gp: [N,k,chi] = [576,2,Mod(49,576)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf) 
         
     
    
    
         
        magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("576.49");
S:= CuspForms(chi, 2);
N := Newforms(S); 
         
     
    
    
         
        sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(576, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 3, 4]))
N = Newforms(chi, 2, names="a")  
         
     
    
 Newform invariants  
    
    
    
         
        sage: traces = [72,0,-2,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces) 
         
     
    
    
         
        gp: f = lf[1] \\ Warning: the index may be different 
         
     
    
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding  \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
    
    
    
         
        gp: mfembed(f) 
         
     
    
    
  Refresh table 
 
    
This newform subspace  can be constructed as the kernel of the linear operator 
    \( T_{5}^{72} - 4 T_{5}^{71} + 8 T_{5}^{70} - 48 T_{5}^{69} - 362 T_{5}^{68} + 1784 T_{5}^{67} + \cdots  + 65536 \) 
    T5^72 - 4*T5^71 + 8*T5^70 - 48*T5^69 - 362*T5^68 + 1784*T5^67 - 3088*T5^66 + 23768*T5^65 + 94237*T5^64 - 647604*T5^63 + 1169128*T5^62 - 9220904*T5^61 + 4482466*T5^60 + 87574008*T5^59 - 102190800*T5^58 + 1185653784*T5^57 - 2169959238*T5^56 - 8254656280*T5^55 + 6905641872*T5^54 - 101695957504*T5^53 + 295350309958*T5^52 + 533946292408*T5^51 - 175025802064*T5^50 + 5628465266968*T5^49 - 23026889487723*T5^48 - 28260485297716*T5^47 + 3035870852136*T5^46 - 232390112675416*T5^45 + 1224421682900894*T5^44 + 1240988593682056*T5^43 + 172437944203344*T5^42 + 7250050997426568*T5^41 - 46279845911145158*T5^40 - 48670605365446072*T5^39 - 6925557804744304*T5^38 - 189546581537084768*T5^37 + 1216211875310614698*T5^36 + 1563571872169877000*T5^35 + 499101228449455952*T5^34 + 4344279007693992008*T5^33 - 20879107223791719475*T5^32 - 37086914580080592148*T5^31 - 14921726447356849304*T5^30 - 78613589983483996552*T5^29 + 164870016580306565158*T5^28 + 538599259122490202056*T5^27 + 479791665250293780688*T5^26 + 989958955532405566152*T5^25 + 473404950447331448209*T5^24 - 1237114307880567719028*T5^23 - 1455235273623812252472*T5^22 - 2561931499336123469440*T5^21 - 633893128674998962120*T5^20 + 2898867428941814917632*T5^19 + 3008293621653808728640*T5^18 + 3760234108568108074112*T5^17 + 3973109811737667405360*T5^16 + 1816677854618774416960*T5^15 + 706395466379395084160*T5^14 + 362817429438562370560*T5^13 + 52519669916909275520*T5^12 - 17411820000057848320*T5^11 - 1270940444129055744*T5^10 - 522867693995038720*T5^9 + 68383728502827264*T5^8 + 12099310841701376*T5^7 + 638304994052096*T5^6 + 65234148261888*T5^5 + 4529605668864*T5^4 + 66961801216*T5^3 + 615022592*T5^2 + 8978432*T5 + 65536 
    acting on \(S_{2}^{\mathrm{new}}(576, [\chi])\).