Properties

Label 576.2.bd
Level $576$
Weight $2$
Character orbit 576.bd
Rep. character $\chi_{576}(37,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $312$
Newform subspaces $3$
Sturm bound $192$
Trace bound $22$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.bd (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 64 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 3 \)
Sturm bound: \(192\)
Trace bound: \(22\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).

Total New Old
Modular forms 800 328 472
Cusp forms 736 312 424
Eisenstein series 64 16 48

Trace form

\( 312q + 8q^{2} - 8q^{4} + 8q^{5} - 8q^{7} + 8q^{8} + O(q^{10}) \) \( 312q + 8q^{2} - 8q^{4} + 8q^{5} - 8q^{7} + 8q^{8} - 8q^{10} + 8q^{11} - 8q^{13} + 8q^{14} - 8q^{16} + 8q^{17} - 8q^{19} + 8q^{20} + 8q^{23} - 8q^{25} + 48q^{26} + 32q^{28} + 8q^{29} + 48q^{32} + 32q^{34} + 8q^{35} - 8q^{37} + 48q^{38} + 32q^{40} + 8q^{41} - 8q^{43} + 16q^{44} - 8q^{46} + 8q^{47} - 8q^{49} - 16q^{50} + 40q^{52} + 8q^{53} - 72q^{55} - 48q^{56} - 80q^{58} + 72q^{59} - 8q^{61} - 56q^{62} + 88q^{64} + 16q^{65} + 8q^{67} - 40q^{68} + 88q^{70} + 72q^{71} - 8q^{73} - 48q^{74} - 40q^{76} + 8q^{77} - 40q^{79} - 80q^{80} - 88q^{82} + 8q^{83} - 8q^{85} - 96q^{86} - 88q^{88} + 8q^{89} - 8q^{91} - 144q^{92} - 104q^{94} - 128q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
576.2.bd.a \(56\) \(4.599\) None \(8\) \(0\) \(8\) \(-8\)
576.2.bd.b \(128\) \(4.599\) None \(0\) \(0\) \(0\) \(0\)
576.2.bd.c \(128\) \(4.599\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(576, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)