L(s) = 1 | + (2.40 + 2.40i)5-s + 11.7·7-s + (34.7 − 34.7i)11-s + (3.17 + 3.17i)13-s − 98.0i·17-s + (−15.9 + 15.9i)19-s + 69.6i·23-s − 113. i·25-s + (−15.9 + 15.9i)29-s − 121. i·31-s + (28.2 + 28.2i)35-s + (37.0 − 37.0i)37-s − 59.3·41-s + (−241. − 241. i)43-s − 395.·47-s + ⋯ |
L(s) = 1 | + (0.215 + 0.215i)5-s + 0.632·7-s + (0.952 − 0.952i)11-s + (0.0678 + 0.0678i)13-s − 1.39i·17-s + (−0.192 + 0.192i)19-s + 0.631i·23-s − 0.907i·25-s + (−0.102 + 0.102i)29-s − 0.702i·31-s + (0.136 + 0.136i)35-s + (0.164 − 0.164i)37-s − 0.225·41-s + (−0.857 − 0.857i)43-s − 1.22·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.196 + 0.980i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.196 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.159935611\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.159935611\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-2.40 - 2.40i)T + 125iT^{2} \) |
| 7 | \( 1 - 11.7T + 343T^{2} \) |
| 11 | \( 1 + (-34.7 + 34.7i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (-3.17 - 3.17i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 98.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (15.9 - 15.9i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 69.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (15.9 - 15.9i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 121. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-37.0 + 37.0i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 59.3T + 6.89e4T^{2} \) |
| 43 | \( 1 + (241. + 241. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 395.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-458. - 458. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-257. + 257. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-373. - 373. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (648. - 648. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 787. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 1.07e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 382. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-491. - 491. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 624.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.66e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.191768384846535453613118530271, −8.497247119175090048488897446165, −7.60319257162506814578895515465, −6.70645327538099041503723117429, −5.89518736703641490513638100286, −4.97145508929735485193944596890, −3.95776051662457719189895892791, −2.93549083780156753406426296175, −1.72867137715572084999014489134, −0.53041947632673942795551951663,
1.28498501373589060273668294185, 2.01788951336984279263756292479, 3.53190119491204669582319857893, 4.44951653530567887740275545160, 5.24269232840489468756398517248, 6.35552174215838897905844084041, 7.01256182445476910022081182274, 8.130409635233732002822039808954, 8.686215934935804051802684277615, 9.646224252213889226219763002607