Properties

Label 576.2.bd.a.253.5
Level $576$
Weight $2$
Character 576.253
Analytic conductor $4.599$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(37,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 9, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.bd (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,0,-8,8,0,-8,8,0,-8,8,0,-8,8,0,-8,8,0,-8,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 253.5
Character \(\chi\) \(=\) 576.253
Dual form 576.2.bd.a.469.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.887839 - 1.10079i) q^{2} +(-0.423482 - 1.95465i) q^{4} +(-0.649649 - 0.434082i) q^{5} +(-3.64486 + 1.50975i) q^{7} +(-2.52765 - 1.26925i) q^{8} +(-1.05462 + 0.329733i) q^{10} +(-5.80194 + 1.15408i) q^{11} +(2.03484 - 1.35963i) q^{13} +(-1.57413 + 5.35264i) q^{14} +(-3.64133 + 1.65552i) q^{16} +(-0.960477 - 0.960477i) q^{17} +(0.435978 + 0.652487i) q^{19} +(-0.573364 + 1.45366i) q^{20} +(-3.88079 + 7.41136i) q^{22} +(-0.421603 + 1.01784i) q^{23} +(-1.67980 - 4.05540i) q^{25} +(0.309935 - 3.44707i) q^{26} +(4.49456 + 6.48507i) q^{28} +(1.43977 + 0.286388i) q^{29} -6.88004i q^{31} +(-1.41053 + 5.47818i) q^{32} +(-1.91003 + 0.204535i) q^{34} +(3.02323 + 0.601358i) q^{35} +(-1.07856 + 1.61417i) q^{37} +(1.10533 + 0.0993831i) q^{38} +(1.09113 + 1.92177i) q^{40} +(2.79324 - 6.74347i) q^{41} +(-1.20307 - 6.04824i) q^{43} +(4.71284 + 10.8520i) q^{44} +(0.746114 + 1.36778i) q^{46} +(6.30014 + 6.30014i) q^{47} +(6.05588 - 6.05588i) q^{49} +(-5.95554 - 1.75143i) q^{50} +(-3.51933 - 3.40161i) q^{52} +(-10.2655 + 2.04194i) q^{53} +(4.27019 + 1.76877i) q^{55} +(11.1292 + 0.810126i) q^{56} +(1.59354 - 1.33062i) q^{58} +(-4.21278 - 2.81489i) q^{59} +(-2.08276 + 10.4707i) q^{61} +(-7.57348 - 6.10837i) q^{62} +(4.77800 + 6.41644i) q^{64} -1.91212 q^{65} +(1.42195 - 7.14864i) q^{67} +(-1.47065 + 2.28414i) q^{68} +(3.34611 - 2.79404i) q^{70} +(-2.49385 + 1.03299i) q^{71} +(-1.90488 - 0.789026i) q^{73} +(0.819282 + 2.62039i) q^{74} +(1.09076 - 1.12850i) q^{76} +(19.4049 - 12.9659i) q^{77} +(-6.20432 + 6.20432i) q^{79} +(3.08422 + 0.505126i) q^{80} +(-4.94320 - 9.06188i) q^{82} +(-1.13685 - 1.70141i) q^{83} +(0.207047 + 1.04090i) q^{85} +(-7.72599 - 4.04554i) q^{86} +(16.1301 + 4.44702i) q^{88} +(-1.15743 - 2.79429i) q^{89} +(-5.36398 + 8.02776i) q^{91} +(2.16806 + 0.393050i) q^{92} +(12.5287 - 1.34163i) q^{94} -0.613137i q^{95} -13.1193i q^{97} +(-1.28961 - 12.0429i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} - 8 q^{4} + 8 q^{5} - 8 q^{7} + 8 q^{8} - 8 q^{10} + 8 q^{11} - 8 q^{13} + 8 q^{14} - 8 q^{16} + 8 q^{17} - 8 q^{19} + 8 q^{20} + 8 q^{23} - 8 q^{25} - 32 q^{26} + 32 q^{28} + 8 q^{29} - 32 q^{32}+ \cdots - 128 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.887839 1.10079i 0.627797 0.778377i
\(3\) 0 0
\(4\) −0.423482 1.95465i −0.211741 0.977326i
\(5\) −0.649649 0.434082i −0.290532 0.194127i 0.401760 0.915745i \(-0.368399\pi\)
−0.692292 + 0.721618i \(0.743399\pi\)
\(6\) 0 0
\(7\) −3.64486 + 1.50975i −1.37763 + 0.570631i −0.943845 0.330387i \(-0.892821\pi\)
−0.433780 + 0.901019i \(0.642821\pi\)
\(8\) −2.52765 1.26925i −0.893658 0.448748i
\(9\) 0 0
\(10\) −1.05462 + 0.329733i −0.333499 + 0.104271i
\(11\) −5.80194 + 1.15408i −1.74935 + 0.347968i −0.962936 0.269730i \(-0.913065\pi\)
−0.786415 + 0.617698i \(0.788065\pi\)
\(12\) 0 0
\(13\) 2.03484 1.35963i 0.564362 0.377095i −0.240417 0.970670i \(-0.577284\pi\)
0.804779 + 0.593575i \(0.202284\pi\)
\(14\) −1.57413 + 5.35264i −0.420704 + 1.43055i
\(15\) 0 0
\(16\) −3.64133 + 1.65552i −0.910331 + 0.413880i
\(17\) −0.960477 0.960477i −0.232950 0.232950i 0.580973 0.813923i \(-0.302672\pi\)
−0.813923 + 0.580973i \(0.802672\pi\)
\(18\) 0 0
\(19\) 0.435978 + 0.652487i 0.100020 + 0.149691i 0.878104 0.478469i \(-0.158808\pi\)
−0.778084 + 0.628160i \(0.783808\pi\)
\(20\) −0.573364 + 1.45366i −0.128208 + 0.325049i
\(21\) 0 0
\(22\) −3.88079 + 7.41136i −0.827388 + 1.58011i
\(23\) −0.421603 + 1.01784i −0.0879104 + 0.212234i −0.961720 0.274033i \(-0.911642\pi\)
0.873810 + 0.486268i \(0.161642\pi\)
\(24\) 0 0
\(25\) −1.67980 4.05540i −0.335960 0.811079i
\(26\) 0.309935 3.44707i 0.0607832 0.676025i
\(27\) 0 0
\(28\) 4.49456 + 6.48507i 0.849393 + 1.22556i
\(29\) 1.43977 + 0.286388i 0.267358 + 0.0531809i 0.326949 0.945042i \(-0.393980\pi\)
−0.0595906 + 0.998223i \(0.518980\pi\)
\(30\) 0 0
\(31\) 6.88004i 1.23569i −0.786300 0.617845i \(-0.788006\pi\)
0.786300 0.617845i \(-0.211994\pi\)
\(32\) −1.41053 + 5.47818i −0.249349 + 0.968414i
\(33\) 0 0
\(34\) −1.91003 + 0.204535i −0.327568 + 0.0350775i
\(35\) 3.02323 + 0.601358i 0.511019 + 0.101648i
\(36\) 0 0
\(37\) −1.07856 + 1.61417i −0.177313 + 0.265368i −0.909471 0.415767i \(-0.863513\pi\)
0.732158 + 0.681135i \(0.238513\pi\)
\(38\) 1.10533 + 0.0993831i 0.179308 + 0.0161221i
\(39\) 0 0
\(40\) 1.09113 + 1.92177i 0.172522 + 0.303859i
\(41\) 2.79324 6.74347i 0.436230 1.05315i −0.541010 0.841016i \(-0.681958\pi\)
0.977240 0.212136i \(-0.0680421\pi\)
\(42\) 0 0
\(43\) −1.20307 6.04824i −0.183467 0.922349i −0.957330 0.288996i \(-0.906678\pi\)
0.773864 0.633352i \(-0.218322\pi\)
\(44\) 4.71284 + 10.8520i 0.710487 + 1.63601i
\(45\) 0 0
\(46\) 0.746114 + 1.36778i 0.110008 + 0.201668i
\(47\) 6.30014 + 6.30014i 0.918970 + 0.918970i 0.996955 0.0779845i \(-0.0248485\pi\)
−0.0779845 + 0.996955i \(0.524848\pi\)
\(48\) 0 0
\(49\) 6.05588 6.05588i 0.865126 0.865126i
\(50\) −5.95554 1.75143i −0.842240 0.247690i
\(51\) 0 0
\(52\) −3.51933 3.40161i −0.488043 0.471719i
\(53\) −10.2655 + 2.04194i −1.41008 + 0.280482i −0.840660 0.541564i \(-0.817832\pi\)
−0.569421 + 0.822046i \(0.692832\pi\)
\(54\) 0 0
\(55\) 4.27019 + 1.76877i 0.575792 + 0.238501i
\(56\) 11.1292 + 0.810126i 1.48720 + 0.108258i
\(57\) 0 0
\(58\) 1.59354 1.33062i 0.209242 0.174719i
\(59\) −4.21278 2.81489i −0.548458 0.366468i 0.250255 0.968180i \(-0.419485\pi\)
−0.798713 + 0.601712i \(0.794485\pi\)
\(60\) 0 0
\(61\) −2.08276 + 10.4707i −0.266670 + 1.34064i 0.582633 + 0.812736i \(0.302023\pi\)
−0.849303 + 0.527906i \(0.822977\pi\)
\(62\) −7.57348 6.10837i −0.961833 0.775763i
\(63\) 0 0
\(64\) 4.77800 + 6.41644i 0.597250 + 0.802055i
\(65\) −1.91212 −0.237169
\(66\) 0 0
\(67\) 1.42195 7.14864i 0.173719 0.873345i −0.791353 0.611360i \(-0.790623\pi\)
0.965072 0.261985i \(-0.0843771\pi\)
\(68\) −1.47065 + 2.28414i −0.178343 + 0.276993i
\(69\) 0 0
\(70\) 3.34611 2.79404i 0.399937 0.333951i
\(71\) −2.49385 + 1.03299i −0.295965 + 0.122593i −0.525725 0.850655i \(-0.676206\pi\)
0.229760 + 0.973247i \(0.426206\pi\)
\(72\) 0 0
\(73\) −1.90488 0.789026i −0.222949 0.0923485i 0.268413 0.963304i \(-0.413501\pi\)
−0.491362 + 0.870955i \(0.663501\pi\)
\(74\) 0.819282 + 2.62039i 0.0952396 + 0.304614i
\(75\) 0 0
\(76\) 1.09076 1.12850i 0.125118 0.129448i
\(77\) 19.4049 12.9659i 2.21139 1.47760i
\(78\) 0 0
\(79\) −6.20432 + 6.20432i −0.698040 + 0.698040i −0.963988 0.265947i \(-0.914315\pi\)
0.265947 + 0.963988i \(0.414315\pi\)
\(80\) 3.08422 + 0.505126i 0.344826 + 0.0564748i
\(81\) 0 0
\(82\) −4.94320 9.06188i −0.545885 1.00072i
\(83\) −1.13685 1.70141i −0.124785 0.186755i 0.763817 0.645433i \(-0.223323\pi\)
−0.888602 + 0.458678i \(0.848323\pi\)
\(84\) 0 0
\(85\) 0.207047 + 1.04090i 0.0224575 + 0.112901i
\(86\) −7.72599 4.04554i −0.833115 0.436242i
\(87\) 0 0
\(88\) 16.1301 + 4.44702i 1.71947 + 0.474054i
\(89\) −1.15743 2.79429i −0.122688 0.296194i 0.850589 0.525832i \(-0.176246\pi\)
−0.973276 + 0.229638i \(0.926246\pi\)
\(90\) 0 0
\(91\) −5.36398 + 8.02776i −0.562298 + 0.841538i
\(92\) 2.16806 + 0.393050i 0.226036 + 0.0409783i
\(93\) 0 0
\(94\) 12.5287 1.34163i 1.29223 0.138378i
\(95\) 0.613137i 0.0629066i
\(96\) 0 0
\(97\) 13.1193i 1.33207i −0.745922 0.666034i \(-0.767991\pi\)
0.745922 0.666034i \(-0.232009\pi\)
\(98\) −1.28961 12.0429i −0.130270 1.21652i
\(99\) 0 0
\(100\) −7.21552 + 5.00081i −0.721552 + 0.500081i
\(101\) 2.49376 3.73217i 0.248138 0.371365i −0.686402 0.727222i \(-0.740811\pi\)
0.934540 + 0.355857i \(0.115811\pi\)
\(102\) 0 0
\(103\) 4.09230 + 9.87970i 0.403227 + 0.973476i 0.986878 + 0.161471i \(0.0516237\pi\)
−0.583651 + 0.812005i \(0.698376\pi\)
\(104\) −6.86906 + 0.853956i −0.673567 + 0.0837373i
\(105\) 0 0
\(106\) −6.86640 + 13.1131i −0.666924 + 1.27366i
\(107\) −0.745466 3.74771i −0.0720669 0.362305i 0.927877 0.372886i \(-0.121632\pi\)
−0.999944 + 0.0105812i \(0.996632\pi\)
\(108\) 0 0
\(109\) −5.47688 8.19674i −0.524590 0.785105i 0.470674 0.882307i \(-0.344011\pi\)
−0.995265 + 0.0972021i \(0.969011\pi\)
\(110\) 5.73829 3.13020i 0.547125 0.298453i
\(111\) 0 0
\(112\) 10.7727 11.5316i 1.01792 1.08964i
\(113\) 3.26239 3.26239i 0.306900 0.306900i −0.536806 0.843706i \(-0.680369\pi\)
0.843706 + 0.536806i \(0.180369\pi\)
\(114\) 0 0
\(115\) 0.715720 0.478229i 0.0667412 0.0445951i
\(116\) −0.0499280 2.93552i −0.00463569 0.272557i
\(117\) 0 0
\(118\) −6.83888 + 2.13822i −0.629570 + 0.196839i
\(119\) 4.95088 + 2.05072i 0.453846 + 0.187989i
\(120\) 0 0
\(121\) 22.1680 9.18227i 2.01527 0.834752i
\(122\) 9.67695 + 11.5890i 0.876109 + 1.04922i
\(123\) 0 0
\(124\) −13.4481 + 2.91357i −1.20767 + 0.261646i
\(125\) −1.43124 + 7.19532i −0.128014 + 0.643569i
\(126\) 0 0
\(127\) 6.57619 0.583543 0.291771 0.956488i \(-0.405755\pi\)
0.291771 + 0.956488i \(0.405755\pi\)
\(128\) 11.3053 + 0.437187i 0.999253 + 0.0386422i
\(129\) 0 0
\(130\) −1.69766 + 2.10485i −0.148894 + 0.184607i
\(131\) −0.948444 + 4.76815i −0.0828659 + 0.416595i 0.916978 + 0.398937i \(0.130621\pi\)
−0.999844 + 0.0176578i \(0.994379\pi\)
\(132\) 0 0
\(133\) −2.57417 1.72000i −0.223209 0.149143i
\(134\) −6.60669 7.91211i −0.570731 0.683502i
\(135\) 0 0
\(136\) 1.20866 + 3.64683i 0.103642 + 0.312713i
\(137\) 19.4588 + 8.06010i 1.66248 + 0.688621i 0.998263 0.0589215i \(-0.0187662\pi\)
0.664214 + 0.747542i \(0.268766\pi\)
\(138\) 0 0
\(139\) −18.8196 + 3.74344i −1.59625 + 0.317515i −0.911513 0.411272i \(-0.865085\pi\)
−0.684741 + 0.728786i \(0.740085\pi\)
\(140\) −0.104839 6.16403i −0.00886051 0.520956i
\(141\) 0 0
\(142\) −1.07704 + 3.66233i −0.0903828 + 0.307336i
\(143\) −10.2369 + 10.2369i −0.856050 + 0.856050i
\(144\) 0 0
\(145\) −0.811028 0.811028i −0.0673522 0.0673522i
\(146\) −2.55978 + 1.39634i −0.211849 + 0.115562i
\(147\) 0 0
\(148\) 3.61189 + 1.42463i 0.296896 + 0.117104i
\(149\) −0.183778 0.923914i −0.0150557 0.0756900i 0.972527 0.232790i \(-0.0747855\pi\)
−0.987583 + 0.157100i \(0.949785\pi\)
\(150\) 0 0
\(151\) 4.16374 10.0522i 0.338841 0.818034i −0.658987 0.752154i \(-0.729015\pi\)
0.997828 0.0658792i \(-0.0209852\pi\)
\(152\) −0.273828 2.20262i −0.0222104 0.178656i
\(153\) 0 0
\(154\) 2.95564 32.8724i 0.238172 2.64893i
\(155\) −2.98650 + 4.46961i −0.239881 + 0.359008i
\(156\) 0 0
\(157\) 2.16776 + 0.431195i 0.173006 + 0.0344131i 0.280833 0.959757i \(-0.409389\pi\)
−0.107827 + 0.994170i \(0.534389\pi\)
\(158\) 1.32122 + 12.3381i 0.105111 + 0.981567i
\(159\) 0 0
\(160\) 3.29433 2.94661i 0.260439 0.232950i
\(161\) 4.34640i 0.342544i
\(162\) 0 0
\(163\) −10.1978 2.02847i −0.798753 0.158882i −0.221193 0.975230i \(-0.570995\pi\)
−0.577560 + 0.816348i \(0.695995\pi\)
\(164\) −14.3640 2.60406i −1.12164 0.203343i
\(165\) 0 0
\(166\) −2.88224 0.259150i −0.223705 0.0201139i
\(167\) −5.67541 13.7016i −0.439176 1.06027i −0.976234 0.216720i \(-0.930464\pi\)
0.537058 0.843546i \(-0.319536\pi\)
\(168\) 0 0
\(169\) −2.68293 + 6.47717i −0.206379 + 0.498244i
\(170\) 1.32964 + 0.696234i 0.101978 + 0.0533987i
\(171\) 0 0
\(172\) −11.3127 + 4.91291i −0.862588 + 0.374606i
\(173\) −2.81628 4.21486i −0.214118 0.320450i 0.708827 0.705382i \(-0.249225\pi\)
−0.922945 + 0.384933i \(0.874225\pi\)
\(174\) 0 0
\(175\) 12.2453 + 12.2453i 0.925654 + 0.925654i
\(176\) 19.2162 13.8076i 1.44847 1.04079i
\(177\) 0 0
\(178\) −4.10354 1.20679i −0.307574 0.0904526i
\(179\) −2.53753 + 1.69552i −0.189664 + 0.126729i −0.646777 0.762679i \(-0.723883\pi\)
0.457113 + 0.889409i \(0.348883\pi\)
\(180\) 0 0
\(181\) −6.51424 + 1.29576i −0.484200 + 0.0963133i −0.431153 0.902279i \(-0.641893\pi\)
−0.0530464 + 0.998592i \(0.516893\pi\)
\(182\) 4.07454 + 13.0320i 0.302025 + 0.965995i
\(183\) 0 0
\(184\) 2.35756 2.03762i 0.173802 0.150215i
\(185\) 1.40136 0.580464i 0.103030 0.0426766i
\(186\) 0 0
\(187\) 6.68109 + 4.46416i 0.488570 + 0.326452i
\(188\) 9.64658 14.9826i 0.703549 1.09272i
\(189\) 0 0
\(190\) −0.674936 0.544367i −0.0489650 0.0394926i
\(191\) 1.58154 0.114436 0.0572181 0.998362i \(-0.481777\pi\)
0.0572181 + 0.998362i \(0.481777\pi\)
\(192\) 0 0
\(193\) −16.3932 −1.18001 −0.590004 0.807401i \(-0.700874\pi\)
−0.590004 + 0.807401i \(0.700874\pi\)
\(194\) −14.4417 11.6479i −1.03685 0.836269i
\(195\) 0 0
\(196\) −14.4017 9.27258i −1.02869 0.662327i
\(197\) 2.24425 + 1.49956i 0.159896 + 0.106839i 0.632944 0.774197i \(-0.281846\pi\)
−0.473048 + 0.881037i \(0.656846\pi\)
\(198\) 0 0
\(199\) 12.1675 5.03992i 0.862528 0.357271i 0.0928322 0.995682i \(-0.470408\pi\)
0.769696 + 0.638411i \(0.220408\pi\)
\(200\) −0.901375 + 12.3827i −0.0637369 + 0.875589i
\(201\) 0 0
\(202\) −1.89428 6.05867i −0.133281 0.426287i
\(203\) −5.68012 + 1.12985i −0.398666 + 0.0792996i
\(204\) 0 0
\(205\) −4.74184 + 3.16839i −0.331184 + 0.221290i
\(206\) 14.5088 + 4.26681i 1.01088 + 0.297283i
\(207\) 0 0
\(208\) −5.15860 + 8.31958i −0.357684 + 0.576859i
\(209\) −3.28254 3.28254i −0.227058 0.227058i
\(210\) 0 0
\(211\) 3.81684 + 5.71230i 0.262762 + 0.393251i 0.939267 0.343187i \(-0.111506\pi\)
−0.676505 + 0.736438i \(0.736506\pi\)
\(212\) 8.33856 + 19.2008i 0.572695 + 1.31872i
\(213\) 0 0
\(214\) −4.78730 2.50676i −0.327253 0.171359i
\(215\) −1.84386 + 4.45147i −0.125750 + 0.303588i
\(216\) 0 0
\(217\) 10.3871 + 25.0767i 0.705124 + 1.70232i
\(218\) −13.8855 1.24848i −0.940444 0.0845578i
\(219\) 0 0
\(220\) 1.64898 9.09578i 0.111174 0.613237i
\(221\) −3.26031 0.648516i −0.219312 0.0436239i
\(222\) 0 0
\(223\) 3.88311i 0.260032i 0.991512 + 0.130016i \(0.0415029\pi\)
−0.991512 + 0.130016i \(0.958497\pi\)
\(224\) −3.12949 22.0967i −0.209098 1.47640i
\(225\) 0 0
\(226\) −0.694732 6.48769i −0.0462129 0.431555i
\(227\) −22.5337 4.48224i −1.49562 0.297497i −0.621577 0.783353i \(-0.713508\pi\)
−0.874039 + 0.485856i \(0.838508\pi\)
\(228\) 0 0
\(229\) −3.41606 + 5.11250i −0.225740 + 0.337844i −0.927000 0.375062i \(-0.877621\pi\)
0.701260 + 0.712906i \(0.252621\pi\)
\(230\) 0.109014 1.21245i 0.00718820 0.0799465i
\(231\) 0 0
\(232\) −3.27573 2.55131i −0.215062 0.167502i
\(233\) −0.733834 + 1.77163i −0.0480751 + 0.116064i −0.946093 0.323896i \(-0.895007\pi\)
0.898018 + 0.439960i \(0.145007\pi\)
\(234\) 0 0
\(235\) −1.35811 6.82766i −0.0885930 0.445387i
\(236\) −3.71809 + 9.42658i −0.242027 + 0.613618i
\(237\) 0 0
\(238\) 6.65300 3.62917i 0.431250 0.235244i
\(239\) 6.09870 + 6.09870i 0.394492 + 0.394492i 0.876285 0.481793i \(-0.160014\pi\)
−0.481793 + 0.876285i \(0.660014\pi\)
\(240\) 0 0
\(241\) 5.21549 5.21549i 0.335959 0.335959i −0.518885 0.854844i \(-0.673653\pi\)
0.854844 + 0.518885i \(0.173653\pi\)
\(242\) 9.57383 32.5547i 0.615429 2.09269i
\(243\) 0 0
\(244\) 21.3487 0.363102i 1.36671 0.0232452i
\(245\) −6.56295 + 1.30545i −0.419291 + 0.0834022i
\(246\) 0 0
\(247\) 1.77429 + 0.734933i 0.112895 + 0.0467627i
\(248\) −8.73249 + 17.3903i −0.554514 + 1.10429i
\(249\) 0 0
\(250\) 6.64984 + 7.96379i 0.420573 + 0.503674i
\(251\) −3.73150 2.49331i −0.235530 0.157376i 0.432204 0.901776i \(-0.357736\pi\)
−0.667735 + 0.744399i \(0.732736\pi\)
\(252\) 0 0
\(253\) 1.27145 6.39201i 0.0799354 0.401862i
\(254\) 5.83860 7.23901i 0.366347 0.454216i
\(255\) 0 0
\(256\) 10.5185 12.0566i 0.657407 0.753536i
\(257\) 5.86891 0.366092 0.183046 0.983104i \(-0.441404\pi\)
0.183046 + 0.983104i \(0.441404\pi\)
\(258\) 0 0
\(259\) 1.49418 7.51177i 0.0928441 0.466759i
\(260\) 0.809749 + 3.73753i 0.0502185 + 0.231792i
\(261\) 0 0
\(262\) 4.40667 + 5.27739i 0.272245 + 0.326038i
\(263\) 27.1667 11.2528i 1.67517 0.693877i 0.676090 0.736819i \(-0.263673\pi\)
0.999078 + 0.0429417i \(0.0136730\pi\)
\(264\) 0 0
\(265\) 7.55537 + 3.12954i 0.464123 + 0.192246i
\(266\) −4.17881 + 1.30653i −0.256219 + 0.0801087i
\(267\) 0 0
\(268\) −14.5753 + 0.247899i −0.890326 + 0.0151428i
\(269\) −9.18707 + 6.13860i −0.560145 + 0.374277i −0.803176 0.595741i \(-0.796858\pi\)
0.243031 + 0.970019i \(0.421858\pi\)
\(270\) 0 0
\(271\) −17.2217 + 17.2217i −1.04614 + 1.04614i −0.0472600 + 0.998883i \(0.515049\pi\)
−0.998883 + 0.0472600i \(0.984951\pi\)
\(272\) 5.08750 + 1.90732i 0.308475 + 0.115648i
\(273\) 0 0
\(274\) 26.1488 14.2640i 1.57970 0.861720i
\(275\) 14.4263 + 21.5906i 0.869941 + 1.30196i
\(276\) 0 0
\(277\) 5.36979 + 26.9957i 0.322639 + 1.62202i 0.712868 + 0.701299i \(0.247396\pi\)
−0.390228 + 0.920718i \(0.627604\pi\)
\(278\) −12.5880 + 24.0400i −0.754978 + 1.44182i
\(279\) 0 0
\(280\) −6.87839 5.35726i −0.411062 0.320158i
\(281\) 6.20216 + 14.9733i 0.369990 + 0.893234i 0.993751 + 0.111619i \(0.0356037\pi\)
−0.623762 + 0.781615i \(0.714396\pi\)
\(282\) 0 0
\(283\) −4.95606 + 7.41727i −0.294607 + 0.440911i −0.949015 0.315231i \(-0.897918\pi\)
0.654408 + 0.756142i \(0.272918\pi\)
\(284\) 3.07523 + 4.43715i 0.182481 + 0.263297i
\(285\) 0 0
\(286\) 2.17996 + 20.3574i 0.128904 + 1.20376i
\(287\) 28.7960i 1.69978i
\(288\) 0 0
\(289\) 15.1550i 0.891469i
\(290\) −1.61284 + 0.172710i −0.0947090 + 0.0101419i
\(291\) 0 0
\(292\) −0.735589 + 4.05751i −0.0430471 + 0.237448i
\(293\) −13.5525 + 20.2828i −0.791747 + 1.18493i 0.187500 + 0.982265i \(0.439961\pi\)
−0.979247 + 0.202669i \(0.935039\pi\)
\(294\) 0 0
\(295\) 1.51494 + 3.65738i 0.0882031 + 0.212941i
\(296\) 4.77500 2.71110i 0.277541 0.157579i
\(297\) 0 0
\(298\) −1.18020 0.617986i −0.0683673 0.0357990i
\(299\) 0.525997 + 2.64436i 0.0304192 + 0.152928i
\(300\) 0 0
\(301\) 13.5163 + 20.2286i 0.779069 + 1.16596i
\(302\) −7.36860 13.5081i −0.424015 0.777305i
\(303\) 0 0
\(304\) −2.66774 1.65415i −0.153005 0.0948718i
\(305\) 5.89822 5.89822i 0.337731 0.337731i
\(306\) 0 0
\(307\) 8.15880 5.45154i 0.465647 0.311136i −0.300521 0.953775i \(-0.597161\pi\)
0.766169 + 0.642639i \(0.222161\pi\)
\(308\) −33.5615 32.4389i −1.91234 1.84838i
\(309\) 0 0
\(310\) 2.26858 + 7.25580i 0.128846 + 0.412102i
\(311\) −28.3647 11.7490i −1.60842 0.666227i −0.615841 0.787870i \(-0.711184\pi\)
−0.992574 + 0.121643i \(0.961184\pi\)
\(312\) 0 0
\(313\) −22.4586 + 9.30264i −1.26943 + 0.525816i −0.912792 0.408425i \(-0.866078\pi\)
−0.356641 + 0.934242i \(0.616078\pi\)
\(314\) 2.39928 2.00342i 0.135399 0.113060i
\(315\) 0 0
\(316\) 14.7547 + 9.49986i 0.830017 + 0.534409i
\(317\) −1.29802 + 6.52557i −0.0729039 + 0.366513i −0.999965 0.00839833i \(-0.997327\pi\)
0.927061 + 0.374911i \(0.122327\pi\)
\(318\) 0 0
\(319\) −8.68396 −0.486209
\(320\) −0.318766 6.24248i −0.0178195 0.348965i
\(321\) 0 0
\(322\) −4.78447 3.85890i −0.266628 0.215048i
\(323\) 0.207952 1.04544i 0.0115707 0.0581701i
\(324\) 0 0
\(325\) −8.93197 5.96815i −0.495457 0.331054i
\(326\) −11.2869 + 9.42469i −0.625125 + 0.521985i
\(327\) 0 0
\(328\) −15.6195 + 13.4998i −0.862441 + 0.745401i
\(329\) −32.4747 13.4515i −1.79039 0.741604i
\(330\) 0 0
\(331\) 3.84304 0.764428i 0.211233 0.0420168i −0.0883396 0.996090i \(-0.528156\pi\)
0.299572 + 0.954074i \(0.403156\pi\)
\(332\) −2.84424 + 2.94266i −0.156098 + 0.161500i
\(333\) 0 0
\(334\) −20.1215 5.91742i −1.10100 0.323787i
\(335\) −4.02686 + 4.02686i −0.220011 + 0.220011i
\(336\) 0 0
\(337\) 13.8621 + 13.8621i 0.755119 + 0.755119i 0.975430 0.220311i \(-0.0707072\pi\)
−0.220311 + 0.975430i \(0.570707\pi\)
\(338\) 4.74800 + 8.70404i 0.258257 + 0.473437i
\(339\) 0 0
\(340\) 1.94691 0.845507i 0.105586 0.0458541i
\(341\) 7.94010 + 39.9176i 0.429980 + 2.16166i
\(342\) 0 0
\(343\) −2.36172 + 5.70170i −0.127521 + 0.307863i
\(344\) −4.63580 + 16.8148i −0.249946 + 0.906595i
\(345\) 0 0
\(346\) −7.14008 0.641984i −0.383853 0.0345132i
\(347\) 13.7444 20.5699i 0.737836 1.10425i −0.252773 0.967526i \(-0.581343\pi\)
0.990609 0.136724i \(-0.0436574\pi\)
\(348\) 0 0
\(349\) −34.6278 6.88789i −1.85358 0.368700i −0.862953 0.505284i \(-0.831388\pi\)
−0.990628 + 0.136584i \(0.956388\pi\)
\(350\) 24.3513 2.60765i 1.30163 0.139385i
\(351\) 0 0
\(352\) 1.86158 33.4119i 0.0992224 1.78086i
\(353\) 16.3511i 0.870283i −0.900362 0.435141i \(-0.856698\pi\)
0.900362 0.435141i \(-0.143302\pi\)
\(354\) 0 0
\(355\) 2.06853 + 0.411455i 0.109786 + 0.0218378i
\(356\) −4.97171 + 3.44571i −0.263500 + 0.182622i
\(357\) 0 0
\(358\) −0.386502 + 4.29864i −0.0204272 + 0.227190i
\(359\) 0.837827 + 2.02269i 0.0442188 + 0.106754i 0.944446 0.328667i \(-0.106599\pi\)
−0.900227 + 0.435421i \(0.856599\pi\)
\(360\) 0 0
\(361\) 7.03532 16.9848i 0.370280 0.893935i
\(362\) −4.35723 + 8.32125i −0.229011 + 0.437355i
\(363\) 0 0
\(364\) 17.9630 + 7.08509i 0.941518 + 0.371360i
\(365\) 0.895000 + 1.33946i 0.0468464 + 0.0701106i
\(366\) 0 0
\(367\) 20.9060 + 20.9060i 1.09129 + 1.09129i 0.995392 + 0.0958935i \(0.0305708\pi\)
0.0958935 + 0.995392i \(0.469429\pi\)
\(368\) −0.149860 4.40426i −0.00781201 0.229588i
\(369\) 0 0
\(370\) 0.605217 2.05797i 0.0314637 0.106989i
\(371\) 34.3336 22.9410i 1.78251 1.19104i
\(372\) 0 0
\(373\) 23.8329 4.74066i 1.23402 0.245462i 0.465362 0.885121i \(-0.345924\pi\)
0.768659 + 0.639659i \(0.220924\pi\)
\(374\) 10.8459 3.39103i 0.560826 0.175346i
\(375\) 0 0
\(376\) −7.92807 23.9210i −0.408859 1.23363i
\(377\) 3.31907 1.37481i 0.170941 0.0708061i
\(378\) 0 0
\(379\) −20.7596 13.8712i −1.06635 0.712513i −0.106867 0.994273i \(-0.534082\pi\)
−0.959485 + 0.281760i \(0.909082\pi\)
\(380\) −1.19847 + 0.259653i −0.0614802 + 0.0133199i
\(381\) 0 0
\(382\) 1.40415 1.74094i 0.0718427 0.0890744i
\(383\) 24.5463 1.25426 0.627128 0.778916i \(-0.284230\pi\)
0.627128 + 0.778916i \(0.284230\pi\)
\(384\) 0 0
\(385\) −18.2346 −0.929323
\(386\) −14.5545 + 18.0455i −0.740806 + 0.918491i
\(387\) 0 0
\(388\) −25.6437 + 5.55581i −1.30186 + 0.282053i
\(389\) −19.0280 12.7141i −0.964758 0.644630i −0.0298624 0.999554i \(-0.509507\pi\)
−0.934895 + 0.354924i \(0.884507\pi\)
\(390\) 0 0
\(391\) 1.38255 0.572672i 0.0699187 0.0289613i
\(392\) −22.9936 + 7.62070i −1.16135 + 0.384903i
\(393\) 0 0
\(394\) 3.64324 1.13908i 0.183544 0.0573862i
\(395\) 6.72381 1.33745i 0.338312 0.0672944i
\(396\) 0 0
\(397\) 20.2490 13.5300i 1.01627 0.679050i 0.0683838 0.997659i \(-0.478216\pi\)
0.947886 + 0.318609i \(0.103216\pi\)
\(398\) 5.25484 17.8685i 0.263401 0.895665i
\(399\) 0 0
\(400\) 12.8305 + 11.9861i 0.641524 + 0.599304i
\(401\) −13.4688 13.4688i −0.672599 0.672599i 0.285716 0.958314i \(-0.407769\pi\)
−0.958314 + 0.285716i \(0.907769\pi\)
\(402\) 0 0
\(403\) −9.35433 13.9997i −0.465972 0.697377i
\(404\) −8.35115 3.29392i −0.415485 0.163878i
\(405\) 0 0
\(406\) −3.79931 + 7.25575i −0.188557 + 0.360097i
\(407\) 4.39483 10.6101i 0.217844 0.525922i
\(408\) 0 0
\(409\) −3.05166 7.36736i −0.150895 0.364293i 0.830299 0.557319i \(-0.188170\pi\)
−0.981194 + 0.193026i \(0.938170\pi\)
\(410\) −0.722250 + 8.03280i −0.0356694 + 0.396712i
\(411\) 0 0
\(412\) 17.5783 12.1829i 0.866023 0.600209i
\(413\) 19.6048 + 3.89963i 0.964688 + 0.191888i
\(414\) 0 0
\(415\) 1.59881i 0.0784824i
\(416\) 4.57811 + 13.0650i 0.224460 + 0.640564i
\(417\) 0 0
\(418\) −6.52775 + 0.699022i −0.319283 + 0.0341903i
\(419\) 12.5395 + 2.49426i 0.612593 + 0.121852i 0.491629 0.870805i \(-0.336402\pi\)
0.120964 + 0.992657i \(0.461402\pi\)
\(420\) 0 0
\(421\) −10.8903 + 16.2984i −0.530759 + 0.794337i −0.995858 0.0909215i \(-0.971019\pi\)
0.465099 + 0.885259i \(0.346019\pi\)
\(422\) 9.67679 + 0.870065i 0.471059 + 0.0423541i
\(423\) 0 0
\(424\) 28.5394 + 7.86824i 1.38600 + 0.382115i
\(425\) −2.28170 + 5.50852i −0.110679 + 0.267203i
\(426\) 0 0
\(427\) −8.21683 41.3088i −0.397640 1.99907i
\(428\) −7.00978 + 3.04422i −0.338830 + 0.147148i
\(429\) 0 0
\(430\) 3.26309 + 5.98189i 0.157360 + 0.288472i
\(431\) −18.4810 18.4810i −0.890199 0.890199i 0.104343 0.994541i \(-0.466726\pi\)
−0.994541 + 0.104343i \(0.966726\pi\)
\(432\) 0 0
\(433\) 6.00332 6.00332i 0.288501 0.288501i −0.547986 0.836487i \(-0.684605\pi\)
0.836487 + 0.547986i \(0.184605\pi\)
\(434\) 36.8263 + 10.8301i 1.76772 + 0.519860i
\(435\) 0 0
\(436\) −13.7024 + 14.1766i −0.656226 + 0.678935i
\(437\) −0.847937 + 0.168665i −0.0405623 + 0.00806835i
\(438\) 0 0
\(439\) −19.8680 8.22958i −0.948246 0.392777i −0.145675 0.989333i \(-0.546535\pi\)
−0.802571 + 0.596556i \(0.796535\pi\)
\(440\) −8.54852 9.89077i −0.407535 0.471524i
\(441\) 0 0
\(442\) −3.60851 + 3.01314i −0.171639 + 0.143320i
\(443\) −15.5336 10.3792i −0.738023 0.493131i 0.128848 0.991664i \(-0.458872\pi\)
−0.866871 + 0.498533i \(0.833872\pi\)
\(444\) 0 0
\(445\) −0.461025 + 2.31773i −0.0218547 + 0.109871i
\(446\) 4.27449 + 3.44757i 0.202403 + 0.163247i
\(447\) 0 0
\(448\) −27.1023 16.1734i −1.28047 0.764122i
\(449\) −32.6778 −1.54216 −0.771081 0.636737i \(-0.780284\pi\)
−0.771081 + 0.636737i \(0.780284\pi\)
\(450\) 0 0
\(451\) −8.42370 + 42.3488i −0.396657 + 1.99413i
\(452\) −7.75840 4.99527i −0.364925 0.234958i
\(453\) 0 0
\(454\) −24.9403 + 20.8254i −1.17051 + 0.977386i
\(455\) 6.96941 2.88682i 0.326731 0.135336i
\(456\) 0 0
\(457\) −23.3834 9.68573i −1.09383 0.453079i −0.238489 0.971145i \(-0.576652\pi\)
−0.855341 + 0.518066i \(0.826652\pi\)
\(458\) 2.59488 + 8.29945i 0.121251 + 0.387808i
\(459\) 0 0
\(460\) −1.23787 1.19646i −0.0577158 0.0557853i
\(461\) −2.39596 + 1.60093i −0.111591 + 0.0745627i −0.610113 0.792314i \(-0.708876\pi\)
0.498522 + 0.866877i \(0.333876\pi\)
\(462\) 0 0
\(463\) 24.5897 24.5897i 1.14278 1.14278i 0.154840 0.987940i \(-0.450514\pi\)
0.987940 0.154840i \(-0.0494863\pi\)
\(464\) −5.71678 + 1.34073i −0.265395 + 0.0622420i
\(465\) 0 0
\(466\) 1.29867 + 2.38072i 0.0601598 + 0.110285i
\(467\) 7.08500 + 10.6035i 0.327855 + 0.490670i 0.958379 0.285500i \(-0.0921598\pi\)
−0.630524 + 0.776170i \(0.717160\pi\)
\(468\) 0 0
\(469\) 5.60983 + 28.2025i 0.259038 + 1.30227i
\(470\) −8.72160 4.56687i −0.402298 0.210654i
\(471\) 0 0
\(472\) 7.07563 + 12.4621i 0.325682 + 0.573616i
\(473\) 13.9603 + 33.7031i 0.641895 + 1.54967i
\(474\) 0 0
\(475\) 1.91374 2.86411i 0.0878082 0.131414i
\(476\) 1.91184 10.5457i 0.0876288 0.483361i
\(477\) 0 0
\(478\) 12.1281 1.29873i 0.554724 0.0594024i
\(479\) 8.39981i 0.383797i 0.981415 + 0.191899i \(0.0614644\pi\)
−0.981415 + 0.191899i \(0.938536\pi\)
\(480\) 0 0
\(481\) 4.75101i 0.216628i
\(482\) −1.11065 10.3717i −0.0505886 0.472417i
\(483\) 0 0
\(484\) −27.3359 39.4421i −1.24254 1.79282i
\(485\) −5.69487 + 8.52297i −0.258591 + 0.387008i
\(486\) 0 0
\(487\) −6.40268 15.4574i −0.290133 0.700443i 0.709859 0.704343i \(-0.248758\pi\)
−0.999992 + 0.00390038i \(0.998758\pi\)
\(488\) 18.5545 23.8228i 0.839922 1.07841i
\(489\) 0 0
\(490\) −4.38982 + 8.38347i −0.198312 + 0.378726i
\(491\) −1.85105 9.30587i −0.0835368 0.419968i −0.999811 0.0194174i \(-0.993819\pi\)
0.916275 0.400551i \(-0.131181\pi\)
\(492\) 0 0
\(493\) −1.10779 1.65793i −0.0498926 0.0746695i
\(494\) 2.38429 1.30062i 0.107274 0.0585174i
\(495\) 0 0
\(496\) 11.3900 + 25.0524i 0.511428 + 1.12489i
\(497\) 7.53017 7.53017i 0.337774 0.337774i
\(498\) 0 0
\(499\) 12.4453 8.31569i 0.557129 0.372261i −0.244899 0.969549i \(-0.578755\pi\)
0.802027 + 0.597287i \(0.203755\pi\)
\(500\) 14.6705 0.249518i 0.656083 0.0111588i
\(501\) 0 0
\(502\) −6.05759 + 1.89395i −0.270363 + 0.0845309i
\(503\) −7.01440 2.90546i −0.312757 0.129548i 0.220783 0.975323i \(-0.429139\pi\)
−0.533540 + 0.845775i \(0.679139\pi\)
\(504\) 0 0
\(505\) −3.24013 + 1.34211i −0.144184 + 0.0597230i
\(506\) −5.90743 7.07468i −0.262617 0.314508i
\(507\) 0 0
\(508\) −2.78490 12.8542i −0.123560 0.570311i
\(509\) 6.73996 33.8841i 0.298743 1.50188i −0.481521 0.876435i \(-0.659915\pi\)
0.780264 0.625450i \(-0.215085\pi\)
\(510\) 0 0
\(511\) 8.13423 0.359837
\(512\) −3.93303 22.2830i −0.173817 0.984778i
\(513\) 0 0
\(514\) 5.21065 6.46044i 0.229832 0.284958i
\(515\) 1.63003 8.19473i 0.0718279 0.361103i
\(516\) 0 0
\(517\) −43.8239 29.2822i −1.92737 1.28783i
\(518\) −6.94230 8.31403i −0.305027 0.365298i
\(519\) 0 0
\(520\) 4.83317 + 2.42696i 0.211948 + 0.106429i
\(521\) 35.4201 + 14.6715i 1.55178 + 0.642770i 0.983638 0.180158i \(-0.0576610\pi\)
0.568146 + 0.822928i \(0.307661\pi\)
\(522\) 0 0
\(523\) −3.91974 + 0.779685i −0.171398 + 0.0340933i −0.280043 0.959987i \(-0.590349\pi\)
0.108645 + 0.994081i \(0.465349\pi\)
\(524\) 9.72172 0.165349i 0.424695 0.00722330i
\(525\) 0 0
\(526\) 11.7326 39.8955i 0.511568 1.73953i
\(527\) −6.60811 + 6.60811i −0.287854 + 0.287854i
\(528\) 0 0
\(529\) 15.4052 + 15.4052i 0.669792 + 0.669792i
\(530\) 10.1529 5.53836i 0.441015 0.240571i
\(531\) 0 0
\(532\) −2.27189 + 5.75999i −0.0984990 + 0.249727i
\(533\) −3.48487 17.5196i −0.150946 0.758859i
\(534\) 0 0
\(535\) −1.14252 + 2.75829i −0.0493955 + 0.119251i
\(536\) −12.6676 + 16.2644i −0.547157 + 0.702516i
\(537\) 0 0
\(538\) −1.39932 + 15.5631i −0.0603291 + 0.670974i
\(539\) −28.1469 + 42.1248i −1.21237 + 1.81445i
\(540\) 0 0
\(541\) 37.1103 + 7.38169i 1.59550 + 0.317364i 0.911239 0.411878i \(-0.135127\pi\)
0.684256 + 0.729242i \(0.260127\pi\)
\(542\) 3.66739 + 34.2476i 0.157528 + 1.47106i
\(543\) 0 0
\(544\) 6.61644 3.90688i 0.283678 0.167506i
\(545\) 7.70242i 0.329935i
\(546\) 0 0
\(547\) 6.05489 + 1.20439i 0.258888 + 0.0514961i 0.322828 0.946458i \(-0.395366\pi\)
−0.0639395 + 0.997954i \(0.520366\pi\)
\(548\) 7.51423 41.4485i 0.320992 1.77059i
\(549\) 0 0
\(550\) 36.5750 + 3.28855i 1.55956 + 0.140224i
\(551\) 0.440842 + 1.06429i 0.0187805 + 0.0453402i
\(552\) 0 0
\(553\) 13.2469 31.9808i 0.563315 1.35996i
\(554\) 34.4842 + 18.0569i 1.46509 + 0.767163i
\(555\) 0 0
\(556\) 15.2869 + 35.2004i 0.648308 + 1.49283i
\(557\) −10.4706 15.6704i −0.443653 0.663974i 0.540490 0.841351i \(-0.318239\pi\)
−0.984143 + 0.177377i \(0.943239\pi\)
\(558\) 0 0
\(559\) −10.6714 10.6714i −0.451354 0.451354i
\(560\) −12.0041 + 2.81528i −0.507267 + 0.118967i
\(561\) 0 0
\(562\) 21.9890 + 6.46663i 0.927551 + 0.272778i
\(563\) 31.7318 21.2025i 1.33733 0.893578i 0.338458 0.940981i \(-0.390095\pi\)
0.998876 + 0.0474033i \(0.0150946\pi\)
\(564\) 0 0
\(565\) −3.53555 + 0.703266i −0.148742 + 0.0295866i
\(566\) 3.76468 + 12.0409i 0.158241 + 0.506118i
\(567\) 0 0
\(568\) 7.61469 + 0.554297i 0.319505 + 0.0232578i
\(569\) −5.70005 + 2.36104i −0.238958 + 0.0989798i −0.498949 0.866631i \(-0.666281\pi\)
0.259991 + 0.965611i \(0.416281\pi\)
\(570\) 0 0
\(571\) 25.4415 + 16.9994i 1.06469 + 0.711405i 0.959118 0.283007i \(-0.0913319\pi\)
0.105574 + 0.994411i \(0.466332\pi\)
\(572\) 24.3447 + 15.6744i 1.01790 + 0.655379i
\(573\) 0 0
\(574\) 31.6984 + 25.5663i 1.32307 + 1.06712i
\(575\) 4.83596 0.201673
\(576\) 0 0
\(577\) 13.1957 0.549345 0.274673 0.961538i \(-0.411431\pi\)
0.274673 + 0.961538i \(0.411431\pi\)
\(578\) −16.6825 13.4552i −0.693899 0.559662i
\(579\) 0 0
\(580\) −1.24182 + 1.92873i −0.0515638 + 0.0800863i
\(581\) 6.71236 + 4.48506i 0.278476 + 0.186071i
\(582\) 0 0
\(583\) 57.2035 23.6945i 2.36913 0.981324i
\(584\) 3.81338 + 4.41215i 0.157799 + 0.182576i
\(585\) 0 0
\(586\) 10.2946 + 32.9264i 0.425268 + 1.36018i
\(587\) −28.1626 + 5.60188i −1.16239 + 0.231215i −0.738344 0.674424i \(-0.764392\pi\)
−0.424050 + 0.905639i \(0.639392\pi\)
\(588\) 0 0
\(589\) 4.48913 2.99954i 0.184971 0.123594i
\(590\) 5.37104 + 1.57954i 0.221122 + 0.0650286i
\(591\) 0 0
\(592\) 1.25508 7.66330i 0.0515833 0.314960i
\(593\) −8.50593 8.50593i −0.349297 0.349297i 0.510551 0.859848i \(-0.329441\pi\)
−0.859848 + 0.510551i \(0.829441\pi\)
\(594\) 0 0
\(595\) −2.32615 3.48133i −0.0953630 0.142721i
\(596\) −1.72810 + 0.750483i −0.0707859 + 0.0307410i
\(597\) 0 0
\(598\) 3.37789 + 1.76876i 0.138132 + 0.0723299i
\(599\) 17.7398 42.8278i 0.724831 1.74990i 0.0657345 0.997837i \(-0.479061\pi\)
0.659096 0.752059i \(-0.270939\pi\)
\(600\) 0 0
\(601\) 9.36011 + 22.5973i 0.381807 + 0.921763i 0.991617 + 0.129215i \(0.0412459\pi\)
−0.609810 + 0.792548i \(0.708754\pi\)
\(602\) 34.2679 + 3.08111i 1.39665 + 0.125577i
\(603\) 0 0
\(604\) −21.4117 3.88175i −0.871232 0.157946i
\(605\) −18.3872 3.65745i −0.747548 0.148697i
\(606\) 0 0
\(607\) 19.9552i 0.809956i −0.914326 0.404978i \(-0.867279\pi\)
0.914326 0.404978i \(-0.132721\pi\)
\(608\) −4.18940 + 1.46801i −0.169902 + 0.0595356i
\(609\) 0 0
\(610\) −1.25604 11.7294i −0.0508554 0.474909i
\(611\) 21.3856 + 4.25387i 0.865170 + 0.172093i
\(612\) 0 0
\(613\) 15.7066 23.5066i 0.634384 0.949423i −0.365443 0.930834i \(-0.619083\pi\)
0.999827 0.0185890i \(-0.00591740\pi\)
\(614\) 1.24270 13.8212i 0.0501514 0.557779i
\(615\) 0 0
\(616\) −65.5057 + 8.14361i −2.63930 + 0.328116i
\(617\) 7.93425 19.1550i 0.319421 0.771150i −0.679864 0.733338i \(-0.737961\pi\)
0.999285 0.0378118i \(-0.0120387\pi\)
\(618\) 0 0
\(619\) −1.06040 5.33101i −0.0426212 0.214271i 0.953606 0.301059i \(-0.0973400\pi\)
−0.996227 + 0.0867872i \(0.972340\pi\)
\(620\) 10.0013 + 3.94476i 0.401660 + 0.158425i
\(621\) 0 0
\(622\) −38.1166 + 20.7924i −1.52833 + 0.833697i
\(623\) 8.43735 + 8.43735i 0.338035 + 0.338035i
\(624\) 0 0
\(625\) −11.4662 + 11.4662i −0.458647 + 0.458647i
\(626\) −9.69933 + 32.9814i −0.387663 + 1.31820i
\(627\) 0 0
\(628\) −0.0751732 4.41982i −0.00299974 0.176370i
\(629\) 2.58630 0.514447i 0.103123 0.0205124i
\(630\) 0 0
\(631\) −35.9213 14.8791i −1.43000 0.592327i −0.472652 0.881249i \(-0.656703\pi\)
−0.957353 + 0.288922i \(0.906703\pi\)
\(632\) 23.5572 7.80749i 0.937054 0.310565i
\(633\) 0 0
\(634\) 6.03086 + 7.22250i 0.239516 + 0.286842i
\(635\) −4.27222 2.85460i −0.169538 0.113282i
\(636\) 0 0
\(637\) 4.08894 20.5565i 0.162010 0.814479i
\(638\) −7.70997 + 9.55923i −0.305240 + 0.378454i
\(639\) 0 0
\(640\) −7.15468 5.19142i −0.282813 0.205209i
\(641\) −2.72233 −0.107526 −0.0537629 0.998554i \(-0.517122\pi\)
−0.0537629 + 0.998554i \(0.517122\pi\)
\(642\) 0 0
\(643\) 0.135549 0.681448i 0.00534551 0.0268737i −0.978020 0.208509i \(-0.933139\pi\)
0.983366 + 0.181635i \(0.0581390\pi\)
\(644\) −8.49569 + 1.84062i −0.334777 + 0.0725306i
\(645\) 0 0
\(646\) −0.966188 1.15710i −0.0380142 0.0455254i
\(647\) 29.4862 12.2136i 1.15922 0.480165i 0.281606 0.959530i \(-0.409133\pi\)
0.877616 + 0.479365i \(0.159133\pi\)
\(648\) 0 0
\(649\) 27.6909 + 11.4700i 1.08696 + 0.450235i
\(650\) −14.4998 + 4.53347i −0.568731 + 0.177817i
\(651\) 0 0
\(652\) 0.353637 + 20.7922i 0.0138495 + 0.814284i
\(653\) 35.6443 23.8167i 1.39487 0.932021i 0.394956 0.918700i \(-0.370760\pi\)
0.999911 0.0133207i \(-0.00424022\pi\)
\(654\) 0 0
\(655\) 2.68592 2.68592i 0.104948 0.104948i
\(656\) 0.992865 + 29.1794i 0.0387649 + 1.13926i
\(657\) 0 0
\(658\) −43.6396 + 23.8051i −1.70125 + 0.928021i
\(659\) −19.0570 28.5207i −0.742354 1.11101i −0.989849 0.142122i \(-0.954608\pi\)
0.247496 0.968889i \(-0.420392\pi\)
\(660\) 0 0
\(661\) −2.62496 13.1966i −0.102099 0.513287i −0.997661 0.0683508i \(-0.978226\pi\)
0.895562 0.444936i \(-0.146774\pi\)
\(662\) 2.57053 4.90907i 0.0999064 0.190797i
\(663\) 0 0
\(664\) 0.714030 + 5.74352i 0.0277097 + 0.222892i
\(665\) 0.925683 + 2.23480i 0.0358965 + 0.0866617i
\(666\) 0 0
\(667\) −0.898508 + 1.34471i −0.0347904 + 0.0520675i
\(668\) −24.3785 + 16.8958i −0.943233 + 0.653720i
\(669\) 0 0
\(670\) 0.857527 + 8.00794i 0.0331292 + 0.309374i
\(671\) 63.1543i 2.43805i
\(672\) 0 0
\(673\) 23.6665i 0.912275i 0.889909 + 0.456137i \(0.150767\pi\)
−0.889909 + 0.456137i \(0.849233\pi\)
\(674\) 27.5667 2.95197i 1.06183 0.113705i
\(675\) 0 0
\(676\) 13.7968 + 2.50123i 0.530646 + 0.0962012i
\(677\) −14.9427 + 22.3633i −0.574294 + 0.859491i −0.998948 0.0458647i \(-0.985396\pi\)
0.424654 + 0.905356i \(0.360396\pi\)
\(678\) 0 0
\(679\) 19.8069 + 47.8181i 0.760120 + 1.83509i
\(680\) 0.797818 2.89382i 0.0305949 0.110973i
\(681\) 0 0
\(682\) 50.9904 + 26.7000i 1.95252 + 1.02240i
\(683\) −4.84474 24.3562i −0.185379 0.931963i −0.955708 0.294316i \(-0.904908\pi\)
0.770329 0.637647i \(-0.220092\pi\)
\(684\) 0 0
\(685\) −9.14265 13.6829i −0.349323 0.522798i
\(686\) 4.17955 + 7.66195i 0.159576 + 0.292535i
\(687\) 0 0
\(688\) 14.3938 + 20.0319i 0.548757 + 0.763710i
\(689\) −18.1124 + 18.1124i −0.690027 + 0.690027i
\(690\) 0 0
\(691\) 11.5361 7.70819i 0.438855 0.293233i −0.316448 0.948610i \(-0.602490\pi\)
0.755302 + 0.655377i \(0.227490\pi\)
\(692\) −7.04594 + 7.28976i −0.267846 + 0.277115i
\(693\) 0 0
\(694\) −10.4404 33.3924i −0.396311 1.26756i
\(695\) 13.8511 + 5.73730i 0.525401 + 0.217628i
\(696\) 0 0
\(697\) −9.15978 + 3.79410i −0.346951 + 0.143712i
\(698\) −38.3260 + 32.0026i −1.45066 + 1.21132i
\(699\) 0 0
\(700\) 18.7496 29.1209i 0.708667 1.10067i
\(701\) −7.20549 + 36.2244i −0.272148 + 1.36818i 0.566750 + 0.823890i \(0.308200\pi\)
−0.838898 + 0.544289i \(0.816800\pi\)
\(702\) 0 0
\(703\) −1.52345 −0.0574581
\(704\) −35.1268 31.7136i −1.32389 1.19525i
\(705\) 0 0
\(706\) −17.9992 14.5172i −0.677408 0.546361i
\(707\) −3.45474 + 17.3682i −0.129929 + 0.653197i
\(708\) 0 0
\(709\) −20.0441 13.3930i −0.752770 0.502985i 0.119003 0.992894i \(-0.462030\pi\)
−0.871774 + 0.489909i \(0.837030\pi\)
\(710\) 2.28945 1.91171i 0.0859214 0.0717452i
\(711\) 0 0
\(712\) −0.621074 + 8.53205i −0.0232757 + 0.319752i
\(713\) 7.00278 + 2.90065i 0.262256 + 0.108630i
\(714\) 0 0
\(715\) 11.0940 2.20674i 0.414893 0.0825273i
\(716\) 4.38875 + 4.24196i 0.164015 + 0.158529i
\(717\) 0 0
\(718\) 2.97042 + 0.873555i 0.110855 + 0.0326008i
\(719\) −5.08606 + 5.08606i −0.189678 + 0.189678i −0.795557 0.605879i \(-0.792822\pi\)
0.605879 + 0.795557i \(0.292822\pi\)
\(720\) 0 0
\(721\) −29.8317 29.8317i −1.11099 1.11099i
\(722\) −12.4504 22.8242i −0.463358 0.849428i
\(723\) 0 0
\(724\) 5.29143 + 12.1843i 0.196654 + 0.452827i
\(725\) −1.25711 6.31990i −0.0466878 0.234715i
\(726\) 0 0
\(727\) 16.1339 38.9506i 0.598372 1.44460i −0.276867 0.960908i \(-0.589296\pi\)
0.875240 0.483690i \(-0.160704\pi\)
\(728\) 23.7475 13.4831i 0.880140 0.499717i
\(729\) 0 0
\(730\) 2.26908 + 0.204019i 0.0839826 + 0.00755109i
\(731\) −4.65368 + 6.96472i −0.172122 + 0.257599i
\(732\) 0 0
\(733\) −32.2035 6.40567i −1.18946 0.236599i −0.439601 0.898193i \(-0.644880\pi\)
−0.749862 + 0.661595i \(0.769880\pi\)
\(734\) 41.5743 4.45197i 1.53454 0.164325i
\(735\) 0 0
\(736\) −4.98122 3.74531i −0.183610 0.138054i
\(737\) 43.1170i 1.58824i
\(738\) 0 0
\(739\) −1.11174 0.221139i −0.0408961 0.00813474i 0.174600 0.984639i \(-0.444137\pi\)
−0.215496 + 0.976505i \(0.569137\pi\)
\(740\) −1.72806 2.49336i −0.0635247 0.0916579i
\(741\) 0 0
\(742\) 5.22950 58.1620i 0.191981 2.13519i
\(743\) 11.1248 + 26.8577i 0.408130 + 0.985313i 0.985629 + 0.168922i \(0.0540285\pi\)
−0.577500 + 0.816391i \(0.695972\pi\)
\(744\) 0 0
\(745\) −0.281663 + 0.679995i −0.0103193 + 0.0249131i
\(746\) 15.9413 30.4440i 0.583653 1.11463i
\(747\) 0 0
\(748\) 5.89656 14.9497i 0.215600 0.546615i
\(749\) 8.37522 + 12.5344i 0.306024 + 0.457997i
\(750\) 0 0
\(751\) −19.2670 19.2670i −0.703061 0.703061i 0.262005 0.965066i \(-0.415616\pi\)
−0.965066 + 0.262005i \(0.915616\pi\)
\(752\) −33.3709 12.5109i −1.21691 0.456224i
\(753\) 0 0
\(754\) 1.43343 4.87421i 0.0522025 0.177508i
\(755\) −7.06843 + 4.72298i −0.257247 + 0.171887i
\(756\) 0 0
\(757\) 3.81457 0.758766i 0.138643 0.0275778i −0.125281 0.992121i \(-0.539983\pi\)
0.263924 + 0.964544i \(0.414983\pi\)
\(758\) −33.7005 + 10.5367i −1.22406 + 0.382709i
\(759\) 0 0
\(760\) −0.778225 + 1.54979i −0.0282292 + 0.0562170i
\(761\) −14.1327 + 5.85394i −0.512309 + 0.212205i −0.623835 0.781556i \(-0.714426\pi\)
0.111526 + 0.993762i \(0.464426\pi\)
\(762\) 0 0
\(763\) 32.3375 + 21.6072i 1.17069 + 0.782233i
\(764\) −0.669753 3.09136i −0.0242308 0.111841i
\(765\) 0 0
\(766\) 21.7932 27.0203i 0.787419 0.976285i
\(767\) −12.3995 −0.447722
\(768\) 0 0
\(769\) −47.4209 −1.71004 −0.855020 0.518595i \(-0.826455\pi\)
−0.855020 + 0.518595i \(0.826455\pi\)
\(770\) −16.1894 + 20.0725i −0.583426 + 0.723363i
\(771\) 0 0
\(772\) 6.94222 + 32.0430i 0.249856 + 1.15325i
\(773\) −18.9615 12.6697i −0.681998 0.455697i 0.165699 0.986176i \(-0.447012\pi\)
−0.847698 + 0.530480i \(0.822012\pi\)
\(774\) 0 0
\(775\) −27.9013 + 11.5571i −1.00224 + 0.415143i
\(776\) −16.6517 + 33.1611i −0.597763 + 1.19041i
\(777\) 0 0
\(778\) −30.8894 + 9.65777i −1.10744 + 0.346248i
\(779\) 5.61781 1.11745i 0.201279 0.0400369i
\(780\) 0 0
\(781\) 13.2770 8.87142i 0.475089 0.317444i
\(782\) 0.597092 2.03034i 0.0213520 0.0726049i
\(783\) 0 0
\(784\) −12.0258 + 32.0771i −0.429493 + 1.14561i
\(785\) −1.22111 1.22111i −0.0435833 0.0435833i
\(786\) 0 0
\(787\) 8.45960 + 12.6607i 0.301552 + 0.451305i 0.951040 0.309067i \(-0.100017\pi\)
−0.649488 + 0.760372i \(0.725017\pi\)
\(788\) 1.98072 5.02177i 0.0705603 0.178893i
\(789\) 0 0
\(790\) 4.49741 8.58895i 0.160011 0.305581i
\(791\) −6.96556 + 16.8163i −0.247667 + 0.597920i
\(792\) 0 0
\(793\) 9.99830 + 24.1380i 0.355050 + 0.857167i
\(794\) 3.08422 34.3024i 0.109455 1.21735i
\(795\) 0 0
\(796\) −15.0040 21.6488i −0.531802 0.767322i
\(797\) −1.21865 0.242404i −0.0431668 0.00858640i 0.173460 0.984841i \(-0.444505\pi\)
−0.216626 + 0.976255i \(0.569505\pi\)
\(798\) 0 0
\(799\) 12.1023i 0.428148i
\(800\) 24.5856 3.48198i 0.869232 0.123107i
\(801\) 0 0
\(802\) −26.7844 + 2.86820i −0.945791 + 0.101280i
\(803\) 11.9626 + 2.37950i 0.422150 + 0.0839709i
\(804\) 0 0
\(805\) −1.88669 + 2.82363i −0.0664971 + 0.0995200i
\(806\) −23.7159 2.13236i −0.835358 0.0751092i
\(807\) 0 0
\(808\) −11.0404 + 6.26840i −0.388400 + 0.220522i
\(809\) −11.5600 + 27.9083i −0.406428 + 0.981203i 0.579642 + 0.814871i \(0.303192\pi\)
−0.986070 + 0.166332i \(0.946808\pi\)
\(810\) 0 0
\(811\) 1.27743 + 6.42210i 0.0448568 + 0.225510i 0.996711 0.0810417i \(-0.0258247\pi\)
−0.951854 + 0.306552i \(0.900825\pi\)
\(812\) 4.61388 + 10.6242i 0.161916 + 0.372836i
\(813\) 0 0
\(814\) −7.77756 14.2578i −0.272603 0.499737i
\(815\) 5.74447 + 5.74447i 0.201220 + 0.201220i
\(816\) 0 0
\(817\) 3.42189 3.42189i 0.119717 0.119717i
\(818\) −10.8193 3.18179i −0.378288 0.111249i
\(819\) 0 0
\(820\) 8.20119 + 7.92688i 0.286398 + 0.276819i
\(821\) −0.732994 + 0.145802i −0.0255817 + 0.00508851i −0.207865 0.978158i \(-0.566651\pi\)
0.182283 + 0.983246i \(0.441651\pi\)
\(822\) 0 0
\(823\) −40.6921 16.8552i −1.41844 0.587535i −0.463969 0.885852i \(-0.653575\pi\)
−0.954467 + 0.298316i \(0.903575\pi\)
\(824\) 2.19592 30.1666i 0.0764984 1.05090i
\(825\) 0 0
\(826\) 21.6986 18.1185i 0.754990 0.630423i
\(827\) 17.5797 + 11.7464i 0.611308 + 0.408463i 0.822324 0.569020i \(-0.192677\pi\)
−0.211016 + 0.977483i \(0.567677\pi\)
\(828\) 0 0
\(829\) −8.12158 + 40.8299i −0.282074 + 1.41808i 0.536607 + 0.843833i \(0.319706\pi\)
−0.818681 + 0.574249i \(0.805294\pi\)
\(830\) 1.75995 + 1.41948i 0.0610889 + 0.0492710i
\(831\) 0 0
\(832\) 18.4465 + 6.56007i 0.639516 + 0.227429i
\(833\) −11.6331 −0.403062
\(834\) 0 0
\(835\) −2.26061 + 11.3649i −0.0782316 + 0.393297i
\(836\) −5.02612 + 7.80631i −0.173832 + 0.269987i
\(837\) 0 0
\(838\) 13.8787 11.5888i 0.479431 0.400330i
\(839\) −33.4505 + 13.8556i −1.15484 + 0.478350i −0.876154 0.482032i \(-0.839899\pi\)
−0.278686 + 0.960382i \(0.589899\pi\)
\(840\) 0 0
\(841\) −24.8016 10.2732i −0.855227 0.354247i
\(842\) 8.27236 + 26.4583i 0.285085 + 0.911813i
\(843\) 0 0
\(844\) 9.54919 9.87964i 0.328697 0.340071i
\(845\) 4.55459 3.04328i 0.156683 0.104692i
\(846\) 0 0
\(847\) −66.9361 + 66.9361i −2.29995 + 2.29995i
\(848\) 33.9997 24.4302i 1.16755 0.838936i
\(849\) 0 0
\(850\) 4.03794 + 7.40236i 0.138500 + 0.253899i
\(851\) −1.18825 1.77834i −0.0407326 0.0609606i
\(852\) 0 0
\(853\) −2.29019 11.5136i −0.0784145 0.394217i −0.999982 0.00599829i \(-0.998091\pi\)
0.921567 0.388218i \(-0.126909\pi\)
\(854\) −52.7676 27.6306i −1.80567 0.945498i
\(855\) 0 0
\(856\) −2.87251 + 10.4191i −0.0981805 + 0.356117i
\(857\) 3.96261 + 9.56660i 0.135360 + 0.326789i 0.976996 0.213257i \(-0.0684071\pi\)
−0.841636 + 0.540045i \(0.818407\pi\)
\(858\) 0 0
\(859\) −22.7757 + 34.0863i −0.777098 + 1.16301i 0.205753 + 0.978604i \(0.434036\pi\)
−0.982850 + 0.184405i \(0.940964\pi\)
\(860\) 9.48191 + 1.71898i 0.323330 + 0.0586168i
\(861\) 0 0
\(862\) −36.7519 + 3.93556i −1.25177 + 0.134046i
\(863\) 22.4117i 0.762902i 0.924389 + 0.381451i \(0.124576\pi\)
−0.924389 + 0.381451i \(0.875424\pi\)
\(864\) 0 0
\(865\) 3.96067i 0.134667i
\(866\) −1.27842 11.9384i −0.0434424 0.405683i
\(867\) 0 0
\(868\) 44.6175 30.9228i 1.51442 1.04959i
\(869\) 28.8368 43.1574i 0.978223 1.46401i
\(870\) 0 0
\(871\) −6.82609 16.4796i −0.231293 0.558391i
\(872\) 3.43991 + 27.6700i 0.116490 + 0.937024i
\(873\) 0 0
\(874\) −0.567167 + 1.08315i −0.0191847 + 0.0366381i
\(875\) −5.64647 28.3867i −0.190886 0.959646i
\(876\) 0 0
\(877\) 22.8368 + 34.1777i 0.771145 + 1.15410i 0.984200 + 0.177060i \(0.0566587\pi\)
−0.213055 + 0.977040i \(0.568341\pi\)
\(878\) −26.6986 + 14.5639i −0.901035 + 0.491509i
\(879\) 0 0
\(880\) −18.4774 + 0.628716i −0.622873 + 0.0211940i
\(881\) 19.2835 19.2835i 0.649677 0.649677i −0.303238 0.952915i \(-0.598068\pi\)
0.952915 + 0.303238i \(0.0980676\pi\)
\(882\) 0 0
\(883\) 43.0348 28.7549i 1.44824 0.967681i 0.451068 0.892490i \(-0.351043\pi\)
0.997169 0.0751915i \(-0.0239568\pi\)
\(884\) 0.113060 + 6.64740i 0.00380263 + 0.223576i
\(885\) 0 0
\(886\) −25.2167 + 7.88416i −0.847171 + 0.264874i
\(887\) 2.36214 + 0.978431i 0.0793129 + 0.0328525i 0.421987 0.906602i \(-0.361333\pi\)
−0.342674 + 0.939454i \(0.611333\pi\)
\(888\) 0 0
\(889\) −23.9693 + 9.92840i −0.803904 + 0.332988i
\(890\) 2.14202 + 2.56526i 0.0718006 + 0.0859878i
\(891\) 0 0
\(892\) 7.59012 1.64443i 0.254136 0.0550595i
\(893\) −1.36404 + 6.85748i −0.0456458 + 0.229477i
\(894\) 0 0
\(895\) 2.38450 0.0797049
\(896\) −41.8661 + 15.4746i −1.39865 + 0.516971i
\(897\) 0 0
\(898\) −29.0127 + 35.9715i −0.968165 + 1.20038i
\(899\) 1.97036 9.90565i 0.0657151 0.330372i
\(900\) 0 0
\(901\) 11.8210 + 7.89857i 0.393816 + 0.263140i
\(902\) 39.1383 + 46.8717i 1.30316 + 1.56066i
\(903\) 0 0
\(904\) −12.3870 + 4.10538i −0.411985 + 0.136543i
\(905\) 4.79444 + 1.98592i 0.159372 + 0.0660142i
\(906\) 0 0
\(907\) 21.3347 4.24373i 0.708405 0.140911i 0.172279 0.985048i \(-0.444887\pi\)
0.536127 + 0.844138i \(0.319887\pi\)
\(908\) 0.781420 + 45.9437i 0.0259323 + 1.52470i
\(909\) 0 0
\(910\) 3.00993 10.2349i 0.0997781 0.339284i
\(911\) −1.38797 + 1.38797i −0.0459856 + 0.0459856i −0.729726 0.683740i \(-0.760352\pi\)
0.683740 + 0.729726i \(0.260352\pi\)
\(912\) 0 0
\(913\) 8.55950 + 8.55950i 0.283278 + 0.283278i
\(914\) −31.4227 + 17.1409i −1.03937 + 0.566970i
\(915\) 0 0
\(916\) 11.4398 + 4.51216i 0.377982 + 0.149086i
\(917\) −3.74177 18.8111i −0.123564 0.621198i
\(918\) 0 0
\(919\) 1.63873 3.95625i 0.0540568 0.130505i −0.894544 0.446980i \(-0.852499\pi\)
0.948601 + 0.316475i \(0.102499\pi\)
\(920\) −2.41608 + 0.300365i −0.0796558 + 0.00990275i
\(921\) 0 0
\(922\) −0.364939 + 4.05882i −0.0120186 + 0.133670i
\(923\) −3.67009 + 5.49268i −0.120802 + 0.180794i
\(924\) 0 0
\(925\) 8.35786 + 1.66248i 0.274805 + 0.0546621i
\(926\) −5.23641 48.8998i −0.172079 1.60695i
\(927\) 0 0
\(928\) −3.59972 + 7.48334i −0.118167 + 0.245653i
\(929\) 53.4969i 1.75518i −0.479415 0.877589i \(-0.659151\pi\)
0.479415 0.877589i \(-0.340849\pi\)
\(930\) 0 0
\(931\) 6.59161 + 1.31115i 0.216031 + 0.0429713i
\(932\) 3.77369 + 0.684136i 0.123611 + 0.0224096i
\(933\) 0 0
\(934\) 17.9625 + 1.61506i 0.587752 + 0.0528463i
\(935\) −2.40255 5.80028i −0.0785719 0.189689i
\(936\) 0 0
\(937\) 9.69070 23.3954i 0.316582 0.764295i −0.682849 0.730559i \(-0.739259\pi\)
0.999431 0.0337361i \(-0.0107406\pi\)
\(938\) 36.0257 + 18.8641i 1.17628 + 0.615934i
\(939\) 0 0
\(940\) −12.7706 + 5.54601i −0.416530 + 0.180891i
\(941\) 14.9326 + 22.3482i 0.486788 + 0.728529i 0.990825 0.135153i \(-0.0431525\pi\)
−0.504037 + 0.863682i \(0.668153\pi\)
\(942\) 0 0
\(943\) 5.68614 + 5.68614i 0.185166 + 0.185166i
\(944\) 20.0002 + 3.27559i 0.650952 + 0.106611i
\(945\) 0 0
\(946\) 49.4946 + 14.5556i 1.60921 + 0.473243i
\(947\) −15.6970 + 10.4884i −0.510083 + 0.340827i −0.783830 0.620975i \(-0.786737\pi\)
0.273747 + 0.961802i \(0.411737\pi\)
\(948\) 0 0
\(949\) −4.94890 + 0.984397i −0.160648 + 0.0319549i
\(950\) −1.45369 4.64949i −0.0471641 0.150849i
\(951\) 0 0
\(952\) −9.91119 11.4674i −0.321224 0.371661i
\(953\) −31.0836 + 12.8753i −1.00690 + 0.417070i −0.824322 0.566122i \(-0.808443\pi\)
−0.182575 + 0.983192i \(0.558443\pi\)
\(954\) 0 0
\(955\) −1.02745 0.686517i −0.0332473 0.0222152i
\(956\) 9.33814 14.5035i 0.302017 0.469077i
\(957\) 0 0
\(958\) 9.24643 + 7.45768i 0.298739 + 0.240947i
\(959\) −83.0932 −2.68322
\(960\) 0 0
\(961\) −16.3349 −0.526932
\(962\) 5.22988 + 4.21814i 0.168618 + 0.135998i
\(963\) 0 0
\(964\) −12.4031 7.98580i −0.399478 0.257205i
\(965\) 10.6498 + 7.11598i 0.342830 + 0.229072i
\(966\) 0 0
\(967\) −39.0826 + 16.1886i −1.25681 + 0.520589i −0.908930 0.416949i \(-0.863099\pi\)
−0.347883 + 0.937538i \(0.613099\pi\)
\(968\) −67.6874 4.92718i −2.17555 0.158365i
\(969\) 0 0
\(970\) 4.32588 + 13.8359i 0.138896 + 0.444244i
\(971\) −15.9123 + 3.16514i −0.510649 + 0.101574i −0.443688 0.896181i \(-0.646330\pi\)
−0.0669606 + 0.997756i \(0.521330\pi\)
\(972\) 0 0
\(973\) 62.9429 42.0571i 2.01786 1.34829i
\(974\) −22.7000 6.67571i −0.727353 0.213903i
\(975\) 0 0
\(976\) −9.75052 41.5754i −0.312106 1.33080i
\(977\) 14.4085 + 14.4085i 0.460970 + 0.460970i 0.898973 0.438004i \(-0.144314\pi\)
−0.438004 + 0.898973i \(0.644314\pi\)
\(978\) 0 0
\(979\) 9.94018 + 14.8765i 0.317690 + 0.475456i
\(980\) 5.33099 + 12.2754i 0.170292 + 0.392125i
\(981\) 0 0
\(982\) −11.8873 6.22450i −0.379338 0.198632i
\(983\) −14.2810 + 34.4773i −0.455492 + 1.09966i 0.514711 + 0.857364i \(0.327899\pi\)
−0.970203 + 0.242292i \(0.922101\pi\)
\(984\) 0 0
\(985\) −0.807045 1.94838i −0.0257146 0.0620805i
\(986\) −2.80858 0.252527i −0.0894434 0.00804209i
\(987\) 0 0
\(988\) 0.685160 3.77934i 0.0217978 0.120237i
\(989\) 6.66337 + 1.32543i 0.211883 + 0.0421461i
\(990\) 0 0
\(991\) 5.17247i 0.164309i 0.996620 + 0.0821544i \(0.0261801\pi\)
−0.996620 + 0.0821544i \(0.973820\pi\)
\(992\) 37.6900 + 9.70450i 1.19666 + 0.308118i
\(993\) 0 0
\(994\) −1.60356 14.9747i −0.0508619 0.474969i
\(995\) −10.0923 2.00749i −0.319948 0.0636416i
\(996\) 0 0
\(997\) −11.3818 + 17.0341i −0.360466 + 0.539476i −0.966734 0.255785i \(-0.917666\pi\)
0.606267 + 0.795261i \(0.292666\pi\)
\(998\) 1.89560 21.0827i 0.0600041 0.667361i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.bd.a.253.5 56
3.2 odd 2 64.2.i.a.61.3 yes 56
12.11 even 2 256.2.i.a.81.6 56
24.5 odd 2 512.2.i.b.417.6 56
24.11 even 2 512.2.i.a.417.2 56
64.21 even 16 inner 576.2.bd.a.469.5 56
192.11 even 16 512.2.i.a.97.2 56
192.53 odd 16 512.2.i.b.97.6 56
192.107 even 16 256.2.i.a.177.6 56
192.149 odd 16 64.2.i.a.21.3 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.21.3 56 192.149 odd 16
64.2.i.a.61.3 yes 56 3.2 odd 2
256.2.i.a.81.6 56 12.11 even 2
256.2.i.a.177.6 56 192.107 even 16
512.2.i.a.97.2 56 192.11 even 16
512.2.i.a.417.2 56 24.11 even 2
512.2.i.b.97.6 56 192.53 odd 16
512.2.i.b.417.6 56 24.5 odd 2
576.2.bd.a.253.5 56 1.1 even 1 trivial
576.2.bd.a.469.5 56 64.21 even 16 inner