Newspace parameters
| Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 144.x (of order \(12\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(1.14984578911\) |
| Analytic rank: | \(0\) |
| Dimension: | \(72\) |
| Relative dimension: | \(18\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 13.1 | −1.39409 | + | 0.237718i | 1.28937 | − | 1.15652i | 1.88698 | − | 0.662802i | −0.326078 | − | 1.21694i | −1.52257 | + | 1.91880i | 0.707732 | − | 0.408609i | −2.47306 | + | 1.37258i | 0.324925 | − | 2.98235i | 0.743871 | + | 1.61901i |
| 13.2 | −1.31447 | + | 0.521699i | 0.241506 | + | 1.71513i | 1.45566 | − | 1.37152i | 0.531653 | + | 1.98415i | −1.21223 | − | 2.12849i | 1.54969 | − | 0.894715i | −1.19790 | + | 2.56223i | −2.88335 | + | 0.828427i | −1.73397 | − | 2.33075i |
| 13.3 | −1.17822 | − | 0.782180i | 1.34849 | + | 1.08700i | 0.776390 | + | 1.84315i | −0.777246 | − | 2.90072i | −0.738585 | − | 2.33549i | 1.04527 | − | 0.603486i | 0.526922 | − | 2.77891i | 0.636858 | + | 2.93162i | −1.35312 | + | 4.02562i |
| 13.4 | −0.709450 | − | 1.22339i | −0.705067 | − | 1.58205i | −0.993361 | + | 1.73587i | −0.679606 | − | 2.53632i | −1.43525 | + | 1.98496i | −0.614293 | + | 0.354662i | 2.82838 | − | 0.0162452i | −2.00576 | + | 2.23090i | −2.62076 | + | 2.63082i |
| 13.5 | −0.671979 | + | 1.24436i | 1.72444 | − | 0.162237i | −1.09689 | − | 1.67237i | 0.592492 | + | 2.21121i | −0.956902 | + | 2.25485i | −2.67054 | + | 1.54184i | 2.81813 | − | 0.241128i | 2.94736 | − | 0.559536i | −3.14970 | − | 0.748611i |
| 13.6 | −0.595953 | − | 1.28251i | 1.66966 | − | 0.460673i | −1.28968 | + | 1.52863i | 0.722679 | + | 2.69708i | −1.58586 | − | 1.86683i | 2.89314 | − | 1.67035i | 2.72908 | + | 0.743037i | 2.57556 | − | 1.53834i | 3.02835 | − | 2.53418i |
| 13.7 | −0.174567 | + | 1.40340i | 0.215523 | − | 1.71859i | −1.93905 | − | 0.489974i | −0.733432 | − | 2.73721i | 2.37424 | + | 0.602473i | 1.14487 | − | 0.660988i | 1.02612 | − | 2.63573i | −2.90710 | − | 0.740791i | 3.96942 | − | 0.551472i |
| 13.8 | 0.193628 | + | 1.40090i | −1.53873 | − | 0.795173i | −1.92502 | + | 0.542506i | 0.646846 | + | 2.41406i | 0.816012 | − | 2.30957i | −2.82197 | + | 1.62927i | −1.13273 | − | 2.59170i | 1.73540 | + | 2.44712i | −3.25660 | + | 1.37359i |
| 13.9 | 0.282685 | + | 1.38567i | 0.944122 | + | 1.45211i | −1.84018 | + | 0.783419i | 0.131764 | + | 0.491749i | −1.74526 | + | 1.71874i | 2.40518 | − | 1.38863i | −1.60575 | − | 2.32842i | −1.21727 | + | 2.74194i | −0.644156 | + | 0.321592i |
| 13.10 | 0.327151 | − | 1.37585i | −0.844796 | + | 1.51206i | −1.78594 | − | 0.900224i | −0.891015 | − | 3.32531i | 1.80399 | + | 1.65699i | 3.95817 | − | 2.28525i | −1.82285 | + | 2.16269i | −1.57264 | − | 2.55476i | −4.86664 | + | 0.138025i |
| 13.11 | 0.562928 | − | 1.29735i | 0.388965 | − | 1.68781i | −1.36622 | − | 1.46063i | 0.226831 | + | 0.846545i | −1.97072 | − | 1.45474i | 0.567074 | − | 0.327400i | −2.66403 | + | 0.950239i | −2.69741 | − | 1.31300i | 1.22595 | + | 0.182265i |
| 13.12 | 0.932590 | − | 1.06314i | 1.51401 | + | 0.841300i | −0.260550 | − | 1.98296i | 0.0185225 | + | 0.0691269i | 2.30637 | − | 0.825017i | −1.28192 | + | 0.740118i | −2.35115 | − | 1.57228i | 1.58443 | + | 2.54747i | 0.0907658 | + | 0.0447750i |
| 13.13 | 1.04877 | + | 0.948722i | −1.13227 | + | 1.31071i | 0.199854 | + | 1.98999i | 0.00302457 | + | 0.0112878i | −2.43100 | + | 0.300433i | −1.05753 | + | 0.610563i | −1.67835 | + | 2.27665i | −0.435936 | − | 2.96816i | −0.00753693 | + | 0.0147079i |
| 13.14 | 1.06791 | + | 0.927124i | 1.71768 | − | 0.222657i | 0.280882 | + | 1.98018i | −0.798307 | − | 2.97932i | 2.04077 | + | 1.35472i | −1.78208 | + | 1.02889i | −1.53591 | + | 2.37507i | 2.90085 | − | 0.764906i | 1.90968 | − | 3.92179i |
| 13.15 | 1.24122 | − | 0.677764i | −1.37530 | + | 1.05287i | 1.08127 | − | 1.68251i | 1.10094 | + | 4.10876i | −0.993456 | + | 2.23898i | 1.63313 | − | 0.942891i | 0.201751 | − | 2.82122i | 0.782911 | − | 2.89604i | 4.15129 | + | 4.35372i |
| 13.16 | 1.26390 | − | 0.634467i | −1.68301 | − | 0.409248i | 1.19490 | − | 1.60381i | −0.884514 | − | 3.30105i | −2.38681 | + | 0.550563i | −2.63210 | + | 1.51965i | 0.492680 | − | 2.78519i | 2.66503 | + | 1.37753i | −3.21235 | − | 3.61102i |
| 13.17 | 1.30272 | + | 0.550382i | −1.21980 | − | 1.22967i | 1.39416 | + | 1.43399i | −0.0468197 | − | 0.174734i | −0.912266 | − | 2.27327i | 4.04791 | − | 2.33706i | 1.02696 | + | 2.63540i | −0.0241875 | + | 2.99990i | 0.0351772 | − | 0.253398i |
| 13.18 | 1.41328 | − | 0.0512684i | 0.543291 | − | 1.64464i | 1.99474 | − | 0.144914i | 0.430214 | + | 1.60558i | 0.683506 | − | 2.35219i | −3.62762 | + | 2.09441i | 2.81171 | − | 0.307071i | −2.40967 | − | 1.78703i | 0.690330 | + | 2.24708i |
| 61.1 | −1.40500 | + | 0.161164i | −1.68781 | + | 0.388965i | 1.94805 | − | 0.452871i | −0.846545 | − | 0.226831i | 2.30869 | − | 0.818511i | −0.567074 | − | 0.327400i | −2.66403 | + | 0.950239i | 2.69741 | − | 1.31300i | 1.22595 | + | 0.182265i |
| 61.2 | −1.38700 | − | 0.276075i | 0.841300 | + | 1.51401i | 1.84757 | + | 0.765835i | −0.0691269 | − | 0.0185225i | −0.748909 | − | 2.33220i | 1.28192 | + | 0.740118i | −2.35115 | − | 1.57228i | −1.58443 | + | 2.54747i | 0.0907658 | + | 0.0447750i |
| See all 72 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.c | even | 3 | 1 | inner |
| 16.e | even | 4 | 1 | inner |
| 144.x | even | 12 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 144.2.x.e | ✓ | 72 |
| 3.b | odd | 2 | 1 | 432.2.y.e | 72 | ||
| 4.b | odd | 2 | 1 | 576.2.bb.e | 72 | ||
| 9.c | even | 3 | 1 | inner | 144.2.x.e | ✓ | 72 |
| 9.d | odd | 6 | 1 | 432.2.y.e | 72 | ||
| 12.b | even | 2 | 1 | 1728.2.bc.e | 72 | ||
| 16.e | even | 4 | 1 | inner | 144.2.x.e | ✓ | 72 |
| 16.f | odd | 4 | 1 | 576.2.bb.e | 72 | ||
| 36.f | odd | 6 | 1 | 576.2.bb.e | 72 | ||
| 36.h | even | 6 | 1 | 1728.2.bc.e | 72 | ||
| 48.i | odd | 4 | 1 | 432.2.y.e | 72 | ||
| 48.k | even | 4 | 1 | 1728.2.bc.e | 72 | ||
| 144.u | even | 12 | 1 | 1728.2.bc.e | 72 | ||
| 144.v | odd | 12 | 1 | 576.2.bb.e | 72 | ||
| 144.w | odd | 12 | 1 | 432.2.y.e | 72 | ||
| 144.x | even | 12 | 1 | inner | 144.2.x.e | ✓ | 72 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 144.2.x.e | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
| 144.2.x.e | ✓ | 72 | 9.c | even | 3 | 1 | inner |
| 144.2.x.e | ✓ | 72 | 16.e | even | 4 | 1 | inner |
| 144.2.x.e | ✓ | 72 | 144.x | even | 12 | 1 | inner |
| 432.2.y.e | 72 | 3.b | odd | 2 | 1 | ||
| 432.2.y.e | 72 | 9.d | odd | 6 | 1 | ||
| 432.2.y.e | 72 | 48.i | odd | 4 | 1 | ||
| 432.2.y.e | 72 | 144.w | odd | 12 | 1 | ||
| 576.2.bb.e | 72 | 4.b | odd | 2 | 1 | ||
| 576.2.bb.e | 72 | 16.f | odd | 4 | 1 | ||
| 576.2.bb.e | 72 | 36.f | odd | 6 | 1 | ||
| 576.2.bb.e | 72 | 144.v | odd | 12 | 1 | ||
| 1728.2.bc.e | 72 | 12.b | even | 2 | 1 | ||
| 1728.2.bc.e | 72 | 36.h | even | 6 | 1 | ||
| 1728.2.bc.e | 72 | 48.k | even | 4 | 1 | ||
| 1728.2.bc.e | 72 | 144.u | even | 12 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} - 4 T_{5}^{71} + 8 T_{5}^{70} - 48 T_{5}^{69} - 362 T_{5}^{68} + 1784 T_{5}^{67} + \cdots + 65536 \)
acting on \(S_{2}^{\mathrm{new}}(144, [\chi])\).