Properties

Label 256.2.i.a.177.6
Level $256$
Weight $2$
Character 256.177
Analytic conductor $2.044$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,2,Mod(17,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 256.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04417029174\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 177.6
Character \(\chi\) \(=\) 256.177
Dual form 256.2.i.a.81.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.435353 + 2.18867i) q^{3} +(0.649649 - 0.434082i) q^{5} +(3.64486 + 1.50975i) q^{7} +(-1.82909 + 0.757635i) q^{9} +(-5.80194 - 1.15408i) q^{11} +(2.03484 + 1.35963i) q^{13} +(1.23289 + 1.23289i) q^{15} +(0.960477 - 0.960477i) q^{17} +(-0.435978 + 0.652487i) q^{19} +(-1.71754 + 8.63465i) q^{21} +(-0.421603 - 1.01784i) q^{23} +(-1.67980 + 4.05540i) q^{25} +(1.26483 + 1.89295i) q^{27} +(-1.43977 + 0.286388i) q^{29} -6.88004i q^{31} -13.2009i q^{33} +(3.02323 - 0.601358i) q^{35} +(-1.07856 - 1.61417i) q^{37} +(-2.08991 + 5.04550i) q^{39} +(-2.79324 - 6.74347i) q^{41} +(1.20307 - 6.04824i) q^{43} +(-0.859393 + 1.28617i) q^{45} +(6.30014 - 6.30014i) q^{47} +(6.05588 + 6.05588i) q^{49} +(2.52031 + 1.68402i) q^{51} +(10.2655 + 2.04194i) q^{53} +(-4.27019 + 1.76877i) q^{55} +(-1.61788 - 0.670148i) q^{57} +(-4.21278 + 2.81489i) q^{59} +(-2.08276 - 10.4707i) q^{61} -7.81061 q^{63} +1.91212 q^{65} +(-1.42195 - 7.14864i) q^{67} +(2.04417 - 1.36587i) q^{69} +(-2.49385 - 1.03299i) q^{71} +(-1.90488 + 0.789026i) q^{73} +(-9.60722 - 1.91099i) q^{75} +(-19.4049 - 12.9659i) q^{77} +(6.20432 + 6.20432i) q^{79} +(-7.79217 + 7.79217i) q^{81} +(-1.13685 + 1.70141i) q^{83} +(0.207047 - 1.04090i) q^{85} +(-1.25361 - 3.02649i) q^{87} +(1.15743 - 2.79429i) q^{89} +(5.36398 + 8.02776i) q^{91} +(15.0581 - 2.99524i) q^{93} +0.613137i q^{95} +13.1193i q^{97} +(11.4867 - 2.28484i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{3} - 8 q^{5} + 8 q^{7} - 8 q^{9} + 8 q^{11} - 8 q^{13} + 8 q^{15} - 8 q^{17} + 8 q^{19} - 8 q^{21} + 8 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 8 q^{35} - 8 q^{37} + 8 q^{39} - 8 q^{41} + 8 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{13}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.435353 + 2.18867i 0.251351 + 1.26363i 0.875843 + 0.482596i \(0.160306\pi\)
−0.624492 + 0.781031i \(0.714694\pi\)
\(4\) 0 0
\(5\) 0.649649 0.434082i 0.290532 0.194127i −0.401760 0.915745i \(-0.631601\pi\)
0.692292 + 0.721618i \(0.256601\pi\)
\(6\) 0 0
\(7\) 3.64486 + 1.50975i 1.37763 + 0.570631i 0.943845 0.330387i \(-0.107179\pi\)
0.433780 + 0.901019i \(0.357179\pi\)
\(8\) 0 0
\(9\) −1.82909 + 0.757635i −0.609697 + 0.252545i
\(10\) 0 0
\(11\) −5.80194 1.15408i −1.74935 0.347968i −0.786415 0.617698i \(-0.788065\pi\)
−0.962936 + 0.269730i \(0.913065\pi\)
\(12\) 0 0
\(13\) 2.03484 + 1.35963i 0.564362 + 0.377095i 0.804779 0.593575i \(-0.202284\pi\)
−0.240417 + 0.970670i \(0.577284\pi\)
\(14\) 0 0
\(15\) 1.23289 + 1.23289i 0.318330 + 0.318330i
\(16\) 0 0
\(17\) 0.960477 0.960477i 0.232950 0.232950i −0.580973 0.813923i \(-0.697328\pi\)
0.813923 + 0.580973i \(0.197328\pi\)
\(18\) 0 0
\(19\) −0.435978 + 0.652487i −0.100020 + 0.149691i −0.878104 0.478469i \(-0.841192\pi\)
0.778084 + 0.628160i \(0.216192\pi\)
\(20\) 0 0
\(21\) −1.71754 + 8.63465i −0.374798 + 1.88423i
\(22\) 0 0
\(23\) −0.421603 1.01784i −0.0879104 0.212234i 0.873810 0.486268i \(-0.161642\pi\)
−0.961720 + 0.274033i \(0.911642\pi\)
\(24\) 0 0
\(25\) −1.67980 + 4.05540i −0.335960 + 0.811079i
\(26\) 0 0
\(27\) 1.26483 + 1.89295i 0.243417 + 0.364299i
\(28\) 0 0
\(29\) −1.43977 + 0.286388i −0.267358 + 0.0531809i −0.326949 0.945042i \(-0.606020\pi\)
0.0595906 + 0.998223i \(0.481020\pi\)
\(30\) 0 0
\(31\) 6.88004i 1.23569i −0.786300 0.617845i \(-0.788006\pi\)
0.786300 0.617845i \(-0.211994\pi\)
\(32\) 0 0
\(33\) 13.2009i 2.29799i
\(34\) 0 0
\(35\) 3.02323 0.601358i 0.511019 0.101648i
\(36\) 0 0
\(37\) −1.07856 1.61417i −0.177313 0.265368i 0.732158 0.681135i \(-0.238513\pi\)
−0.909471 + 0.415767i \(0.863513\pi\)
\(38\) 0 0
\(39\) −2.08991 + 5.04550i −0.334654 + 0.807926i
\(40\) 0 0
\(41\) −2.79324 6.74347i −0.436230 1.05315i −0.977240 0.212136i \(-0.931958\pi\)
0.541010 0.841016i \(-0.318042\pi\)
\(42\) 0 0
\(43\) 1.20307 6.04824i 0.183467 0.922349i −0.773864 0.633352i \(-0.781678\pi\)
0.957330 0.288996i \(-0.0933215\pi\)
\(44\) 0 0
\(45\) −0.859393 + 1.28617i −0.128111 + 0.191731i
\(46\) 0 0
\(47\) 6.30014 6.30014i 0.918970 0.918970i −0.0779845 0.996955i \(-0.524848\pi\)
0.996955 + 0.0779845i \(0.0248485\pi\)
\(48\) 0 0
\(49\) 6.05588 + 6.05588i 0.865126 + 0.865126i
\(50\) 0 0
\(51\) 2.52031 + 1.68402i 0.352914 + 0.235810i
\(52\) 0 0
\(53\) 10.2655 + 2.04194i 1.41008 + 0.280482i 0.840660 0.541564i \(-0.182168\pi\)
0.569421 + 0.822046i \(0.307168\pi\)
\(54\) 0 0
\(55\) −4.27019 + 1.76877i −0.575792 + 0.238501i
\(56\) 0 0
\(57\) −1.61788 0.670148i −0.214293 0.0887632i
\(58\) 0 0
\(59\) −4.21278 + 2.81489i −0.548458 + 0.366468i −0.798713 0.601712i \(-0.794485\pi\)
0.250255 + 0.968180i \(0.419485\pi\)
\(60\) 0 0
\(61\) −2.08276 10.4707i −0.266670 1.34064i −0.849303 0.527906i \(-0.822977\pi\)
0.582633 0.812736i \(-0.302023\pi\)
\(62\) 0 0
\(63\) −7.81061 −0.984045
\(64\) 0 0
\(65\) 1.91212 0.237169
\(66\) 0 0
\(67\) −1.42195 7.14864i −0.173719 0.873345i −0.965072 0.261985i \(-0.915623\pi\)
0.791353 0.611360i \(-0.209377\pi\)
\(68\) 0 0
\(69\) 2.04417 1.36587i 0.246089 0.164431i
\(70\) 0 0
\(71\) −2.49385 1.03299i −0.295965 0.122593i 0.229760 0.973247i \(-0.426206\pi\)
−0.525725 + 0.850655i \(0.676206\pi\)
\(72\) 0 0
\(73\) −1.90488 + 0.789026i −0.222949 + 0.0923485i −0.491362 0.870955i \(-0.663501\pi\)
0.268413 + 0.963304i \(0.413501\pi\)
\(74\) 0 0
\(75\) −9.60722 1.91099i −1.10935 0.220663i
\(76\) 0 0
\(77\) −19.4049 12.9659i −2.21139 1.47760i
\(78\) 0 0
\(79\) 6.20432 + 6.20432i 0.698040 + 0.698040i 0.963988 0.265947i \(-0.0856847\pi\)
−0.265947 + 0.963988i \(0.585685\pi\)
\(80\) 0 0
\(81\) −7.79217 + 7.79217i −0.865797 + 0.865797i
\(82\) 0 0
\(83\) −1.13685 + 1.70141i −0.124785 + 0.186755i −0.888602 0.458678i \(-0.848323\pi\)
0.763817 + 0.645433i \(0.223323\pi\)
\(84\) 0 0
\(85\) 0.207047 1.04090i 0.0224575 0.112901i
\(86\) 0 0
\(87\) −1.25361 3.02649i −0.134402 0.324474i
\(88\) 0 0
\(89\) 1.15743 2.79429i 0.122688 0.296194i −0.850589 0.525832i \(-0.823754\pi\)
0.973276 + 0.229638i \(0.0737541\pi\)
\(90\) 0 0
\(91\) 5.36398 + 8.02776i 0.562298 + 0.841538i
\(92\) 0 0
\(93\) 15.0581 2.99524i 1.56145 0.310592i
\(94\) 0 0
\(95\) 0.613137i 0.0629066i
\(96\) 0 0
\(97\) 13.1193i 1.33207i 0.745922 + 0.666034i \(0.232009\pi\)
−0.745922 + 0.666034i \(0.767991\pi\)
\(98\) 0 0
\(99\) 11.4867 2.28484i 1.15445 0.229635i
\(100\) 0 0
\(101\) −2.49376 3.73217i −0.248138 0.371365i 0.686402 0.727222i \(-0.259189\pi\)
−0.934540 + 0.355857i \(0.884189\pi\)
\(102\) 0 0
\(103\) −4.09230 + 9.87970i −0.403227 + 0.973476i 0.583651 + 0.812005i \(0.301624\pi\)
−0.986878 + 0.161471i \(0.948376\pi\)
\(104\) 0 0
\(105\) 2.63235 + 6.35504i 0.256891 + 0.620189i
\(106\) 0 0
\(107\) −0.745466 + 3.74771i −0.0720669 + 0.362305i −0.999944 0.0105812i \(-0.996632\pi\)
0.927877 + 0.372886i \(0.121632\pi\)
\(108\) 0 0
\(109\) −5.47688 + 8.19674i −0.524590 + 0.785105i −0.995265 0.0972021i \(-0.969011\pi\)
0.470674 + 0.882307i \(0.344011\pi\)
\(110\) 0 0
\(111\) 3.06333 3.06333i 0.290759 0.290759i
\(112\) 0 0
\(113\) −3.26239 3.26239i −0.306900 0.306900i 0.536806 0.843706i \(-0.319631\pi\)
−0.843706 + 0.536806i \(0.819631\pi\)
\(114\) 0 0
\(115\) −0.715720 0.478229i −0.0667412 0.0445951i
\(116\) 0 0
\(117\) −4.75201 0.945233i −0.439323 0.0873868i
\(118\) 0 0
\(119\) 4.95088 2.05072i 0.453846 0.187989i
\(120\) 0 0
\(121\) 22.1680 + 9.18227i 2.01527 + 0.834752i
\(122\) 0 0
\(123\) 13.5432 9.04925i 1.22115 0.815943i
\(124\) 0 0
\(125\) 1.43124 + 7.19532i 0.128014 + 0.643569i
\(126\) 0 0
\(127\) −6.57619 −0.583543 −0.291771 0.956488i \(-0.594245\pi\)
−0.291771 + 0.956488i \(0.594245\pi\)
\(128\) 0 0
\(129\) 13.7614 1.21162
\(130\) 0 0
\(131\) −0.948444 4.76815i −0.0828659 0.416595i −0.999844 0.0176578i \(-0.994379\pi\)
0.916978 0.398937i \(-0.130621\pi\)
\(132\) 0 0
\(133\) −2.57417 + 1.72000i −0.223209 + 0.149143i
\(134\) 0 0
\(135\) 1.64339 + 0.680715i 0.141441 + 0.0585866i
\(136\) 0 0
\(137\) −19.4588 + 8.06010i −1.66248 + 0.688621i −0.998263 0.0589215i \(-0.981234\pi\)
−0.664214 + 0.747542i \(0.731234\pi\)
\(138\) 0 0
\(139\) 18.8196 + 3.74344i 1.59625 + 0.317515i 0.911513 0.411272i \(-0.134915\pi\)
0.684741 + 0.728786i \(0.259915\pi\)
\(140\) 0 0
\(141\) 16.5317 + 11.0461i 1.39222 + 0.930252i
\(142\) 0 0
\(143\) −10.2369 10.2369i −0.856050 0.856050i
\(144\) 0 0
\(145\) −0.811028 + 0.811028i −0.0673522 + 0.0673522i
\(146\) 0 0
\(147\) −10.6179 + 15.8908i −0.875747 + 1.31065i
\(148\) 0 0
\(149\) 0.183778 0.923914i 0.0150557 0.0756900i −0.972527 0.232790i \(-0.925215\pi\)
0.987583 + 0.157100i \(0.0502145\pi\)
\(150\) 0 0
\(151\) −4.16374 10.0522i −0.338841 0.818034i −0.997828 0.0658792i \(-0.979015\pi\)
0.658987 0.752154i \(-0.270985\pi\)
\(152\) 0 0
\(153\) −1.02911 + 2.48449i −0.0831986 + 0.200859i
\(154\) 0 0
\(155\) −2.98650 4.46961i −0.239881 0.359008i
\(156\) 0 0
\(157\) 2.16776 0.431195i 0.173006 0.0344131i −0.107827 0.994170i \(-0.534389\pi\)
0.280833 + 0.959757i \(0.409389\pi\)
\(158\) 0 0
\(159\) 23.3568i 1.85232i
\(160\) 0 0
\(161\) 4.34640i 0.342544i
\(162\) 0 0
\(163\) 10.1978 2.02847i 0.798753 0.158882i 0.221193 0.975230i \(-0.429005\pi\)
0.577560 + 0.816348i \(0.304005\pi\)
\(164\) 0 0
\(165\) −5.73029 8.57598i −0.446102 0.667640i
\(166\) 0 0
\(167\) −5.67541 + 13.7016i −0.439176 + 1.06027i 0.537058 + 0.843546i \(0.319536\pi\)
−0.976234 + 0.216720i \(0.930464\pi\)
\(168\) 0 0
\(169\) −2.68293 6.47717i −0.206379 0.498244i
\(170\) 0 0
\(171\) 0.303097 1.52377i 0.0231784 0.116526i
\(172\) 0 0
\(173\) 2.81628 4.21486i 0.214118 0.320450i −0.708827 0.705382i \(-0.750775\pi\)
0.922945 + 0.384933i \(0.125775\pi\)
\(174\) 0 0
\(175\) −12.2453 + 12.2453i −0.925654 + 0.925654i
\(176\) 0 0
\(177\) −7.99491 7.99491i −0.600934 0.600934i
\(178\) 0 0
\(179\) −2.53753 1.69552i −0.189664 0.126729i 0.457113 0.889409i \(-0.348883\pi\)
−0.646777 + 0.762679i \(0.723883\pi\)
\(180\) 0 0
\(181\) −6.51424 1.29576i −0.484200 0.0963133i −0.0530464 0.998592i \(-0.516893\pi\)
−0.431153 + 0.902279i \(0.641893\pi\)
\(182\) 0 0
\(183\) 22.0102 9.11694i 1.62704 0.673943i
\(184\) 0 0
\(185\) −1.40136 0.580464i −0.103030 0.0426766i
\(186\) 0 0
\(187\) −6.68109 + 4.46416i −0.488570 + 0.326452i
\(188\) 0 0
\(189\) 1.75224 + 8.80912i 0.127457 + 0.640769i
\(190\) 0 0
\(191\) 1.58154 0.114436 0.0572181 0.998362i \(-0.481777\pi\)
0.0572181 + 0.998362i \(0.481777\pi\)
\(192\) 0 0
\(193\) −16.3932 −1.18001 −0.590004 0.807401i \(-0.700874\pi\)
−0.590004 + 0.807401i \(0.700874\pi\)
\(194\) 0 0
\(195\) 0.832448 + 4.18500i 0.0596128 + 0.299694i
\(196\) 0 0
\(197\) −2.24425 + 1.49956i −0.159896 + 0.106839i −0.632944 0.774197i \(-0.718154\pi\)
0.473048 + 0.881037i \(0.343154\pi\)
\(198\) 0 0
\(199\) −12.1675 5.03992i −0.862528 0.357271i −0.0928322 0.995682i \(-0.529592\pi\)
−0.769696 + 0.638411i \(0.779592\pi\)
\(200\) 0 0
\(201\) 15.0269 6.22436i 1.05992 0.439032i
\(202\) 0 0
\(203\) −5.68012 1.12985i −0.398666 0.0792996i
\(204\) 0 0
\(205\) −4.74184 3.16839i −0.331184 0.221290i
\(206\) 0 0
\(207\) 1.54230 + 1.54230i 0.107197 + 0.107197i
\(208\) 0 0
\(209\) 3.28254 3.28254i 0.227058 0.227058i
\(210\) 0 0
\(211\) −3.81684 + 5.71230i −0.262762 + 0.393251i −0.939267 0.343187i \(-0.888494\pi\)
0.676505 + 0.736438i \(0.263494\pi\)
\(212\) 0 0
\(213\) 1.17516 5.90791i 0.0805205 0.404804i
\(214\) 0 0
\(215\) −1.84386 4.45147i −0.125750 0.303588i
\(216\) 0 0
\(217\) 10.3871 25.0767i 0.705124 1.70232i
\(218\) 0 0
\(219\) −2.55621 3.82564i −0.172733 0.258512i
\(220\) 0 0
\(221\) 3.26031 0.648516i 0.219312 0.0436239i
\(222\) 0 0
\(223\) 3.88311i 0.260032i 0.991512 + 0.130016i \(0.0415029\pi\)
−0.991512 + 0.130016i \(0.958497\pi\)
\(224\) 0 0
\(225\) 8.69037i 0.579358i
\(226\) 0 0
\(227\) −22.5337 + 4.48224i −1.49562 + 0.297497i −0.874039 0.485856i \(-0.838508\pi\)
−0.621577 + 0.783353i \(0.713508\pi\)
\(228\) 0 0
\(229\) −3.41606 5.11250i −0.225740 0.337844i 0.701260 0.712906i \(-0.252621\pi\)
−0.927000 + 0.375062i \(0.877621\pi\)
\(230\) 0 0
\(231\) 19.9301 48.1156i 1.31131 3.16577i
\(232\) 0 0
\(233\) 0.733834 + 1.77163i 0.0480751 + 0.116064i 0.946093 0.323896i \(-0.104993\pi\)
−0.898018 + 0.439960i \(0.854993\pi\)
\(234\) 0 0
\(235\) 1.35811 6.82766i 0.0885930 0.445387i
\(236\) 0 0
\(237\) −10.8781 + 16.2803i −0.706610 + 1.05752i
\(238\) 0 0
\(239\) 6.09870 6.09870i 0.394492 0.394492i −0.481793 0.876285i \(-0.660014\pi\)
0.876285 + 0.481793i \(0.160014\pi\)
\(240\) 0 0
\(241\) 5.21549 + 5.21549i 0.335959 + 0.335959i 0.854844 0.518885i \(-0.173653\pi\)
−0.518885 + 0.854844i \(0.673653\pi\)
\(242\) 0 0
\(243\) −14.7680 9.86763i −0.947365 0.633009i
\(244\) 0 0
\(245\) 6.56295 + 1.30545i 0.419291 + 0.0834022i
\(246\) 0 0
\(247\) −1.77429 + 0.734933i −0.112895 + 0.0467627i
\(248\) 0 0
\(249\) −4.21876 1.74747i −0.267353 0.110741i
\(250\) 0 0
\(251\) −3.73150 + 2.49331i −0.235530 + 0.157376i −0.667735 0.744399i \(-0.732736\pi\)
0.432204 + 0.901776i \(0.357736\pi\)
\(252\) 0 0
\(253\) 1.27145 + 6.39201i 0.0799354 + 0.401862i
\(254\) 0 0
\(255\) 2.36832 0.148310
\(256\) 0 0
\(257\) −5.86891 −0.366092 −0.183046 0.983104i \(-0.558596\pi\)
−0.183046 + 0.983104i \(0.558596\pi\)
\(258\) 0 0
\(259\) −1.49418 7.51177i −0.0928441 0.466759i
\(260\) 0 0
\(261\) 2.41649 1.61465i 0.149577 0.0999442i
\(262\) 0 0
\(263\) 27.1667 + 11.2528i 1.67517 + 0.693877i 0.999078 0.0429417i \(-0.0136730\pi\)
0.676090 + 0.736819i \(0.263673\pi\)
\(264\) 0 0
\(265\) 7.55537 3.12954i 0.464123 0.192246i
\(266\) 0 0
\(267\) 6.61966 + 1.31673i 0.405117 + 0.0805827i
\(268\) 0 0
\(269\) 9.18707 + 6.13860i 0.560145 + 0.374277i 0.803176 0.595741i \(-0.203142\pi\)
−0.243031 + 0.970019i \(0.578142\pi\)
\(270\) 0 0
\(271\) 17.2217 + 17.2217i 1.04614 + 1.04614i 0.998883 + 0.0472600i \(0.0150489\pi\)
0.0472600 + 0.998883i \(0.484951\pi\)
\(272\) 0 0
\(273\) −15.2349 + 15.2349i −0.922056 + 0.922056i
\(274\) 0 0
\(275\) 14.4263 21.5906i 0.869941 1.30196i
\(276\) 0 0
\(277\) 5.36979 26.9957i 0.322639 1.62202i −0.390228 0.920718i \(-0.627604\pi\)
0.712868 0.701299i \(-0.247396\pi\)
\(278\) 0 0
\(279\) 5.21255 + 12.5842i 0.312067 + 0.753397i
\(280\) 0 0
\(281\) −6.20216 + 14.9733i −0.369990 + 0.893234i 0.623762 + 0.781615i \(0.285604\pi\)
−0.993751 + 0.111619i \(0.964396\pi\)
\(282\) 0 0
\(283\) 4.95606 + 7.41727i 0.294607 + 0.440911i 0.949015 0.315231i \(-0.102082\pi\)
−0.654408 + 0.756142i \(0.727082\pi\)
\(284\) 0 0
\(285\) −1.34195 + 0.266931i −0.0794904 + 0.0158116i
\(286\) 0 0
\(287\) 28.7960i 1.69978i
\(288\) 0 0
\(289\) 15.1550i 0.891469i
\(290\) 0 0
\(291\) −28.7139 + 5.71155i −1.68324 + 0.334817i
\(292\) 0 0
\(293\) 13.5525 + 20.2828i 0.791747 + 1.18493i 0.979247 + 0.202669i \(0.0649615\pi\)
−0.187500 + 0.982265i \(0.560039\pi\)
\(294\) 0 0
\(295\) −1.51494 + 3.65738i −0.0882031 + 0.212941i
\(296\) 0 0
\(297\) −5.15386 12.4425i −0.299057 0.721988i
\(298\) 0 0
\(299\) 0.525997 2.64436i 0.0304192 0.152928i
\(300\) 0 0
\(301\) 13.5163 20.2286i 0.779069 1.16596i
\(302\) 0 0
\(303\) 7.08281 7.08281i 0.406897 0.406897i
\(304\) 0 0
\(305\) −5.89822 5.89822i −0.337731 0.337731i
\(306\) 0 0
\(307\) −8.15880 5.45154i −0.465647 0.311136i 0.300521 0.953775i \(-0.402839\pi\)
−0.766169 + 0.642639i \(0.777839\pi\)
\(308\) 0 0
\(309\) −23.4050 4.65554i −1.33146 0.264844i
\(310\) 0 0
\(311\) −28.3647 + 11.7490i −1.60842 + 0.666227i −0.992574 0.121643i \(-0.961184\pi\)
−0.615841 + 0.787870i \(0.711184\pi\)
\(312\) 0 0
\(313\) −22.4586 9.30264i −1.26943 0.525816i −0.356641 0.934242i \(-0.616078\pi\)
−0.912792 + 0.408425i \(0.866078\pi\)
\(314\) 0 0
\(315\) −5.07416 + 3.39044i −0.285896 + 0.191030i
\(316\) 0 0
\(317\) 1.29802 + 6.52557i 0.0729039 + 0.366513i 0.999965 0.00839833i \(-0.00267330\pi\)
−0.927061 + 0.374911i \(0.877673\pi\)
\(318\) 0 0
\(319\) 8.68396 0.486209
\(320\) 0 0
\(321\) −8.52703 −0.475933
\(322\) 0 0
\(323\) 0.207952 + 1.04544i 0.0115707 + 0.0581701i
\(324\) 0 0
\(325\) −8.93197 + 5.96815i −0.495457 + 0.331054i
\(326\) 0 0
\(327\) −20.3243 8.41860i −1.12394 0.465550i
\(328\) 0 0
\(329\) 32.4747 13.4515i 1.79039 0.741604i
\(330\) 0 0
\(331\) −3.84304 0.764428i −0.211233 0.0420168i 0.0883396 0.996090i \(-0.471844\pi\)
−0.299572 + 0.954074i \(0.596844\pi\)
\(332\) 0 0
\(333\) 3.19573 + 2.13532i 0.175125 + 0.117015i
\(334\) 0 0
\(335\) −4.02686 4.02686i −0.220011 0.220011i
\(336\) 0 0
\(337\) 13.8621 13.8621i 0.755119 0.755119i −0.220311 0.975430i \(-0.570707\pi\)
0.975430 + 0.220311i \(0.0707072\pi\)
\(338\) 0 0
\(339\) 5.72000 8.56058i 0.310668 0.464947i
\(340\) 0 0
\(341\) −7.94010 + 39.9176i −0.429980 + 2.16166i
\(342\) 0 0
\(343\) 2.36172 + 5.70170i 0.127521 + 0.307863i
\(344\) 0 0
\(345\) 0.735093 1.77467i 0.0395761 0.0955451i
\(346\) 0 0
\(347\) 13.7444 + 20.5699i 0.737836 + 1.10425i 0.990609 + 0.136724i \(0.0436574\pi\)
−0.252773 + 0.967526i \(0.581343\pi\)
\(348\) 0 0
\(349\) −34.6278 + 6.88789i −1.85358 + 0.368700i −0.990628 0.136584i \(-0.956388\pi\)
−0.862953 + 0.505284i \(0.831388\pi\)
\(350\) 0 0
\(351\) 5.57155i 0.297388i
\(352\) 0 0
\(353\) 16.3511i 0.870283i −0.900362 0.435141i \(-0.856698\pi\)
0.900362 0.435141i \(-0.143302\pi\)
\(354\) 0 0
\(355\) −2.06853 + 0.411455i −0.109786 + 0.0218378i
\(356\) 0 0
\(357\) 6.64372 + 9.94303i 0.351623 + 0.526241i
\(358\) 0 0
\(359\) 0.837827 2.02269i 0.0442188 0.106754i −0.900227 0.435421i \(-0.856599\pi\)
0.944446 + 0.328667i \(0.106599\pi\)
\(360\) 0 0
\(361\) 7.03532 + 16.9848i 0.370280 + 0.893935i
\(362\) 0 0
\(363\) −10.4460 + 52.5158i −0.548275 + 2.75636i
\(364\) 0 0
\(365\) −0.895000 + 1.33946i −0.0468464 + 0.0701106i
\(366\) 0 0
\(367\) −20.9060 + 20.9060i −1.09129 + 1.09129i −0.0958935 + 0.995392i \(0.530571\pi\)
−0.995392 + 0.0958935i \(0.969429\pi\)
\(368\) 0 0
\(369\) 10.2182 + 10.2182i 0.531936 + 0.531936i
\(370\) 0 0
\(371\) 34.3336 + 22.9410i 1.78251 + 1.19104i
\(372\) 0 0
\(373\) 23.8329 + 4.74066i 1.23402 + 0.245462i 0.768659 0.639659i \(-0.220924\pi\)
0.465362 + 0.885121i \(0.345924\pi\)
\(374\) 0 0
\(375\) −15.1251 + 6.26501i −0.781055 + 0.323524i
\(376\) 0 0
\(377\) −3.31907 1.37481i −0.170941 0.0708061i
\(378\) 0 0
\(379\) 20.7596 13.8712i 1.06635 0.712513i 0.106867 0.994273i \(-0.465918\pi\)
0.959485 + 0.281760i \(0.0909182\pi\)
\(380\) 0 0
\(381\) −2.86296 14.3931i −0.146674 0.737381i
\(382\) 0 0
\(383\) 24.5463 1.25426 0.627128 0.778916i \(-0.284230\pi\)
0.627128 + 0.778916i \(0.284230\pi\)
\(384\) 0 0
\(385\) −18.2346 −0.929323
\(386\) 0 0
\(387\) 2.38183 + 11.9743i 0.121075 + 0.608687i
\(388\) 0 0
\(389\) 19.0280 12.7141i 0.964758 0.644630i 0.0298624 0.999554i \(-0.490493\pi\)
0.934895 + 0.354924i \(0.115493\pi\)
\(390\) 0 0
\(391\) −1.38255 0.572672i −0.0699187 0.0289613i
\(392\) 0 0
\(393\) 10.0230 4.15166i 0.505593 0.209423i
\(394\) 0 0
\(395\) 6.72381 + 1.33745i 0.338312 + 0.0672944i
\(396\) 0 0
\(397\) 20.2490 + 13.5300i 1.01627 + 0.679050i 0.947886 0.318609i \(-0.103216\pi\)
0.0683838 + 0.997659i \(0.478216\pi\)
\(398\) 0 0
\(399\) −4.88518 4.88518i −0.244565 0.244565i
\(400\) 0 0
\(401\) 13.4688 13.4688i 0.672599 0.672599i −0.285716 0.958314i \(-0.592231\pi\)
0.958314 + 0.285716i \(0.0922312\pi\)
\(402\) 0 0
\(403\) 9.35433 13.9997i 0.465972 0.697377i
\(404\) 0 0
\(405\) −1.67974 + 8.44462i −0.0834669 + 0.419616i
\(406\) 0 0
\(407\) 4.39483 + 10.6101i 0.217844 + 0.525922i
\(408\) 0 0
\(409\) −3.05166 + 7.36736i −0.150895 + 0.364293i −0.981194 0.193026i \(-0.938170\pi\)
0.830299 + 0.557319i \(0.188170\pi\)
\(410\) 0 0
\(411\) −26.1123 39.0798i −1.28803 1.92767i
\(412\) 0 0
\(413\) −19.6048 + 3.89963i −0.964688 + 0.191888i
\(414\) 0 0
\(415\) 1.59881i 0.0784824i
\(416\) 0 0
\(417\) 42.8195i 2.09688i
\(418\) 0 0
\(419\) 12.5395 2.49426i 0.612593 0.121852i 0.120964 0.992657i \(-0.461402\pi\)
0.491629 + 0.870805i \(0.336402\pi\)
\(420\) 0 0
\(421\) −10.8903 16.2984i −0.530759 0.794337i 0.465099 0.885259i \(-0.346019\pi\)
−0.995858 + 0.0909215i \(0.971019\pi\)
\(422\) 0 0
\(423\) −6.75033 + 16.2967i −0.328212 + 0.792375i
\(424\) 0 0
\(425\) 2.28170 + 5.50852i 0.110679 + 0.267203i
\(426\) 0 0
\(427\) 8.21683 41.3088i 0.397640 1.99907i
\(428\) 0 0
\(429\) 17.9485 26.8618i 0.866560 1.29690i
\(430\) 0 0
\(431\) −18.4810 + 18.4810i −0.890199 + 0.890199i −0.994541 0.104343i \(-0.966726\pi\)
0.104343 + 0.994541i \(0.466726\pi\)
\(432\) 0 0
\(433\) 6.00332 + 6.00332i 0.288501 + 0.288501i 0.836487 0.547986i \(-0.184605\pi\)
−0.547986 + 0.836487i \(0.684605\pi\)
\(434\) 0 0
\(435\) −2.12815 1.42199i −0.102037 0.0681791i
\(436\) 0 0
\(437\) 0.847937 + 0.168665i 0.0405623 + 0.00806835i
\(438\) 0 0
\(439\) 19.8680 8.22958i 0.948246 0.392777i 0.145675 0.989333i \(-0.453465\pi\)
0.802571 + 0.596556i \(0.203465\pi\)
\(440\) 0 0
\(441\) −15.6649 6.48862i −0.745948 0.308982i
\(442\) 0 0
\(443\) −15.5336 + 10.3792i −0.738023 + 0.493131i −0.866871 0.498533i \(-0.833872\pi\)
0.128848 + 0.991664i \(0.458872\pi\)
\(444\) 0 0
\(445\) −0.461025 2.31773i −0.0218547 0.109871i
\(446\) 0 0
\(447\) 2.10215 0.0994282
\(448\) 0 0
\(449\) 32.6778 1.54216 0.771081 0.636737i \(-0.219716\pi\)
0.771081 + 0.636737i \(0.219716\pi\)
\(450\) 0 0
\(451\) 8.42370 + 42.3488i 0.396657 + 1.99413i
\(452\) 0 0
\(453\) 20.1881 13.4893i 0.948522 0.633782i
\(454\) 0 0
\(455\) 6.96941 + 2.88682i 0.326731 + 0.135336i
\(456\) 0 0
\(457\) −23.3834 + 9.68573i −1.09383 + 0.453079i −0.855341 0.518066i \(-0.826652\pi\)
−0.238489 + 0.971145i \(0.576652\pi\)
\(458\) 0 0
\(459\) 3.03298 + 0.603297i 0.141567 + 0.0281595i
\(460\) 0 0
\(461\) 2.39596 + 1.60093i 0.111591 + 0.0745627i 0.610113 0.792314i \(-0.291124\pi\)
−0.498522 + 0.866877i \(0.666124\pi\)
\(462\) 0 0
\(463\) −24.5897 24.5897i −1.14278 1.14278i −0.987940 0.154840i \(-0.950514\pi\)
−0.154840 0.987940i \(-0.549486\pi\)
\(464\) 0 0
\(465\) 8.48230 8.48230i 0.393357 0.393357i
\(466\) 0 0
\(467\) 7.08500 10.6035i 0.327855 0.490670i −0.630524 0.776170i \(-0.717160\pi\)
0.958379 + 0.285500i \(0.0921598\pi\)
\(468\) 0 0
\(469\) 5.60983 28.2025i 0.259038 1.30227i
\(470\) 0 0
\(471\) 1.88748 + 4.55679i 0.0869707 + 0.209966i
\(472\) 0 0
\(473\) −13.9603 + 33.7031i −0.641895 + 1.54967i
\(474\) 0 0
\(475\) −1.91374 2.86411i −0.0878082 0.131414i
\(476\) 0 0
\(477\) −20.3237 + 4.04263i −0.930556 + 0.185099i
\(478\) 0 0
\(479\) 8.39981i 0.383797i −0.981415 0.191899i \(-0.938536\pi\)
0.981415 0.191899i \(-0.0614644\pi\)
\(480\) 0 0
\(481\) 4.75101i 0.216628i
\(482\) 0 0
\(483\) 9.51281 1.89222i 0.432848 0.0860988i
\(484\) 0 0
\(485\) 5.69487 + 8.52297i 0.258591 + 0.387008i
\(486\) 0 0
\(487\) 6.40268 15.4574i 0.290133 0.700443i −0.709859 0.704343i \(-0.751242\pi\)
0.999992 + 0.00390038i \(0.00124153\pi\)
\(488\) 0 0
\(489\) 8.87928 + 21.4365i 0.401535 + 0.969391i
\(490\) 0 0
\(491\) −1.85105 + 9.30587i −0.0835368 + 0.419968i 0.916275 + 0.400551i \(0.131181\pi\)
−0.999811 + 0.0194174i \(0.993819\pi\)
\(492\) 0 0
\(493\) −1.10779 + 1.65793i −0.0498926 + 0.0746695i
\(494\) 0 0
\(495\) 6.47049 6.47049i 0.290827 0.290827i
\(496\) 0 0
\(497\) −7.53017 7.53017i −0.337774 0.337774i
\(498\) 0 0
\(499\) −12.4453 8.31569i −0.557129 0.372261i 0.244899 0.969549i \(-0.421245\pi\)
−0.802027 + 0.597287i \(0.796245\pi\)
\(500\) 0 0
\(501\) −32.4591 6.45653i −1.45017 0.288456i
\(502\) 0 0
\(503\) −7.01440 + 2.90546i −0.312757 + 0.129548i −0.533540 0.845775i \(-0.679139\pi\)
0.220783 + 0.975323i \(0.429139\pi\)
\(504\) 0 0
\(505\) −3.24013 1.34211i −0.144184 0.0597230i
\(506\) 0 0
\(507\) 13.0083 8.69190i 0.577721 0.386021i
\(508\) 0 0
\(509\) −6.73996 33.8841i −0.298743 1.50188i −0.780264 0.625450i \(-0.784915\pi\)
0.481521 0.876435i \(-0.340085\pi\)
\(510\) 0 0
\(511\) −8.13423 −0.359837
\(512\) 0 0
\(513\) −1.78656 −0.0788787
\(514\) 0 0
\(515\) 1.63003 + 8.19473i 0.0718279 + 0.361103i
\(516\) 0 0
\(517\) −43.8239 + 29.2822i −1.92737 + 1.28783i
\(518\) 0 0
\(519\) 10.4510 + 4.32894i 0.458748 + 0.190020i
\(520\) 0 0
\(521\) −35.4201 + 14.6715i −1.55178 + 0.642770i −0.983638 0.180158i \(-0.942339\pi\)
−0.568146 + 0.822928i \(0.692339\pi\)
\(522\) 0 0
\(523\) 3.91974 + 0.779685i 0.171398 + 0.0340933i 0.280043 0.959987i \(-0.409651\pi\)
−0.108645 + 0.994081i \(0.534651\pi\)
\(524\) 0 0
\(525\) −32.1318 21.4698i −1.40235 0.937018i
\(526\) 0 0
\(527\) −6.60811 6.60811i −0.287854 0.287854i
\(528\) 0 0
\(529\) 15.4052 15.4052i 0.669792 0.669792i
\(530\) 0 0
\(531\) 5.57291 8.34045i 0.241844 0.361945i
\(532\) 0 0
\(533\) 3.48487 17.5196i 0.150946 0.758859i
\(534\) 0 0
\(535\) 1.14252 + 2.75829i 0.0493955 + 0.119251i
\(536\) 0 0
\(537\) 2.60621 6.29195i 0.112466 0.271518i
\(538\) 0 0
\(539\) −28.1469 42.1248i −1.21237 1.81445i
\(540\) 0 0
\(541\) 37.1103 7.38169i 1.59550 0.317364i 0.684256 0.729242i \(-0.260127\pi\)
0.911239 + 0.411878i \(0.135127\pi\)
\(542\) 0 0
\(543\) 14.8216i 0.636056i
\(544\) 0 0
\(545\) 7.70242i 0.329935i
\(546\) 0 0
\(547\) −6.05489 + 1.20439i −0.258888 + 0.0514961i −0.322828 0.946458i \(-0.604634\pi\)
0.0639395 + 0.997954i \(0.479634\pi\)
\(548\) 0 0
\(549\) 11.7426 + 17.5740i 0.501160 + 0.750039i
\(550\) 0 0
\(551\) 0.440842 1.06429i 0.0187805 0.0453402i
\(552\) 0 0
\(553\) 13.2469 + 31.9808i 0.563315 + 1.35996i
\(554\) 0 0
\(555\) 0.660355 3.31983i 0.0280305 0.140919i
\(556\) 0 0
\(557\) 10.4706 15.6704i 0.443653 0.663974i −0.540490 0.841351i \(-0.681761\pi\)
0.984143 + 0.177377i \(0.0567610\pi\)
\(558\) 0 0
\(559\) 10.6714 10.6714i 0.451354 0.451354i
\(560\) 0 0
\(561\) −12.6792 12.6792i −0.535316 0.535316i
\(562\) 0 0
\(563\) 31.7318 + 21.2025i 1.33733 + 0.893578i 0.998876 0.0474033i \(-0.0150946\pi\)
0.338458 + 0.940981i \(0.390095\pi\)
\(564\) 0 0
\(565\) −3.53555 0.703266i −0.148742 0.0295866i
\(566\) 0 0
\(567\) −40.1656 + 16.6371i −1.68680 + 0.698694i
\(568\) 0 0
\(569\) 5.70005 + 2.36104i 0.238958 + 0.0989798i 0.498949 0.866631i \(-0.333719\pi\)
−0.259991 + 0.965611i \(0.583719\pi\)
\(570\) 0 0
\(571\) −25.4415 + 16.9994i −1.06469 + 0.711405i −0.959118 0.283007i \(-0.908668\pi\)
−0.105574 + 0.994411i \(0.533668\pi\)
\(572\) 0 0
\(573\) 0.688527 + 3.46146i 0.0287636 + 0.144605i
\(574\) 0 0
\(575\) 4.83596 0.201673
\(576\) 0 0
\(577\) 13.1957 0.549345 0.274673 0.961538i \(-0.411431\pi\)
0.274673 + 0.961538i \(0.411431\pi\)
\(578\) 0 0
\(579\) −7.13682 35.8792i −0.296596 1.49109i
\(580\) 0 0
\(581\) −6.71236 + 4.48506i −0.278476 + 0.186071i
\(582\) 0 0
\(583\) −57.2035 23.6945i −2.36913 0.981324i
\(584\) 0 0
\(585\) −3.49745 + 1.44869i −0.144602 + 0.0598959i
\(586\) 0 0
\(587\) −28.1626 5.60188i −1.16239 0.231215i −0.424050 0.905639i \(-0.639392\pi\)
−0.738344 + 0.674424i \(0.764392\pi\)
\(588\) 0 0
\(589\) 4.48913 + 2.99954i 0.184971 + 0.123594i
\(590\) 0 0
\(591\) −4.25908 4.25908i −0.175195 0.175195i
\(592\) 0 0
\(593\) 8.50593 8.50593i 0.349297 0.349297i −0.510551 0.859848i \(-0.670559\pi\)
0.859848 + 0.510551i \(0.170559\pi\)
\(594\) 0 0
\(595\) 2.32615 3.48133i 0.0953630 0.142721i
\(596\) 0 0
\(597\) 5.73358 28.8246i 0.234660 1.17971i
\(598\) 0 0
\(599\) 17.7398 + 42.8278i 0.724831 + 1.74990i 0.659096 + 0.752059i \(0.270939\pi\)
0.0657345 + 0.997837i \(0.479061\pi\)
\(600\) 0 0
\(601\) 9.36011 22.5973i 0.381807 0.921763i −0.609810 0.792548i \(-0.708754\pi\)
0.991617 0.129215i \(-0.0412459\pi\)
\(602\) 0 0
\(603\) 8.01693 + 11.9982i 0.326475 + 0.488604i
\(604\) 0 0
\(605\) 18.3872 3.65745i 0.747548 0.148697i
\(606\) 0 0
\(607\) 19.9552i 0.809956i −0.914326 0.404978i \(-0.867279\pi\)
0.914326 0.404978i \(-0.132721\pi\)
\(608\) 0 0
\(609\) 12.9238i 0.523698i
\(610\) 0 0
\(611\) 21.3856 4.25387i 0.865170 0.172093i
\(612\) 0 0
\(613\) 15.7066 + 23.5066i 0.634384 + 0.949423i 0.999827 + 0.0185890i \(0.00591740\pi\)
−0.365443 + 0.930834i \(0.619083\pi\)
\(614\) 0 0
\(615\) 4.87019 11.7577i 0.196385 0.474115i
\(616\) 0 0
\(617\) −7.93425 19.1550i −0.319421 0.771150i −0.999285 0.0378118i \(-0.987961\pi\)
0.679864 0.733338i \(-0.262039\pi\)
\(618\) 0 0
\(619\) 1.06040 5.33101i 0.0426212 0.214271i −0.953606 0.301059i \(-0.902660\pi\)
0.996227 + 0.0867872i \(0.0276600\pi\)
\(620\) 0 0
\(621\) 1.39347 2.08547i 0.0559179 0.0836871i
\(622\) 0 0
\(623\) 8.43735 8.43735i 0.338035 0.338035i
\(624\) 0 0
\(625\) −11.4662 11.4662i −0.458647 0.458647i
\(626\) 0 0
\(627\) 8.61344 + 5.75532i 0.343988 + 0.229845i
\(628\) 0 0
\(629\) −2.58630 0.514447i −0.103123 0.0205124i
\(630\) 0 0
\(631\) 35.9213 14.8791i 1.43000 0.592327i 0.472652 0.881249i \(-0.343297\pi\)
0.957353 + 0.288922i \(0.0932967\pi\)
\(632\) 0 0
\(633\) −14.1640 5.86692i −0.562968 0.233189i
\(634\) 0 0
\(635\) −4.27222 + 2.85460i −0.169538 + 0.113282i
\(636\) 0 0
\(637\) 4.08894 + 20.5565i 0.162010 + 0.814479i
\(638\) 0 0
\(639\) 5.34410 0.211409
\(640\) 0 0
\(641\) 2.72233 0.107526 0.0537629 0.998554i \(-0.482878\pi\)
0.0537629 + 0.998554i \(0.482878\pi\)
\(642\) 0 0
\(643\) −0.135549 0.681448i −0.00534551 0.0268737i 0.978020 0.208509i \(-0.0668610\pi\)
−0.983366 + 0.181635i \(0.941861\pi\)
\(644\) 0 0
\(645\) 8.94005 5.97355i 0.352014 0.235208i
\(646\) 0 0
\(647\) 29.4862 + 12.2136i 1.15922 + 0.480165i 0.877616 0.479365i \(-0.159133\pi\)
0.281606 + 0.959530i \(0.409133\pi\)
\(648\) 0 0
\(649\) 27.6909 11.4700i 1.08696 0.450235i
\(650\) 0 0
\(651\) 59.4067 + 11.8167i 2.32833 + 0.463134i
\(652\) 0 0
\(653\) −35.6443 23.8167i −1.39487 0.932021i −0.999911 0.0133207i \(-0.995760\pi\)
−0.394956 0.918700i \(-0.629240\pi\)
\(654\) 0 0
\(655\) −2.68592 2.68592i −0.104948 0.104948i
\(656\) 0 0
\(657\) 2.88640 2.88640i 0.112609 0.112609i
\(658\) 0 0
\(659\) −19.0570 + 28.5207i −0.742354 + 1.11101i 0.247496 + 0.968889i \(0.420392\pi\)
−0.989849 + 0.142122i \(0.954608\pi\)
\(660\) 0 0
\(661\) −2.62496 + 13.1966i −0.102099 + 0.513287i 0.895562 + 0.444936i \(0.146774\pi\)
−0.997661 + 0.0683508i \(0.978226\pi\)
\(662\) 0 0
\(663\) 2.83877 + 6.85340i 0.110249 + 0.266164i
\(664\) 0 0
\(665\) −0.925683 + 2.23480i −0.0358965 + 0.0866617i
\(666\) 0 0
\(667\) 0.898508 + 1.34471i 0.0347904 + 0.0520675i
\(668\) 0 0
\(669\) −8.49882 + 1.69052i −0.328584 + 0.0653593i
\(670\) 0 0
\(671\) 63.1543i 2.43805i
\(672\) 0 0
\(673\) 23.6665i 0.912275i −0.889909 0.456137i \(-0.849233\pi\)
0.889909 0.456137i \(-0.150767\pi\)
\(674\) 0 0
\(675\) −9.80133 + 1.94961i −0.377254 + 0.0750404i
\(676\) 0 0
\(677\) 14.9427 + 22.3633i 0.574294 + 0.859491i 0.998948 0.0458647i \(-0.0146043\pi\)
−0.424654 + 0.905356i \(0.639604\pi\)
\(678\) 0 0
\(679\) −19.8069 + 47.8181i −0.760120 + 1.83509i
\(680\) 0 0
\(681\) −19.6203 47.3675i −0.751850 1.81513i
\(682\) 0 0
\(683\) −4.84474 + 24.3562i −0.185379 + 0.931963i 0.770329 + 0.637647i \(0.220092\pi\)
−0.955708 + 0.294316i \(0.904908\pi\)
\(684\) 0 0
\(685\) −9.14265 + 13.6829i −0.349323 + 0.522798i
\(686\) 0 0
\(687\) 9.70237 9.70237i 0.370168 0.370168i
\(688\) 0 0
\(689\) 18.1124 + 18.1124i 0.690027 + 0.690027i
\(690\) 0 0
\(691\) −11.5361 7.70819i −0.438855 0.293233i 0.316448 0.948610i \(-0.397510\pi\)
−0.755302 + 0.655377i \(0.772510\pi\)
\(692\) 0 0
\(693\) 45.3167 + 9.01406i 1.72144 + 0.342416i
\(694\) 0 0
\(695\) 13.8511 5.73730i 0.525401 0.217628i
\(696\) 0 0
\(697\) −9.15978 3.79410i −0.346951 0.143712i
\(698\) 0 0
\(699\) −3.55804 + 2.37740i −0.134577 + 0.0899217i
\(700\) 0 0
\(701\) 7.20549 + 36.2244i 0.272148 + 1.36818i 0.838898 + 0.544289i \(0.183200\pi\)
−0.566750 + 0.823890i \(0.691800\pi\)
\(702\) 0 0
\(703\) 1.52345 0.0574581
\(704\) 0 0
\(705\) 15.5347 0.585072
\(706\) 0 0
\(707\) −3.45474 17.3682i −0.129929 0.653197i
\(708\) 0 0
\(709\) −20.0441 + 13.3930i −0.752770 + 0.502985i −0.871774 0.489909i \(-0.837030\pi\)
0.119003 + 0.992894i \(0.462030\pi\)
\(710\) 0 0
\(711\) −16.0489 6.64766i −0.601880 0.249307i
\(712\) 0 0
\(713\) −7.00278 + 2.90065i −0.262256 + 0.108630i
\(714\) 0 0
\(715\) −11.0940 2.20674i −0.414893 0.0825273i
\(716\) 0 0
\(717\) 16.0031 + 10.6929i 0.597647 + 0.399335i
\(718\) 0 0
\(719\) −5.08606 5.08606i −0.189678 0.189678i 0.605879 0.795557i \(-0.292822\pi\)
−0.795557 + 0.605879i \(0.792822\pi\)
\(720\) 0 0
\(721\) −29.8317 + 29.8317i −1.11099 + 1.11099i
\(722\) 0 0
\(723\) −9.14439 + 13.6855i −0.340084 + 0.508971i
\(724\) 0 0
\(725\) 1.25711 6.31990i 0.0466878 0.234715i
\(726\) 0 0
\(727\) −16.1339 38.9506i −0.598372 1.44460i −0.875240 0.483690i \(-0.839296\pi\)
0.276867 0.960908i \(-0.410704\pi\)
\(728\) 0 0
\(729\) 2.51641 6.07515i 0.0932003 0.225006i
\(730\) 0 0
\(731\) −4.65368 6.96472i −0.172122 0.257599i
\(732\) 0 0
\(733\) −32.2035 + 6.40567i −1.18946 + 0.236599i −0.749862 0.661595i \(-0.769880\pi\)
−0.439601 + 0.898193i \(0.644880\pi\)
\(734\) 0 0
\(735\) 14.9324i 0.550791i
\(736\) 0 0
\(737\) 43.1170i 1.58824i
\(738\) 0 0
\(739\) 1.11174 0.221139i 0.0408961 0.00813474i −0.174600 0.984639i \(-0.555863\pi\)
0.215496 + 0.976505i \(0.430863\pi\)
\(740\) 0 0
\(741\) −2.38096 3.56336i −0.0874669 0.130903i
\(742\) 0 0
\(743\) 11.1248 26.8577i 0.408130 0.985313i −0.577500 0.816391i \(-0.695972\pi\)
0.985629 0.168922i \(-0.0540285\pi\)
\(744\) 0 0
\(745\) −0.281663 0.679995i −0.0103193 0.0249131i
\(746\) 0 0
\(747\) 0.790350 3.97336i 0.0289174 0.145378i
\(748\) 0 0
\(749\) −8.37522 + 12.5344i −0.306024 + 0.457997i
\(750\) 0 0
\(751\) 19.2670 19.2670i 0.703061 0.703061i −0.262005 0.965066i \(-0.584384\pi\)
0.965066 + 0.262005i \(0.0843838\pi\)
\(752\) 0 0
\(753\) −7.08155 7.08155i −0.258066 0.258066i
\(754\) 0 0
\(755\) −7.06843 4.72298i −0.257247 0.171887i
\(756\) 0 0
\(757\) 3.81457 + 0.758766i 0.138643 + 0.0275778i 0.263924 0.964544i \(-0.414983\pi\)
−0.125281 + 0.992121i \(0.539983\pi\)
\(758\) 0 0
\(759\) −13.4365 + 5.56556i −0.487713 + 0.202017i
\(760\) 0 0
\(761\) 14.1327 + 5.85394i 0.512309 + 0.212205i 0.623835 0.781556i \(-0.285574\pi\)
−0.111526 + 0.993762i \(0.535574\pi\)
\(762\) 0 0
\(763\) −32.3375 + 21.6072i −1.17069 + 0.782233i
\(764\) 0 0
\(765\) 0.409911 + 2.06076i 0.0148204 + 0.0745071i
\(766\) 0 0
\(767\) −12.3995 −0.447722
\(768\) 0 0
\(769\) −47.4209 −1.71004 −0.855020 0.518595i \(-0.826455\pi\)
−0.855020 + 0.518595i \(0.826455\pi\)
\(770\) 0 0
\(771\) −2.55505 12.8451i −0.0920178 0.462604i
\(772\) 0 0
\(773\) 18.9615 12.6697i 0.681998 0.455697i −0.165699 0.986176i \(-0.552988\pi\)
0.847698 + 0.530480i \(0.177988\pi\)
\(774\) 0 0
\(775\) 27.9013 + 11.5571i 1.00224 + 0.415143i
\(776\) 0 0
\(777\) 15.7903 6.54054i 0.566473 0.234641i
\(778\) 0 0
\(779\) 5.61781 + 1.11745i 0.201279 + 0.0400369i
\(780\) 0 0
\(781\) 13.2770 + 8.87142i 0.475089 + 0.317444i
\(782\) 0 0
\(783\) −2.36318 2.36318i −0.0844532 0.0844532i
\(784\) 0 0
\(785\) 1.22111 1.22111i 0.0435833 0.0435833i
\(786\) 0 0
\(787\) −8.45960 + 12.6607i −0.301552 + 0.451305i −0.951040 0.309067i \(-0.899983\pi\)
0.649488 + 0.760372i \(0.274983\pi\)
\(788\) 0 0
\(789\) −12.8015 + 64.3577i −0.455747 + 2.29119i
\(790\) 0 0
\(791\) −6.96556 16.8163i −0.247667 0.597920i
\(792\) 0 0
\(793\) 9.99830 24.1380i 0.355050 0.857167i
\(794\) 0 0
\(795\) 10.1388 + 15.1737i 0.359585 + 0.538157i
\(796\) 0 0
\(797\) 1.21865 0.242404i 0.0431668 0.00858640i −0.173460 0.984841i \(-0.555495\pi\)
0.216626 + 0.976255i \(0.430495\pi\)
\(798\) 0 0
\(799\) 12.1023i 0.428148i
\(800\) 0 0
\(801\) 5.98792i 0.211573i
\(802\) 0 0
\(803\) 11.9626 2.37950i 0.422150 0.0839709i
\(804\) 0 0
\(805\) −1.88669 2.82363i −0.0664971 0.0995200i
\(806\) 0 0
\(807\) −9.43574 + 22.7799i −0.332154 + 0.801890i
\(808\) 0 0
\(809\) 11.5600 + 27.9083i 0.406428 + 0.981203i 0.986070 + 0.166332i \(0.0531923\pi\)
−0.579642 + 0.814871i \(0.696808\pi\)
\(810\) 0 0
\(811\) −1.27743 + 6.42210i −0.0448568 + 0.225510i −0.996711 0.0810417i \(-0.974175\pi\)
0.951854 + 0.306552i \(0.0991753\pi\)
\(812\) 0 0
\(813\) −30.1950 + 45.1900i −1.05899 + 1.58488i
\(814\) 0 0
\(815\) 5.74447 5.74447i 0.201220 0.201220i
\(816\) 0 0
\(817\) 3.42189 + 3.42189i 0.119717 + 0.119717i
\(818\) 0 0
\(819\) −15.8933 10.6196i −0.555357 0.371078i
\(820\) 0 0
\(821\) 0.732994 + 0.145802i 0.0255817 + 0.00508851i 0.207865 0.978158i \(-0.433349\pi\)
−0.182283 + 0.983246i \(0.558349\pi\)
\(822\) 0 0
\(823\) 40.6921 16.8552i 1.41844 0.587535i 0.463969 0.885852i \(-0.346425\pi\)
0.954467 + 0.298316i \(0.0964250\pi\)
\(824\) 0 0
\(825\) 53.5351 + 22.1750i 1.86385 + 0.772033i
\(826\) 0 0
\(827\) 17.5797 11.7464i 0.611308 0.408463i −0.211016 0.977483i \(-0.567677\pi\)
0.822324 + 0.569020i \(0.192677\pi\)
\(828\) 0 0
\(829\) −8.12158 40.8299i −0.282074 1.41808i −0.818681 0.574249i \(-0.805294\pi\)
0.536607 0.843833i \(-0.319706\pi\)
\(830\) 0 0
\(831\) 61.4224 2.13072
\(832\) 0 0
\(833\) 11.6331 0.403062
\(834\) 0 0
\(835\) 2.26061 + 11.3649i 0.0782316 + 0.393297i
\(836\) 0 0
\(837\) 13.0236 8.70208i 0.450161 0.300788i
\(838\) 0 0
\(839\) −33.4505 13.8556i −1.15484 0.478350i −0.278686 0.960382i \(-0.589899\pi\)
−0.876154 + 0.482032i \(0.839899\pi\)
\(840\) 0 0
\(841\) −24.8016 + 10.2732i −0.855227 + 0.354247i
\(842\) 0 0
\(843\) −35.4718 7.05577i −1.22171 0.243014i
\(844\) 0 0
\(845\) −4.55459 3.04328i −0.156683 0.104692i
\(846\) 0 0
\(847\) 66.9361 + 66.9361i 2.29995 + 2.29995i
\(848\) 0 0
\(849\) −14.0763 + 14.0763i −0.483097 + 0.483097i
\(850\) 0 0
\(851\) −1.18825 + 1.77834i −0.0407326 + 0.0609606i
\(852\) 0 0
\(853\) −2.29019 + 11.5136i −0.0784145 + 0.394217i 0.921567 + 0.388218i \(0.126909\pi\)
−0.999982 + 0.00599829i \(0.998091\pi\)
\(854\) 0 0
\(855\) −0.464534 1.12148i −0.0158867 0.0383540i
\(856\) 0 0
\(857\) −3.96261 + 9.56660i −0.135360 + 0.326789i −0.976996 0.213257i \(-0.931593\pi\)
0.841636 + 0.540045i \(0.181593\pi\)
\(858\) 0 0
\(859\) 22.7757 + 34.0863i 0.777098 + 1.16301i 0.982850 + 0.184405i \(0.0590357\pi\)
−0.205753 + 0.978604i \(0.565964\pi\)
\(860\) 0 0
\(861\) 63.0249 12.5364i 2.14788 0.427241i
\(862\) 0 0
\(863\) 22.4117i 0.762902i −0.924389 0.381451i \(-0.875424\pi\)
0.924389 0.381451i \(-0.124576\pi\)
\(864\) 0 0
\(865\) 3.96067i 0.134667i
\(866\) 0 0
\(867\) −33.1692 + 6.59776i −1.12648 + 0.224072i
\(868\) 0 0
\(869\) −28.8368 43.1574i −0.978223 1.46401i
\(870\) 0 0
\(871\) 6.82609 16.4796i 0.231293 0.558391i
\(872\) 0 0
\(873\) −9.93967 23.9965i −0.336407 0.812158i
\(874\) 0 0
\(875\) −5.64647 + 28.3867i −0.190886 + 0.959646i
\(876\) 0 0
\(877\) 22.8368 34.1777i 0.771145 1.15410i −0.213055 0.977040i \(-0.568341\pi\)
0.984200 0.177060i \(-0.0566587\pi\)
\(878\) 0 0
\(879\) −38.4921 + 38.4921i −1.29831 + 1.29831i
\(880\) 0 0
\(881\) −19.2835 19.2835i −0.649677 0.649677i 0.303238 0.952915i \(-0.401932\pi\)
−0.952915 + 0.303238i \(0.901932\pi\)
\(882\) 0 0
\(883\) −43.0348 28.7549i −1.44824 0.967681i −0.997169 0.0751915i \(-0.976043\pi\)
−0.451068 0.892490i \(-0.648957\pi\)
\(884\) 0 0
\(885\) −8.66433 1.72344i −0.291248 0.0579329i
\(886\) 0 0
\(887\) 2.36214 0.978431i 0.0793129 0.0328525i −0.342674 0.939454i \(-0.611333\pi\)
0.421987 + 0.906602i \(0.361333\pi\)
\(888\) 0 0
\(889\) −23.9693 9.92840i −0.803904 0.332988i
\(890\) 0 0
\(891\) 54.2025 36.2170i 1.81585 1.21331i
\(892\) 0 0
\(893\) 1.36404 + 6.85748i 0.0456458 + 0.229477i
\(894\) 0 0
\(895\) −2.38450 −0.0797049
\(896\) 0 0
\(897\) 6.01663 0.200889
\(898\) 0 0
\(899\) 1.97036 + 9.90565i 0.0657151 + 0.330372i
\(900\) 0 0
\(901\) 11.8210 7.89857i 0.393816 0.263140i
\(902\) 0 0
\(903\) 50.1581 + 20.7762i 1.66916 + 0.691388i
\(904\) 0 0
\(905\) −4.79444 + 1.98592i −0.159372 + 0.0660142i
\(906\) 0 0
\(907\) −21.3347 4.24373i −0.708405 0.140911i −0.172279 0.985048i \(-0.555113\pi\)
−0.536127 + 0.844138i \(0.680113\pi\)
\(908\) 0 0
\(909\) 7.38893 + 4.93712i 0.245075 + 0.163754i
\(910\) 0 0
\(911\) −1.38797 1.38797i −0.0459856 0.0459856i 0.683740 0.729726i \(-0.260352\pi\)
−0.729726 + 0.683740i \(0.760352\pi\)
\(912\) 0 0
\(913\) 8.55950 8.55950i 0.283278 0.283278i
\(914\) 0 0
\(915\) 10.3414 15.4771i 0.341877 0.511655i
\(916\) 0 0
\(917\) 3.74177 18.8111i 0.123564 0.621198i
\(918\) 0 0
\(919\) −1.63873 3.95625i −0.0540568 0.130505i 0.894544 0.446980i \(-0.147501\pi\)
−0.948601 + 0.316475i \(0.897501\pi\)
\(920\) 0 0
\(921\) 8.37964 20.2302i 0.276119 0.666609i
\(922\) 0 0
\(923\) −3.67009 5.49268i −0.120802 0.180794i
\(924\) 0 0
\(925\) 8.35786 1.66248i 0.274805 0.0546621i
\(926\) 0 0
\(927\) 21.1713i 0.695358i
\(928\) 0 0
\(929\) 53.4969i 1.75518i −0.479415 0.877589i \(-0.659151\pi\)
0.479415 0.877589i \(-0.340849\pi\)
\(930\) 0 0
\(931\) −6.59161 + 1.31115i −0.216031 + 0.0429713i
\(932\) 0 0
\(933\) −38.0634 56.9659i −1.24614 1.86498i
\(934\) 0 0
\(935\) −2.40255 + 5.80028i −0.0785719 + 0.189689i
\(936\) 0 0
\(937\) 9.69070 + 23.3954i 0.316582 + 0.764295i 0.999431 + 0.0337361i \(0.0107406\pi\)
−0.682849 + 0.730559i \(0.739259\pi\)
\(938\) 0 0
\(939\) 10.5830 53.2042i 0.345362 1.73625i
\(940\) 0 0
\(941\) −14.9326 + 22.3482i −0.486788 + 0.728529i −0.990825 0.135153i \(-0.956847\pi\)
0.504037 + 0.863682i \(0.331847\pi\)
\(942\) 0 0
\(943\) −5.68614 + 5.68614i −0.185166 + 0.185166i
\(944\) 0 0
\(945\) 4.96222 + 4.96222i 0.161421 + 0.161421i
\(946\) 0 0
\(947\) −15.6970 10.4884i −0.510083 0.340827i 0.273747 0.961802i \(-0.411737\pi\)
−0.783830 + 0.620975i \(0.786737\pi\)
\(948\) 0 0
\(949\) −4.94890 0.984397i −0.160648 0.0319549i
\(950\) 0 0
\(951\) −13.7172 + 5.68185i −0.444811 + 0.184247i
\(952\) 0 0
\(953\) 31.0836 + 12.8753i 1.00690 + 0.417070i 0.824322 0.566122i \(-0.191557\pi\)
0.182575 + 0.983192i \(0.441557\pi\)
\(954\) 0 0
\(955\) 1.02745 0.686517i 0.0332473 0.0222152i
\(956\) 0 0
\(957\) 3.78059 + 19.0063i 0.122209 + 0.614387i
\(958\) 0 0
\(959\) −83.0932 −2.68322
\(960\) 0 0
\(961\) −16.3349 −0.526932
\(962\) 0 0
\(963\) −1.47587 7.41970i −0.0475592 0.239096i
\(964\) 0 0
\(965\) −10.6498 + 7.11598i −0.342830 + 0.229072i
\(966\) 0 0
\(967\) 39.0826 + 16.1886i 1.25681 + 0.520589i 0.908930 0.416949i \(-0.136901\pi\)
0.347883 + 0.937538i \(0.386901\pi\)
\(968\) 0 0
\(969\) −2.19760 + 0.910274i −0.0705970 + 0.0292422i
\(970\) 0 0
\(971\) −15.9123 3.16514i −0.510649 0.101574i −0.0669606 0.997756i \(-0.521330\pi\)
−0.443688 + 0.896181i \(0.646330\pi\)
\(972\) 0 0
\(973\) 62.9429 + 42.0571i 2.01786 + 1.34829i
\(974\) 0 0
\(975\) −16.9509 16.9509i −0.542862 0.542862i
\(976\) 0 0
\(977\) −14.4085 + 14.4085i −0.460970 + 0.460970i −0.898973 0.438004i \(-0.855686\pi\)
0.438004 + 0.898973i \(0.355686\pi\)
\(978\) 0 0
\(979\) −9.94018 + 14.8765i −0.317690 + 0.475456i
\(980\) 0 0
\(981\) 3.80759 19.1421i 0.121567 0.611159i
\(982\) 0 0
\(983\) −14.2810 34.4773i −0.455492 1.09966i −0.970203 0.242292i \(-0.922101\pi\)
0.514711 0.857364i \(-0.327899\pi\)
\(984\) 0 0
\(985\) −0.807045 + 1.94838i −0.0257146 + 0.0620805i
\(986\) 0 0
\(987\) 43.5788 + 65.2202i 1.38713 + 2.07598i
\(988\) 0 0
\(989\) −6.66337 + 1.32543i −0.211883 + 0.0421461i
\(990\) 0 0
\(991\) 5.17247i 0.164309i 0.996620 + 0.0821544i \(0.0261801\pi\)
−0.996620 + 0.0821544i \(0.973820\pi\)
\(992\) 0 0
\(993\) 8.74393i 0.277480i
\(994\) 0 0
\(995\) −10.0923 + 2.00749i −0.319948 + 0.0636416i
\(996\) 0 0
\(997\) −11.3818 17.0341i −0.360466 0.539476i 0.606267 0.795261i \(-0.292666\pi\)
−0.966734 + 0.255785i \(0.917666\pi\)
\(998\) 0 0
\(999\) 1.69136 4.08331i 0.0535123 0.129190i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.2.i.a.177.6 56
4.3 odd 2 64.2.i.a.21.3 56
8.3 odd 2 512.2.i.b.97.6 56
8.5 even 2 512.2.i.a.97.2 56
12.11 even 2 576.2.bd.a.469.5 56
64.3 odd 16 64.2.i.a.61.3 yes 56
64.29 even 16 512.2.i.a.417.2 56
64.35 odd 16 512.2.i.b.417.6 56
64.61 even 16 inner 256.2.i.a.81.6 56
192.131 even 16 576.2.bd.a.253.5 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.21.3 56 4.3 odd 2
64.2.i.a.61.3 yes 56 64.3 odd 16
256.2.i.a.81.6 56 64.61 even 16 inner
256.2.i.a.177.6 56 1.1 even 1 trivial
512.2.i.a.97.2 56 8.5 even 2
512.2.i.a.417.2 56 64.29 even 16
512.2.i.b.97.6 56 8.3 odd 2
512.2.i.b.417.6 56 64.35 odd 16
576.2.bd.a.253.5 56 192.131 even 16
576.2.bd.a.469.5 56 12.11 even 2