Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.bb (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 144 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 416 | 104 | 312 |
Cusp forms | 352 | 88 | 264 |
Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
576.2.bb.a | $4$ | $4.599$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-4\) | \(-12\) | \(q+(-2\zeta_{12}+\zeta_{12}^{3})q^{3}+(-1-\zeta_{12}+\cdots)q^{5}+\cdots\) |
576.2.bb.b | $4$ | $4.599$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(2\) | \(12\) | \(q+(1-2\zeta_{12}^{2})q^{3}+(\zeta_{12}^{2}-\zeta_{12}^{3})q^{5}+\cdots\) |
576.2.bb.c | $4$ | $4.599$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(4\) | \(-6\) | \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+(2\zeta_{12}^{2}-2\zeta_{12}^{3})q^{5}+\cdots\) |
576.2.bb.d | $4$ | $4.599$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(6\) | \(-8\) | \(6\) | \(q+(2-\zeta_{12}^{2})q^{3}+(-2-2\zeta_{12}+2\zeta_{12}^{3})q^{5}+\cdots\) |
576.2.bb.e | $72$ | $4.599$ | None | \(0\) | \(-2\) | \(4\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)