L(s) = 1 | + (0.435 + 2.18i)3-s + (0.649 − 0.434i)5-s + (3.64 + 1.50i)7-s + (−1.82 + 0.757i)9-s + (−5.80 − 1.15i)11-s + (2.03 + 1.35i)13-s + (1.23 + 1.23i)15-s + (0.960 − 0.960i)17-s + (−0.435 + 0.652i)19-s + (−1.71 + 8.63i)21-s + (−0.421 − 1.01i)23-s + (−1.67 + 4.05i)25-s + (1.26 + 1.89i)27-s + (−1.43 + 0.286i)29-s − 6.88i·31-s + ⋯ |
L(s) = 1 | + (0.251 + 1.26i)3-s + (0.290 − 0.194i)5-s + (1.37 + 0.570i)7-s + (−0.609 + 0.252i)9-s + (−1.74 − 0.347i)11-s + (0.564 + 0.377i)13-s + (0.318 + 0.318i)15-s + (0.232 − 0.232i)17-s + (−0.100 + 0.149i)19-s + (−0.374 + 1.88i)21-s + (−0.0879 − 0.212i)23-s + (−0.335 + 0.811i)25-s + (0.243 + 0.364i)27-s + (−0.267 + 0.0531i)29-s − 1.23i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.322 - 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.322 - 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22086 + 0.873667i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22086 + 0.873667i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (-0.435 - 2.18i)T + (-2.77 + 1.14i)T^{2} \) |
| 5 | \( 1 + (-0.649 + 0.434i)T + (1.91 - 4.61i)T^{2} \) |
| 7 | \( 1 + (-3.64 - 1.50i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (5.80 + 1.15i)T + (10.1 + 4.20i)T^{2} \) |
| 13 | \( 1 + (-2.03 - 1.35i)T + (4.97 + 12.0i)T^{2} \) |
| 17 | \( 1 + (-0.960 + 0.960i)T - 17iT^{2} \) |
| 19 | \( 1 + (0.435 - 0.652i)T + (-7.27 - 17.5i)T^{2} \) |
| 23 | \( 1 + (0.421 + 1.01i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (1.43 - 0.286i)T + (26.7 - 11.0i)T^{2} \) |
| 31 | \( 1 + 6.88iT - 31T^{2} \) |
| 37 | \( 1 + (1.07 + 1.61i)T + (-14.1 + 34.1i)T^{2} \) |
| 41 | \( 1 + (2.79 + 6.74i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-1.20 + 6.04i)T + (-39.7 - 16.4i)T^{2} \) |
| 47 | \( 1 + (-6.30 + 6.30i)T - 47iT^{2} \) |
| 53 | \( 1 + (-10.2 - 2.04i)T + (48.9 + 20.2i)T^{2} \) |
| 59 | \( 1 + (4.21 - 2.81i)T + (22.5 - 54.5i)T^{2} \) |
| 61 | \( 1 + (2.08 + 10.4i)T + (-56.3 + 23.3i)T^{2} \) |
| 67 | \( 1 + (1.42 + 7.14i)T + (-61.8 + 25.6i)T^{2} \) |
| 71 | \( 1 + (2.49 + 1.03i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (1.90 - 0.789i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-6.20 - 6.20i)T + 79iT^{2} \) |
| 83 | \( 1 + (1.13 - 1.70i)T + (-31.7 - 76.6i)T^{2} \) |
| 89 | \( 1 + (-1.15 + 2.79i)T + (-62.9 - 62.9i)T^{2} \) |
| 97 | \( 1 - 13.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00606076945688036796606426159, −10.95479616146796343928451949913, −10.44293633216596631004843491809, −9.282375630856488010254438489922, −8.513301574694536092620914494009, −7.60198633691239277863193172083, −5.58237722767433077114855307061, −5.08061600217496601242847731758, −3.84017181434496810892394233875, −2.25089938675213312400826079456,
1.42068178687241768572078799980, 2.65912533673665158914248771564, 4.63264406497127080227948413703, 5.80641482800001239627358766630, 7.14155602992267026232951199277, 7.87771077119393605359611202473, 8.410798705559270207062643409839, 10.20884775731575249206022965905, 10.82932381995781099501383223593, 11.96139519729803158642878647277