372\pi\)
\(354\) 0 0
\(355\) 1895.73 1895.73i 0.283423 0.283423i
\(356\) 4989.10 + 254.380i 0.742758 + 0.0378711i
\(357\) 0 0
\(358\) 827.388 786.277i 0.122148 0.116078i
\(359\) 6896.95i 1.01395i 0.861962 + 0.506974i \(0.169236\pi\)
−0.861962 + 0.506974i \(0.830764\pi\)
\(360\) 0 0
\(361\) 6349.80i 0.925761i
\(362\) −8045.78 8466.47i −1.16817 1.22925i
\(363\) 0 0
\(364\) −282.555 312.917i −0.0406866 0.0450585i
\(365\) −2588.92 + 2588.92i −0.371261 + 0.371261i
\(366\) 0 0
\(367\) 1724.22i 0.245242i 0.992454 + 0.122621i \(0.0391299\pi\)
−0.992454 + 0.122621i \(0.960870\pi\)
\(368\) 453.589 4436.51i 0.0642526 0.628449i
\(369\) 0 0
\(370\) −12.8580 + 504.691i −0.00180664 + 0.0709126i
\(371\) 5370.27 + 5370.27i 0.751511 + 0.751511i
\(372\) 0 0
\(373\) 5937.62 5937.62i 0.824231 0.824231i −0.162481 0.986712i \(-0.551949\pi\)
0.986712 + 0.162481i \(0.0519495\pi\)
\(374\) 9879.84 9388.93i 1.36597 1.29810i
\(375\) 0 0
\(376\) 682.498 8914.14i 0.0936094 1.22264i
\(377\) −101.521 −0.0138689
\(378\) 0 0
\(379\) 8009.60 + 8009.60i 1.08556 + 1.08556i 0.995980 + 0.0895751i \(0.0285509\pi\)
0.0895751 + 0.995980i \(0.471449\pi\)
\(380\) −614.062 31.3092i −0.0828966 0.00422666i
\(381\) 0 0
\(382\) 78.1772 3068.54i 0.0104709 0.410995i
\(383\) −12372.3 −1.65064 −0.825319 0.564667i \(-0.809005\pi\)
−0.825319 + 0.564667i \(0.809005\pi\)
\(384\) 0 0
\(385\) 1961.30 0.259628
\(386\) −82.8970 + 3253.80i −0.0109309 + 0.429052i
\(387\) 0 0
\(388\) −13306.3 678.450i −1.74105 0.0887709i
\(389\) 3950.83 + 3950.83i 0.514948 + 0.514948i 0.916039 0.401090i \(-0.131369\pi\)
−0.401090 + 0.916039i \(0.631369\pi\)
\(390\) 0 0
\(391\) −6834.38 −0.883962
\(392\) −355.200 + 4639.29i −0.0457661 + 0.597753i
\(393\) 0 0
\(394\) −6676.13 + 6344.40i −0.853651 + 0.811235i
\(395\) 920.355 920.355i 0.117236 0.117236i
\(396\) 0 0
\(397\) −9644.39 9644.39i −1.21924 1.21924i −0.967899 0.251341i \(-0.919129\pi\)
−0.251341 0.967899i \(-0.580871\pi\)
\(398\) −93.7169 + 3678.49i −0.0118030 + 0.463282i
\(399\) 0 0
\(400\) 738.165 7219.92i 0.0922706 0.902490i
\(401\) 3647.28i 0.454206i 0.973871 + 0.227103i \(0.0729254\pi\)
−0.973871 + 0.227103i \(0.927075\pi\)
\(402\) 0 0
\(403\) 385.656 385.656i 0.0476697 0.0476697i
\(404\) 4746.12 + 5256.11i 0.584477 + 0.647280i
\(405\) 0 0
\(406\) −515.597 542.555i −0.0630262 0.0663216i
\(407\) 2574.76i 0.313578i
\(408\) 0 0
\(409\) 860.719i 0.104058i −0.998646 0.0520291i \(-0.983431\pi\)
0.998646 0.0520291i \(-0.0165689\pi\)
\(410\) −414.246 + 393.663i −0.0498979 + 0.0474186i
\(411\) 0 0
\(412\) −13115.1 668.701i −1.56829 0.0799625i
\(413\) −3019.55 + 3019.55i −0.359763 + 0.359763i
\(414\) 0 0
\(415\) 2366.55i 0.279926i
\(416\) 643.991 497.786i 0.0758997 0.0586682i
\(417\) 0 0
\(418\) −3134.77 79.8645i −0.366810 0.00934521i
\(419\) −1158.11 1158.11i −0.135029 0.135029i 0.636362 0.771391i \(-0.280439\pi\)
−0.771391 + 0.636362i \(0.780439\pi\)
\(420\) 0 0
\(421\) 2410.72 2410.72i 0.279076 0.279076i −0.553664 0.832740i \(-0.686771\pi\)
0.832740 + 0.553664i \(0.186771\pi\)
\(422\) −4692.30 4937.64i −0.541274 0.569575i
\(423\) 0 0
\(424\) −11129.0 + 9546.01i −1.27469 + 1.09339i
\(425\) −11122.2 −1.26942
\(426\) 0 0
\(427\) 4375.21 + 4375.21i 0.495858 + 0.495858i
\(428\) −8032.97 + 7253.56i −0.907216 + 0.819192i
\(429\) 0 0
\(430\) −3292.32 83.8784i −0.369232 0.00940692i
\(431\) 10544.5 1.17844 0.589221 0.807972i \(-0.299435\pi\)
0.589221 + 0.807972i \(0.299435\pi\)
\(432\) 0 0
\(433\) 1205.31 0.133773 0.0668864 0.997761i \(-0.478693\pi\)
0.0668864 + 0.997761i \(0.478693\pi\)
\(434\) 4019.69 + 102.410i 0.444589 + 0.0113268i
\(435\) 0 0
\(436\) −9261.29 10256.4i −1.01728 1.12659i
\(437\) 1111.86 + 1111.86i 0.121711 + 0.121711i
\(438\) 0 0
\(439\) −16643.3 −1.80943 −0.904716 0.426015i \(-0.859917\pi\)
−0.904716 + 0.426015i \(0.859917\pi\)
\(440\) −289.057 + 3775.39i −0.0313188 + 0.409057i
\(441\) 0 0
\(442\) −859.277 904.206i −0.0924698 0.0973047i
\(443\) −7621.94 + 7621.94i −0.817448 + 0.817448i −0.985738 0.168290i \(-0.946176\pi\)
0.168290 + 0.985738i \(0.446176\pi\)
\(444\) 0 0
\(445\) 1503.91 + 1503.91i 0.160207 + 0.160207i
\(446\) 15033.0 + 382.996i 1.59604 + 0.0406623i
\(447\) 0 0
\(448\) 5930.96 + 913.546i 0.625472 + 0.0963415i
\(449\) 1505.28i 0.158215i 0.996866 + 0.0791077i \(0.0252071\pi\)
−0.996866 + 0.0791077i \(0.974793\pi\)
\(450\) 0 0
\(451\) −2060.84 + 2060.84i −0.215169 + 0.215169i
\(452\) 147.053 2884.11i 0.0153026 0.300127i
\(453\) 0 0
\(454\) 9083.86 8632.50i 0.939045 0.892386i
\(455\) 179.498i 0.0184945i
\(456\) 0 0
\(457\) 6918.12i 0.708131i 0.935221 + 0.354065i \(0.115201\pi\)
−0.935221 + 0.354065i \(0.884799\pi\)
\(458\) −12483.8 13136.5i −1.27365 1.34024i
\(459\) 0 0
\(460\) 1409.19 1272.46i 0.142834 0.128975i
\(461\) −3348.19 + 3348.19i −0.338266 + 0.338266i −0.855715 0.517448i \(-0.826882\pi\)
0.517448 + 0.855715i \(0.326882\pi\)
\(462\) 0 0
\(463\) 2122.03i 0.213000i −0.994313 0.106500i \(-0.966036\pi\)
0.994313 0.106500i \(-0.0339644\pi\)
\(464\) 1120.38 912.535i 0.112096 0.0913003i
\(465\) 0 0
\(466\) −387.662 + 15216.2i −0.0385367 + 1.51261i
\(467\) 12230.3 + 12230.3i 1.21189 + 1.21189i 0.970405 + 0.241482i \(0.0776334\pi\)
0.241482 + 0.970405i \(0.422367\pi\)
\(468\) 0 0
\(469\) 7599.55 7599.55i 0.748219 0.748219i
\(470\) 2759.11 2622.02i 0.270784 0.257329i
\(471\) 0 0
\(472\) −5367.45 6257.50i −0.523426 0.610222i
\(473\) −16796.3 −1.63276
\(474\) 0 0
\(475\) 1809.43 + 1809.43i 0.174784 + 0.174784i
\(476\) 468.287 9184.43i 0.0450922 0.884385i
\(477\) 0 0
\(478\) 356.972 14011.5i 0.0341580 1.34074i
\(479\) 20589.9 1.96404 0.982020 0.188779i \(-0.0604529\pi\)
0.982020 + 0.188779i \(0.0604529\pi\)
\(480\) 0 0
\(481\) 235.643 0.0223376
\(482\) 42.4745 1667.17i 0.00401382 0.157547i
\(483\) 0 0
\(484\) −441.122 + 8651.64i −0.0414277 + 0.812513i
\(485\) −4011.04 4011.04i −0.375530 0.375530i
\(486\) 0 0
\(487\) 8672.88 0.806994 0.403497 0.914981i \(-0.367795\pi\)
0.403497 + 0.914981i \(0.367795\pi\)
\(488\) −9066.87 + 7777.23i −0.841062 + 0.721432i
\(489\) 0 0
\(490\) −1435.96 + 1364.61i −0.132387 + 0.125809i
\(491\) −1815.32 + 1815.32i −0.166852 + 0.166852i −0.785594 0.618742i \(-0.787643\pi\)
0.618742 + 0.785594i \(0.287643\pi\)
\(492\) 0 0
\(493\) −1565.84 1565.84i −0.143046 0.143046i
\(494\) −7.30922 + 286.895i −0.000665703 + 0.0261296i
\(495\) 0 0
\(496\) −789.559 + 7722.61i −0.0714763 + 0.699103i
\(497\) 9225.68i 0.832652i
\(498\) 0 0
\(499\) −2716.12 + 2716.12i −0.243668 + 0.243668i −0.818366 0.574698i \(-0.805120\pi\)
0.574698 + 0.818366i \(0.305120\pi\)
\(500\) 4821.19 4353.40i 0.431220 0.389380i
\(501\) 0 0
\(502\) 6662.99 + 7011.37i 0.592398 + 0.623372i
\(503\) 17354.3i 1.53835i −0.639040 0.769173i \(-0.720668\pi\)
0.639040 0.769173i \(-0.279332\pi\)
\(504\) 0 0
\(505\) 3015.06i 0.265680i
\(506\) 7019.26 6670.48i 0.616688 0.586046i
\(507\) 0 0
\(508\) 697.966 13689.1i 0.0609591 1.19558i
\(509\) 8211.14 8211.14i 0.715034 0.715034i −0.252550 0.967584i \(-0.581269\pi\)
0.967584 + 0.252550i \(0.0812692\pi\)
\(510\) 0 0
\(511\) 12599.1i 1.09071i
\(512\) −2632.64 + 11282.2i −0.227241 + 0.973839i
\(513\) 0 0
\(514\) 2761.37 + 70.3513i 0.236962 + 0.00603708i
\(515\) −3953.41 3953.41i −0.338268 0.338268i
\(516\) 0 0
\(517\) 13726.3 13726.3i 1.16767 1.16767i
\(518\) 1196.77 + 1259.34i 0.101511 + 0.106819i
\(519\) 0 0
\(520\) 345.525 + 26.4546i 0.0291390 + 0.00223098i
\(521\) −9350.18 −0.786255 −0.393127 0.919484i \(-0.628607\pi\)
−0.393127 + 0.919484i \(0.628607\pi\)
\(522\) 0 0
\(523\) 11818.7 + 11818.7i 0.988140 + 0.988140i 0.999930 0.0117907i \(-0.00375319\pi\)
−0.0117907 + 0.999930i \(0.503753\pi\)
\(524\) 1449.39 + 1605.13i 0.120834 + 0.133818i
\(525\) 0 0
\(526\) 5147.20 + 131.135i 0.426671 + 0.0108703i
\(527\) 11896.5 0.983343
\(528\) 0 0
\(529\) 7311.43 0.600923
\(530\) −6240.35 158.985i −0.511440 0.0130300i
\(531\) 0 0
\(532\) −1570.37 + 1418.00i −0.127977 + 0.115560i
\(533\) 188.608 + 188.608i 0.0153275 + 0.0153275i
\(534\) 0 0
\(535\) −4607.96 −0.372373
\(536\) 13508.7 + 15748.8i 1.08860 + 1.26911i
\(537\) 0 0
\(538\) 13213.4 + 13904.3i 1.05887 + 1.11423i
\(539\) −7143.75 + 7143.75i −0.570878 + 0.570878i
\(540\) 0 0
\(541\) −10764.1 10764.1i −0.855422 0.855422i 0.135373 0.990795i \(-0.456777\pi\)
−0.990795 + 0.135373i \(0.956777\pi\)
\(542\) −3659.47 93.2322i −0.290014 0.00738868i
\(543\) 0 0
\(544\) 17610.5 + 2255.04i 1.38795 + 0.177728i
\(545\) 5883.40i 0.462417i
\(546\) 0 0
\(547\) 2093.77 2093.77i 0.163662 0.163662i −0.620525 0.784187i \(-0.713080\pi\)
0.784187 + 0.620525i \(0.213080\pi\)
\(548\) −17021.9 867.898i −1.32690 0.0676547i
\(549\) 0 0
\(550\) 11423.0 10855.5i 0.885600 0.841596i
\(551\) 509.481i 0.0393913i
\(552\) 0 0
\(553\) 4478.95i 0.344420i
\(554\) 1932.28 + 2033.31i 0.148186 + 0.155934i
\(555\) 0 0
\(556\) 3207.64 + 3552.31i 0.244666 + 0.270956i
\(557\) 5245.63 5245.63i 0.399038 0.399038i −0.478855 0.877894i \(-0.658948\pi\)
0.877894 + 0.478855i \(0.158948\pi\)
\(558\) 0 0
\(559\) 1537.20i 0.116309i
\(560\) 1613.45 + 1980.94i 0.121751 + 0.149482i
\(561\) 0 0
\(562\) −414.601 + 16273.6i −0.0311190 + 1.22146i
\(563\) 7593.93 + 7593.93i 0.568465 + 0.568465i 0.931698 0.363233i \(-0.118327\pi\)
−0.363233 + 0.931698i \(0.618327\pi\)
\(564\) 0 0
\(565\) 869.384 869.384i 0.0647350 0.0647350i
\(566\) 11332.4 10769.3i 0.841581 0.799765i
\(567\) 0 0
\(568\) 17758.9 + 1359.69i 1.31188 + 0.100442i
\(569\) 3416.36 0.251707 0.125853 0.992049i \(-0.459833\pi\)
0.125853 + 0.992049i \(0.459833\pi\)
\(570\) 0 0
\(571\) 1823.75 + 1823.75i 0.133663 + 0.133663i 0.770773 0.637110i \(-0.219870\pi\)
−0.637110 + 0.770773i \(0.719870\pi\)
\(572\) 1765.04 + 89.9944i 0.129021 + 0.00657842i
\(573\) 0 0
\(574\) −50.0843 + 1965.86i −0.00364195 + 0.142951i
\(575\) −7901.88 −0.573098
\(576\) 0 0
\(577\) −23143.8 −1.66982 −0.834912 0.550383i \(-0.814482\pi\)
−0.834912 + 0.550383i \(0.814482\pi\)
\(578\) 339.048 13308.0i 0.0243989 0.957682i
\(579\) 0 0
\(580\) 614.397 + 31.3263i 0.0439852 + 0.00224268i
\(581\) −5758.46 5758.46i −0.411190 0.411190i
\(582\) 0 0
\(583\) −31836.1 −2.26161
\(584\) −24252.7 1856.87i −1.71846 0.131572i
\(585\) 0 0
\(586\) 10188.2 9681.95i 0.718208 0.682522i
\(587\) 16398.7 16398.7i 1.15306 1.15306i 0.167122 0.985936i \(-0.446553\pi\)
0.985936 0.167122i \(-0.0534473\pi\)
\(588\) 0 0
\(589\) −1935.41 1935.41i −0.135394 0.135394i
\(590\) 89.3929 3508.77i 0.00623771 0.244837i
\(591\) 0 0
\(592\) −2600.54 + 2118.11i −0.180543 + 0.147050i
\(593\) 13256.2i 0.917989i −0.888439 0.458994i \(-0.848210\pi\)
0.888439 0.458994i \(-0.151790\pi\)
\(594\) 0 0
\(595\) 2768.54 2768.54i 0.190755 0.190755i
\(596\) 15319.5 + 16965.6i 1.05287 + 1.16600i
\(597\) 0 0
\(598\) −610.484 642.404i −0.0417467 0.0439295i
\(599\) 9973.40i 0.680304i −0.940370 0.340152i \(-0.889521\pi\)
0.940370 0.340152i \(-0.110479\pi\)
\(600\) 0 0
\(601\) 22549.7i 1.53048i 0.643744 + 0.765241i \(0.277380\pi\)
−0.643744 + 0.765241i \(0.722620\pi\)
\(602\) −8215.23 + 7807.03i −0.556192 + 0.528556i
\(603\) 0 0
\(604\) −20817.6 1061.43i −1.40241 0.0715047i
\(605\) −2607.94 + 2607.94i −0.175253 + 0.175253i
\(606\) 0 0
\(607\) 21635.2i 1.44670i −0.690482 0.723350i \(-0.742602\pi\)
0.690482 0.723350i \(-0.257398\pi\)
\(608\) −2498.13 3231.86i −0.166633 0.215574i
\(609\) 0 0
\(610\) −5084.07 129.527i −0.337456 0.00859736i
\(611\) −1256.24 1256.24i −0.0831783 0.0831783i
\(612\) 0 0
\(613\) 2977.25 2977.25i 0.196166 0.196166i −0.602188 0.798354i \(-0.705704\pi\)
0.798354 + 0.602188i \(0.205704\pi\)
\(614\) 6990.98 + 7356.51i 0.459500 + 0.483525i
\(615\) 0 0
\(616\) 8483.22 + 9889.93i 0.554868 + 0.646878i
\(617\) −6649.18 −0.433851 −0.216925 0.976188i \(-0.569603\pi\)
−0.216925 + 0.976188i \(0.569603\pi\)
\(618\) 0 0
\(619\) −2920.44 2920.44i −0.189632 0.189632i 0.605905 0.795537i \(-0.292811\pi\)
−0.795537 + 0.605905i \(0.792811\pi\)
\(620\) −2452.96 + 2214.96i −0.158893 + 0.143476i
\(621\) 0 0
\(622\) 19972.1 + 508.829i 1.28747 + 0.0328009i
\(623\) 7318.86 0.470664
\(624\) 0 0
\(625\) −11409.3 −0.730198
\(626\) 1637.58 + 41.7206i 0.104554 + 0.00266372i
\(627\) 0 0
\(628\) −6186.89 6851.69i −0.393127 0.435370i
\(629\) 3634.50 + 3634.50i 0.230393 + 0.230393i
\(630\) 0 0
\(631\) −3289.01 −0.207501 −0.103751 0.994603i \(-0.533084\pi\)
−0.103751 + 0.994603i \(0.533084\pi\)
\(632\) 8621.75 + 660.112i 0.542650 + 0.0415472i
\(633\) 0 0
\(634\) −939.593 988.720i −0.0588580 0.0619355i
\(635\) 4126.42 4126.42i 0.257877 0.257877i
\(636\) 0 0
\(637\) 653.798 + 653.798i 0.0406663 + 0.0406663i
\(638\) 3136.48 + 79.9080i 0.194631 + 0.00495860i
\(639\) 0 0
\(640\) −4050.99 + 2813.85i −0.250202 + 0.173792i
\(641\) 9161.75i 0.564536i −0.959336 0.282268i \(-0.908913\pi\)
0.959336 0.282268i \(-0.0910867\pi\)
\(642\) 0 0
\(643\) 6165.52 6165.52i 0.378141 0.378141i −0.492290 0.870431i \(-0.663840\pi\)
0.870431 + 0.492290i \(0.163840\pi\)
\(644\) 332.700 6525.19i 0.0203575 0.399268i
\(645\) 0 0
\(646\) −4537.74 + 4312.27i −0.276370 + 0.262638i
\(647\) 6481.62i 0.393846i −0.980419 0.196923i \(-0.936905\pi\)
0.980419 0.196923i \(-0.0630950\pi\)
\(648\) 0 0
\(649\) 17900.5i 1.08268i
\(650\) −993.494 1045.44i −0.0599508 0.0630854i
\(651\) 0 0
\(652\) −2257.32 + 2038.30i −0.135588 + 0.122432i
\(653\) −772.442 + 772.442i −0.0462910 + 0.0462910i −0.729873 0.683582i \(-0.760421\pi\)
0.683582 + 0.729873i \(0.260421\pi\)
\(654\) 0 0
\(655\) 920.751i 0.0549263i
\(656\) −3776.81 386.140i −0.224786 0.0229821i
\(657\) 0 0
\(658\) 333.590 13093.8i 0.0197639 0.775757i
\(659\) −1416.83 1416.83i −0.0837510 0.0837510i 0.663990 0.747741i \(-0.268862\pi\)
−0.747741 + 0.663990i \(0.768862\pi\)
\(660\) 0 0
\(661\) −7384.66 + 7384.66i −0.434539 + 0.434539i −0.890169 0.455630i \(-0.849414\pi\)
0.455630 + 0.890169i \(0.349414\pi\)
\(662\) −7276.23 + 6914.69i −0.427188 + 0.405962i
\(663\) 0 0
\(664\) 11933.4 10236.1i 0.697450 0.598247i
\(665\) −900.809 −0.0525291
\(666\) 0 0
\(667\) −1112.47 1112.47i −0.0645801 0.0645801i
\(668\) 626.338 12284.3i 0.0362781 0.711515i
\(669\) 0 0
\(670\) −224.983 + 8830.82i −0.0129729 + 0.509200i
\(671\) −25937.2 −1.49224
\(672\) 0 0
\(673\) 8695.15 0.498029 0.249014 0.968500i \(-0.419893\pi\)
0.249014 + 0.968500i \(0.419893\pi\)
\(674\) −130.086 + 5106.02i −0.00743431 + 0.291805i
\(675\) 0 0
\(676\) −886.750 + 17391.7i −0.0504523 + 0.989512i
\(677\) 19700.8 + 19700.8i 1.11841 + 1.11841i 0.991975 + 0.126436i \(0.0403540\pi\)
0.126436 + 0.991975i \(0.459646\pi\)
\(678\) 0 0
\(679\) −19519.9 −1.10325
\(680\) 4921.27 + 5737.33i 0.277533 + 0.323554i
\(681\) 0 0
\(682\) −12218.4 + 11611.3i −0.686020 + 0.651933i
\(683\) −6263.20 + 6263.20i −0.350885 + 0.350885i −0.860439 0.509554i \(-0.829811\pi\)
0.509554 + 0.860439i \(0.329811\pi\)
\(684\) 0 0
\(685\) −5131.07 5131.07i −0.286202 0.286202i
\(686\) −463.210 + 18181.5i −0.0257805 + 1.01191i
\(687\) 0 0
\(688\) −13817.4 16964.5i −0.765671 0.940065i
\(689\) 2913.65i 0.161105i
\(690\) 0 0
\(691\) −21784.7 + 21784.7i −1.19932 + 1.19932i −0.224945 + 0.974371i \(0.572220\pi\)
−0.974371 + 0.224945i \(0.927780\pi\)
\(692\) 5026.29 4538.60i 0.276114 0.249323i
\(693\) 0 0
\(694\) −9543.09 10042.1i −0.521975 0.549267i
\(695\) 2037.71i 0.111216i
\(696\) 0 0
\(697\) 5818.11i 0.316179i
\(698\) −16809.7 + 15974.4i −0.911541 + 0.866248i
\(699\) 0 0
\(700\) 541.432 10619.0i 0.0292346 0.573372i
\(701\) 6306.61 6306.61i 0.339797 0.339797i −0.516494 0.856291i \(-0.672763\pi\)
0.856291 + 0.516494i \(0.172763\pi\)
\(702\) 0 0
\(703\) 1182.57i 0.0634445i
\(704\) −20287.9 + 14872.2i −1.08612 + 0.796187i
\(705\) 0 0
\(706\) 7898.15 + 201.221i 0.421035 + 0.0107267i
\(707\) 7336.48 + 7336.48i 0.390264 + 0.390264i
\(708\) 0 0
\(709\) 6829.13 6829.13i 0.361740 0.361740i −0.502713 0.864453i \(-0.667665\pi\)
0.864453 + 0.502713i \(0.167665\pi\)
\(710\) 5223.64 + 5496.76i 0.276112 + 0.290549i
\(711\) 0 0
\(712\) −1078.66 + 14088.4i −0.0567759 + 0.741553i
\(713\) 8452.05 0.443944
\(714\) 0 0
\(715\) 532.053 + 532.053i 0.0278289 + 0.0278289i
\(716\) 2163.60 + 2396.09i 0.112930 + 0.125064i
\(717\) 0 0
\(718\) −19501.2 496.832i −1.01362 0.0258239i
\(719\) 3688.19 0.191302 0.0956511 0.995415i \(-0.469507\pi\)
0.0956511 + 0.995415i \(0.469507\pi\)
\(720\) 0 0
\(721\) −19239.4 −0.993779
\(722\) −17954.1 457.417i −0.925461 0.0235780i
\(723\) 0 0
\(724\) 24518.6 22139.6i 1.25860 1.13648i
\(725\) −1810.41 1810.41i −0.0927408 0.0927408i
\(726\) 0 0
\(727\) 28693.9 1.46382 0.731911 0.681400i \(-0.238629\pi\)
0.731911 + 0.681400i \(0.238629\pi\)
\(728\) 905.129 776.386i 0.0460801 0.0395258i
\(729\) 0 0
\(730\) −7133.71 7506.70i −0.361685 0.380597i
\(731\) −23709.5 + 23709.5i −1.19963 + 1.19963i
\(732\) 0 0
\(733\) −4890.55 4890.55i −0.246434 0.246434i 0.573071 0.819506i \(-0.305752\pi\)
−0.819506 + 0.573071i \(0.805752\pi\)
\(734\) −4875.26 124.207i −0.245162 0.00624599i
\(735\) 0 0
\(736\) 12511.6 + 1602.12i 0.626609 + 0.0802376i
\(737\) 45051.8i 2.25170i
\(738\) 0 0
\(739\) 23911.6 23911.6i 1.19026 1.19026i 0.213269 0.976993i \(-0.431589\pi\)
0.976993 0.213269i \(-0.0684111\pi\)
\(740\) −1426.09 72.7123i −0.0708436 0.00361211i
\(741\) 0 0
\(742\) −15571.3 + 14797.6i −0.770407 + 0.732127i
\(743\) 14426.5i 0.712323i 0.934424 + 0.356162i \(0.115915\pi\)
−0.934424 + 0.356162i \(0.884085\pi\)
\(744\) 0 0
\(745\) 9731.96i 0.478593i
\(746\) 16360.9 + 17216.4i 0.802972 + 0.844956i
\(747\) 0 0
\(748\) 25835.6 + 28611.7i 1.26289 + 1.39859i
\(749\) −11212.4 + 11212.4i −0.546987 + 0.546987i
\(750\) 0 0
\(751\) 17255.7i 0.838439i 0.907885 + 0.419220i \(0.137696\pi\)
−0.907885 + 0.419220i \(0.862304\pi\)
\(752\) 25155.6 + 2571.91i 1.21986 + 0.124718i
\(753\) 0 0
\(754\) 7.31320 287.051i 0.000353224 0.0138644i
\(755\) −6275.22 6275.22i −0.302488 0.302488i
\(756\) 0 0
\(757\) −12874.2 + 12874.2i −0.618124 + 0.618124i −0.945050 0.326926i \(-0.893987\pi\)
0.326926 + 0.945050i \(0.393987\pi\)
\(758\) −23224.2 + 22070.2i −1.11285 + 1.05756i
\(759\) 0 0
\(760\) 132.762 1734.01i 0.00633656 0.0827621i
\(761\) 4694.94 0.223642 0.111821 0.993728i \(-0.464332\pi\)
0.111821 + 0.993728i \(0.464332\pi\)
\(762\) 0 0
\(763\) −14315.9 14315.9i −0.679255 0.679255i
\(764\) 8670.70 + 442.094i 0.410595 + 0.0209351i
\(765\) 0 0
\(766\) 891.255 34982.8i 0.0420396 1.65010i
\(767\) −1638.26 −0.0771242
\(768\) 0 0
\(769\) 27268.7 1.27872 0.639359 0.768908i \(-0.279200\pi\)
0.639359 + 0.768908i \(0.279200\pi\)
\(770\) −141.285 + 5545.59i −0.00661241 + 0.259544i
\(771\) 0 0
\(772\) −9194.17 468.784i −0.428634 0.0218548i
\(773\) −10010.2 10010.2i −0.465772 0.465772i 0.434769 0.900542i \(-0.356830\pi\)
−0.900542 + 0.434769i \(0.856830\pi\)
\(774\) 0 0
\(775\) 13754.8 0.637529
\(776\) 2876.86 37574.9i 0.133084 1.73822i
\(777\) 0 0
\(778\) −11455.6 + 10886.4i −0.527896 + 0.501666i
\(779\) 946.527 946.527i 0.0435338 0.0435338i
\(780\) 0 0
\(781\) 27345.9 + 27345.9i 1.25290 + 1.25290i
\(782\) 492.324 19324.3i 0.0225134 0.883676i
\(783\) 0 0
\(784\) −13092.0 1338.53i −0.596394 0.0609753i
\(785\) 3930.34i 0.178700i
\(786\) 0 0
\(787\) 1703.37 1703.37i 0.0771521 0.0771521i −0.667478 0.744630i \(-0.732626\pi\)
0.744630 + 0.667478i \(0.232626\pi\)
\(788\) −17457.9 19333.8i −0.789230 0.874035i
\(789\) 0 0
\(790\) 2536.01 + 2668.61i 0.114212 + 0.120183i
\(791\) 4230.90i 0.190182i
\(792\) 0 0
\(793\) 2373.78i 0.106299i
\(794\) 27964.4 26574.9i 1.24990 1.18779i
\(795\) 0 0
\(796\) −10394.2 529.971i −0.462831 0.0235984i
\(797\) 13767.6 13767.6i 0.611886 0.611886i −0.331551 0.943437i \(-0.607572\pi\)
0.943437 + 0.331551i \(0.107572\pi\)
\(798\) 0 0
\(799\) 38751.9i 1.71582i
\(800\) 20361.2 + 2607.26i 0.899848 + 0.115226i
\(801\) 0 0
\(802\) −10312.7 262.737i −0.454059 0.0115680i
\(803\) −37345.2 37345.2i −1.64120 1.64120i
\(804\) 0 0
\(805\) 1966.95 1966.95i 0.0861189 0.0861189i
\(806\) 1062.67 + 1118.23i 0.0464402 + 0.0488684i
\(807\) 0 0
\(808\) −15203.6 + 13041.1i −0.661956 + 0.567802i
\(809\) 34122.6 1.48292 0.741462 0.670995i \(-0.234133\pi\)
0.741462 + 0.670995i \(0.234133\pi\)
\(810\) 0 0
\(811\) 19921.8 + 19921.8i 0.862576 + 0.862576i 0.991637 0.129061i \(-0.0411962\pi\)
−0.129061 + 0.991637i \(0.541196\pi\)
\(812\) 1571.22 1418.77i 0.0679053 0.0613166i
\(813\) 0 0
\(814\) −7280.17 185.477i −0.313476 0.00798643i
\(815\) −1294.87 −0.0556529
\(816\) 0 0
\(817\) 7714.42 0.330347
\(818\) 2433.69 + 62.0031i 0.104025 + 0.00265023i
\(819\) 0 0
\(820\) −1083.24 1199.64i −0.0461324 0.0510894i
\(821\) 3546.97 + 3546.97i 0.150780 + 0.150780i 0.778466 0.627687i \(-0.215998\pi\)
−0.627687 + 0.778466i \(0.715998\pi\)
\(822\) 0 0
\(823\) 33931.8 1.43717 0.718583 0.695442i \(-0.244791\pi\)
0.718583 + 0.695442i \(0.244791\pi\)
\(824\) 2835.52 37034.9i 0.119879 1.56574i
\(825\) 0 0
\(826\) −8320.29 8755.32i −0.350484 0.368809i
\(827\) 5818.78 5818.78i 0.244666 0.244666i −0.574111 0.818777i \(-0.694652\pi\)
0.818777 + 0.574111i \(0.194652\pi\)
\(828\) 0 0
\(829\) 7895.08 + 7895.08i 0.330769 + 0.330769i 0.852878 0.522110i \(-0.174855\pi\)
−0.522110 + 0.852878i \(0.674855\pi\)
\(830\) 6691.44 + 170.478i 0.279835 + 0.00712936i
\(831\) 0 0
\(832\) 1361.10 + 1856.75i 0.0567161 + 0.0773693i
\(833\) 20168.1i 0.838874i
\(834\) 0 0
\(835\) 3702.95 3702.95i 0.153468 0.153468i
\(836\) 451.635 8857.84i 0.0186844 0.366453i
\(837\) 0 0
\(838\) 3357.99 3191.14i 0.138425 0.131547i
\(839\) 23123.0i 0.951485i 0.879585 + 0.475743i \(0.157821\pi\)
−0.879585 + 0.475743i \(0.842179\pi\)
\(840\) 0 0
\(841\) 23879.2i 0.979099i
\(842\) 6642.66 + 6989.98i 0.271878 + 0.286093i
\(843\) 0 0
\(844\) 14299.2 12911.8i 0.583176 0.526592i
\(845\) −5242.52 + 5242.52i −0.213430 + 0.213430i
\(846\) 0 0
\(847\) 12691.7i 0.514866i
\(848\) −26189.8 32154.9i −1.06057 1.30213i
\(849\) 0 0
\(850\) 801.202 31448.1i 0.0323306 1.26901i
\(851\) 2582.18 + 2582.18i 0.104014 + 0.104014i
\(852\) 0 0
\(853\) −10555.7 + 10555.7i −0.423707 + 0.423707i −0.886478 0.462771i \(-0.846855\pi\)
0.462771 + 0.886478i \(0.346855\pi\)
\(854\) −12686.1 + 12055.8i −0.508326 + 0.483068i
\(855\) 0 0
\(856\) −19930.8 23235.8i −0.795820 0.927786i
\(857\) 14835.9 0.591349 0.295674 0.955289i \(-0.404456\pi\)
0.295674 + 0.955289i \(0.404456\pi\)
\(858\) 0 0
\(859\) −21200.1 21200.1i −0.842069 0.842069i 0.147059 0.989128i \(-0.453019\pi\)
−0.989128 + 0.147059i \(0.953019\pi\)
\(860\) 474.334 9303.03i 0.0188077 0.368873i
\(861\) 0 0
\(862\) −759.585 + 29814.6i −0.0300134 + 1.17806i
\(863\) −38729.6 −1.52766 −0.763830 0.645418i \(-0.776683\pi\)
−0.763830 + 0.645418i \(0.776683\pi\)
\(864\) 0 0
\(865\) 2883.23 0.113333
\(866\) −86.8264 + 3408.03i −0.00340702 + 0.133729i
\(867\) 0 0
\(868\) −579.129 + 11358.3i −0.0226462 + 0.444156i
\(869\) 13276.1 + 13276.1i 0.518252 + 0.518252i
\(870\) 0 0
\(871\) 4123.15 0.160399
\(872\) 29667.3 25447.5i 1.15214 0.988260i
\(873\) 0 0
\(874\) −3223.89 + 3063.70i −0.124771 + 0.118571i
\(875\) 6729.42 6729.42i 0.259995 0.259995i
\(876\) 0 0
\(877\) 3724.13 + 3724.13i 0.143392 + 0.143392i 0.775159 0.631766i \(-0.217670\pi\)
−0.631766 + 0.775159i \(0.717670\pi\)
\(878\) 1198.92 47059.0i 0.0460839 1.80884i
\(879\) 0 0
\(880\) −10654.1 1089.28i −0.408126 0.0417268i
\(881\) 10798.5i 0.412951i −0.978452 0.206475i \(-0.933801\pi\)
0.978452 0.206475i \(-0.0661993\pi\)
\(882\) 0 0
\(883\) 3539.05 3539.05i 0.134879 0.134879i −0.636444 0.771323i \(-0.719595\pi\)
0.771323 + 0.636444i \(0.219595\pi\)
\(884\) 2618.55 2364.48i 0.0996282 0.0899616i
\(885\) 0 0
\(886\) −21002.1 22100.2i −0.796363 0.838002i
\(887\) 22802.5i 0.863172i −0.902072 0.431586i \(-0.857954\pi\)
0.902072 0.431586i \(-0.142046\pi\)
\(888\) 0 0
\(889\) 20081.4i 0.757604i
\(890\) −4360.66 + 4143.98i −0.164235 + 0.156075i
\(891\) 0 0
\(892\) −2165.85 + 42478.4i −0.0812982 + 1.59449i
\(893\) −6304.40 + 6304.40i −0.236247 + 0.236247i
\(894\) 0 0
\(895\) 1374.47i 0.0513334i
\(896\) −3010.30 + 16704.0i −0.112240 + 0.622816i
\(897\) 0 0
\(898\) −4256.20 108.435i −0.158164 0.00402954i
\(899\) 1936.46 + 1936.46i 0.0718406 + 0.0718406i
\(900\) 0 0
\(901\) −44939.5 + 44939.5i −1.66166 + 1.66166i
\(902\) −5678.58 5975.49i −0.209619 0.220579i
\(903\) 0 0
\(904\) 8144.27 + 623.554i 0.299640 + 0.0229415i
\(905\) 14064.6 0.516600
\(906\) 0 0
\(907\) −6649.86 6649.86i −0.243445 0.243445i 0.574829 0.818274i \(-0.305069\pi\)
−0.818274 + 0.574829i \(0.805069\pi\)
\(908\) 23754.1 + 26306.5i 0.868180 + 0.961468i
\(909\) 0 0
\(910\) 507.533 + 12.9304i 0.0184885 + 0.000471032i
\(911\) 2309.48 0.0839917 0.0419958 0.999118i \(-0.486628\pi\)
0.0419958 + 0.999118i \(0.486628\pi\)
\(912\) 0 0
\(913\) 34137.4 1.23744
\(914\) −19561.0 498.356i −0.707901 0.0180352i
\(915\) 0 0
\(916\) 38043.0 34351.8i 1.37224 1.23910i
\(917\) 2240.44 + 2240.44i 0.0806825 + 0.0806825i
\(918\) 0 0
\(919\) 48567.3 1.74329 0.871646 0.490135i \(-0.163053\pi\)
0.871646 + 0.490135i \(0.163053\pi\)
\(920\) 3496.38 + 4076.16i 0.125296 + 0.146073i
\(921\) 0 0
\(922\) −9225.85 9708.23i −0.329541 0.346772i
\(923\) 2502.70 2502.70i 0.0892498 0.0892498i
\(924\) 0 0
\(925\) 4202.20 + 4202.20i 0.149370 + 0.149370i
\(926\) 6000.05 + 152.863i 0.212931 + 0.00542483i
\(927\) 0 0
\(928\) 2499.49 + 3233.62i 0.0884158 + 0.114384i
\(929\) 55572.0i 1.96260i −0.192477 0.981302i \(-0.561652\pi\)
0.192477 0.981302i \(-0.438348\pi\)
\(930\) 0 0
\(931\) 3281.07 3281.07i 0.115502 0.115502i
\(932\) −42995.9 2192.24i −1.51114 0.0770484i
\(933\) 0 0
\(934\) −35462.4 + 33700.3i −1.24236 + 1.18063i
\(935\) 16412.5i 0.574061i
\(936\) 0 0
\(937\) 46921.8i 1.63593i −0.575268 0.817965i \(-0.695102\pi\)
0.575268 0.817965i \(-0.304898\pi\)
\(938\) 20940.4 + 22035.3i 0.728920 + 0.767032i
\(939\) 0 0
\(940\) 7215.02 + 7990.29i 0.250349 + 0.277250i
\(941\) 15833.3 15833.3i 0.548514 0.548514i −0.377497 0.926011i \(-0.623215\pi\)
0.926011 + 0.377497i \(0.123215\pi\)
\(942\) 0 0
\(943\) 4133.55i 0.142743i
\(944\) 18079.8 14725.8i 0.623355 0.507714i
\(945\) 0 0
\(946\) 1209.95 47491.7i 0.0415843 1.63223i
\(947\) −4616.34 4616.34i −0.158406 0.158406i 0.623454 0.781860i \(-0.285729\pi\)
−0.781860 + 0.623454i \(0.785729\pi\)
\(948\) 0 0
\(949\) −3417.84 + 3417.84i −0.116910 + 0.116910i
\(950\) −5246.52 + 4985.83i −0.179178 + 0.170275i
\(951\) 0 0
\(952\) 25935.3 + 1985.70i 0.882950 + 0.0676018i
\(953\) −7702.58 −0.261816 −0.130908 0.991394i \(-0.541789\pi\)
−0.130908 + 0.991394i \(0.541789\pi\)
\(954\) 0 0
\(955\) 2613.69 + 2613.69i 0.0885622 + 0.0885622i
\(956\) 39592.1 + 2018.68i 1.33943 + 0.0682938i
\(957\) 0 0
\(958\) −1483.22 + 58218.0i −0.0500216 + 1.96340i
\(959\) −24970.6 −0.840817
\(960\) 0 0
\(961\) 15078.6 0.506145
\(962\) −16.9749 + 666.283i −0.000568910 + 0.0223304i
\(963\) 0 0
\(964\) 4710.88 + 240.194i 0.157393 + 0.00802503i
\(965\) −2771.48 2771.48i −0.0924530 0.0924530i
\(966\) 0 0
\(967\) −3885.39 −0.129210 −0.0646048 0.997911i \(-0.520579\pi\)
−0.0646048 + 0.997911i \(0.520579\pi\)
\(968\) −24430.8 1870.51i −0.811195 0.0621079i
\(969\) 0 0
\(970\) 11630.2 11052.3i 0.384973 0.365844i
\(971\) 27634.4 27634.4i 0.913315 0.913315i −0.0832167 0.996531i \(-0.526519\pi\)
0.996531 + 0.0832167i \(0.0265194\pi\)
\(972\) 0 0
\(973\) 4958.31 + 4958.31i 0.163367 + 0.163367i
\(974\) −624.764 + 24522.7i −0.0205531 + 0.806732i
\(975\) 0 0
\(976\) −21337.1 26196.9i −0.699777 0.859163i
\(977\) 59115.6i 1.93580i 0.251336 + 0.967900i \(0.419130\pi\)
−0.251336 + 0.967900i \(0.580870\pi\)
\(978\) 0 0
\(979\) −21693.9 + 21693.9i −0.708212 + 0.708212i
\(980\) −3754.99 4158.48i −0.122397 0.135549i
\(981\) 0 0
\(982\) −5002.07 5263.61i −0.162548 0.171047i
\(983\) 13689.3i 0.444172i 0.975027 + 0.222086i \(0.0712866\pi\)
−0.975027 + 0.222086i \(0.928713\pi\)
\(984\) 0 0
\(985\) 11090.5i 0.358753i
\(986\) 4540.21 4314.62i 0.146643 0.139356i
\(987\) 0 0
\(988\) −810.671 41.3338i −0.0261041 0.00133097i
\(989\) −16844.7 + 16844.7i −0.541587 + 0.541587i
\(990\) 0 0
\(991\) 37624.8i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(992\) −21778.9 2788.79i −0.697056 0.0892584i
\(993\) 0 0
\(994\) 26085.7 + 664.585i 0.832382 + 0.0212066i
\(995\) −3133.22 3133.22i −0.0998290 0.0998290i
\(996\) 0 0
\(997\) 11609.6 11609.6i 0.368786 0.368786i −0.498248 0.867034i \(-0.666023\pi\)
0.867034 + 0.498248i \(0.166023\pi\)
\(998\) −7484.19 7875.51i −0.237383 0.249794i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.35.12 48
3.2 odd 2 inner 144.4.l.a.35.13 yes 48
4.3 odd 2 576.4.l.a.431.12 48
8.3 odd 2 1152.4.l.a.863.13 48
8.5 even 2 1152.4.l.b.863.13 48
12.11 even 2 576.4.l.a.431.13 48
16.3 odd 4 1152.4.l.b.287.12 48
16.5 even 4 576.4.l.a.143.13 48
16.11 odd 4 inner 144.4.l.a.107.13 yes 48
16.13 even 4 1152.4.l.a.287.12 48
24.5 odd 2 1152.4.l.b.863.12 48
24.11 even 2 1152.4.l.a.863.12 48
48.5 odd 4 576.4.l.a.143.12 48
48.11 even 4 inner 144.4.l.a.107.12 yes 48
48.29 odd 4 1152.4.l.a.287.13 48
48.35 even 4 1152.4.l.b.287.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.12 48 1.1 even 1 trivial
144.4.l.a.35.13 yes 48 3.2 odd 2 inner
144.4.l.a.107.12 yes 48 48.11 even 4 inner
144.4.l.a.107.13 yes 48 16.11 odd 4 inner
576.4.l.a.143.12 48 48.5 odd 4
576.4.l.a.143.13 48 16.5 even 4
576.4.l.a.431.12 48 4.3 odd 2
576.4.l.a.431.13 48 12.11 even 2
1152.4.l.a.287.12 48 16.13 even 4
1152.4.l.a.287.13 48 48.29 odd 4
1152.4.l.a.863.12 48 24.11 even 2
1152.4.l.a.863.13 48 8.3 odd 2
1152.4.l.b.287.12 48 16.3 odd 4
1152.4.l.b.287.13 48 48.35 even 4
1152.4.l.b.863.12 48 24.5 odd 2
1152.4.l.b.863.13 48 8.5 even 2