Newspace parameters
Level: | \( N \) | \(=\) | \( 558 = 2 \cdot 3^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 558.g (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.45565243279\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
211.1 | −0.500000 | − | 0.866025i | −1.69035 | − | 0.377782i | −0.500000 | + | 0.866025i | −1.17303 | − | 2.03175i | 0.518006 | + | 1.65278i | 1.52021 | − | 2.63308i | 1.00000 | 2.71456 | + | 1.27717i | −1.17303 | + | 2.03175i | ||
211.2 | −0.500000 | − | 0.866025i | −1.64881 | − | 0.530487i | −0.500000 | + | 0.866025i | 1.26260 | + | 2.18689i | 0.364991 | + | 1.69316i | −1.93524 | + | 3.35193i | 1.00000 | 2.43717 | + | 1.74935i | 1.26260 | − | 2.18689i | ||
211.3 | −0.500000 | − | 0.866025i | −1.59012 | + | 0.686665i | −0.500000 | + | 0.866025i | −1.38064 | − | 2.39134i | 1.38973 | + | 1.03375i | −0.281122 | + | 0.486917i | 1.00000 | 2.05698 | − | 2.18376i | −1.38064 | + | 2.39134i | ||
211.4 | −0.500000 | − | 0.866025i | −1.35283 | − | 1.08159i | −0.500000 | + | 0.866025i | 0.281395 | + | 0.487391i | −0.260271 | + | 1.71238i | 0.502527 | − | 0.870402i | 1.00000 | 0.660311 | + | 2.92643i | 0.281395 | − | 0.487391i | ||
211.5 | −0.500000 | − | 0.866025i | −1.06032 | + | 1.36957i | −0.500000 | + | 0.866025i | 1.73418 | + | 3.00368i | 1.71624 | + | 0.233475i | 0.0972558 | − | 0.168452i | 1.00000 | −0.751457 | − | 2.90436i | 1.73418 | − | 3.00368i | ||
211.6 | −0.500000 | − | 0.866025i | −0.735824 | + | 1.56798i | −0.500000 | + | 0.866025i | 0.112175 | + | 0.194293i | 1.72582 | − | 0.146748i | 1.36938 | − | 2.37184i | 1.00000 | −1.91712 | − | 2.30752i | 0.112175 | − | 0.194293i | ||
211.7 | −0.500000 | − | 0.866025i | −0.551268 | − | 1.64198i | −0.500000 | + | 0.866025i | −1.55594 | − | 2.69497i | −1.14636 | + | 1.29840i | −2.29219 | + | 3.97020i | 1.00000 | −2.39221 | + | 1.81034i | −1.55594 | + | 2.69497i | ||
211.8 | −0.500000 | − | 0.866025i | 0.236607 | − | 1.71581i | −0.500000 | + | 0.866025i | 0.111920 | + | 0.193852i | −1.60424 | + | 0.652999i | 0.637652 | − | 1.10445i | 1.00000 | −2.88803 | − | 0.811948i | 0.111920 | − | 0.193852i | ||
211.9 | −0.500000 | − | 0.866025i | 0.369655 | + | 1.69215i | −0.500000 | + | 0.866025i | 1.11634 | + | 1.93356i | 1.28061 | − | 1.16620i | −1.31227 | + | 2.27292i | 1.00000 | −2.72671 | + | 1.25102i | 1.11634 | − | 1.93356i | ||
211.10 | −0.500000 | − | 0.866025i | 1.06506 | − | 1.36589i | −0.500000 | + | 0.866025i | 0.473803 | + | 0.820651i | −1.71542 | − | 0.239428i | 0.356824 | − | 0.618038i | 1.00000 | −0.731286 | − | 2.90951i | 0.473803 | − | 0.820651i | ||
211.11 | −0.500000 | − | 0.866025i | 1.07682 | + | 1.35663i | −0.500000 | + | 0.866025i | 0.251592 | + | 0.435771i | 0.636470 | − | 1.61087i | 1.49612 | − | 2.59136i | 1.00000 | −0.680914 | + | 2.92170i | 0.251592 | − | 0.435771i | ||
211.12 | −0.500000 | − | 0.866025i | 1.21171 | + | 1.23764i | −0.500000 | + | 0.866025i | −2.00250 | − | 3.46843i | 0.465974 | − | 1.66819i | −0.535456 | + | 0.927438i | 1.00000 | −0.0635133 | + | 2.99933i | −2.00250 | + | 3.46843i | ||
211.13 | −0.500000 | − | 0.866025i | 1.54827 | − | 0.776432i | −0.500000 | + | 0.866025i | −1.91192 | − | 3.31155i | −1.44655 | − | 0.952629i | 1.95675 | − | 3.38919i | 1.00000 | 1.79431 | − | 2.40426i | −1.91192 | + | 3.31155i | ||
211.14 | −0.500000 | − | 0.866025i | 1.68060 | − | 0.419045i | −0.500000 | + | 0.866025i | −0.487564 | − | 0.844486i | −1.20320 | − | 1.24592i | −0.761936 | + | 1.31971i | 1.00000 | 2.64880 | − | 1.40849i | −0.487564 | + | 0.844486i | ||
211.15 | −0.500000 | − | 0.866025i | 1.72031 | − | 0.201361i | −0.500000 | + | 0.866025i | 2.15411 | + | 3.73103i | −1.03454 | − | 1.38915i | 1.90014 | − | 3.29114i | 1.00000 | 2.91891 | − | 0.692806i | 2.15411 | − | 3.73103i | ||
211.16 | −0.500000 | − | 0.866025i | 1.72050 | + | 0.199742i | −0.500000 | + | 0.866025i | 0.513483 | + | 0.889379i | −0.687266 | − | 1.58986i | −2.21865 | + | 3.84281i | 1.00000 | 2.92021 | + | 0.687310i | 0.513483 | − | 0.889379i | ||
439.1 | −0.500000 | + | 0.866025i | −1.69035 | + | 0.377782i | −0.500000 | − | 0.866025i | −1.17303 | + | 2.03175i | 0.518006 | − | 1.65278i | 1.52021 | + | 2.63308i | 1.00000 | 2.71456 | − | 1.27717i | −1.17303 | − | 2.03175i | ||
439.2 | −0.500000 | + | 0.866025i | −1.64881 | + | 0.530487i | −0.500000 | − | 0.866025i | 1.26260 | − | 2.18689i | 0.364991 | − | 1.69316i | −1.93524 | − | 3.35193i | 1.00000 | 2.43717 | − | 1.74935i | 1.26260 | + | 2.18689i | ||
439.3 | −0.500000 | + | 0.866025i | −1.59012 | − | 0.686665i | −0.500000 | − | 0.866025i | −1.38064 | + | 2.39134i | 1.38973 | − | 1.03375i | −0.281122 | − | 0.486917i | 1.00000 | 2.05698 | + | 2.18376i | −1.38064 | − | 2.39134i | ||
439.4 | −0.500000 | + | 0.866025i | −1.35283 | + | 1.08159i | −0.500000 | − | 0.866025i | 0.281395 | − | 0.487391i | −0.260271 | − | 1.71238i | 0.502527 | + | 0.870402i | 1.00000 | 0.660311 | − | 2.92643i | 0.281395 | + | 0.487391i | ||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
279.e | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 558.2.g.a | ✓ | 32 |
3.b | odd | 2 | 1 | 1674.2.g.b | 32 | ||
9.c | even | 3 | 1 | 558.2.h.a | yes | 32 | |
9.d | odd | 6 | 1 | 1674.2.h.b | 32 | ||
31.c | even | 3 | 1 | 558.2.h.a | yes | 32 | |
93.h | odd | 6 | 1 | 1674.2.h.b | 32 | ||
279.e | even | 3 | 1 | inner | 558.2.g.a | ✓ | 32 |
279.q | odd | 6 | 1 | 1674.2.g.b | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
558.2.g.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
558.2.g.a | ✓ | 32 | 279.e | even | 3 | 1 | inner |
558.2.h.a | yes | 32 | 9.c | even | 3 | 1 | |
558.2.h.a | yes | 32 | 31.c | even | 3 | 1 | |
1674.2.g.b | 32 | 3.b | odd | 2 | 1 | ||
1674.2.g.b | 32 | 279.q | odd | 6 | 1 | ||
1674.2.h.b | 32 | 9.d | odd | 6 | 1 | ||
1674.2.h.b | 32 | 93.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{32} + T_{5}^{31} + 50 T_{5}^{30} + 27 T_{5}^{29} + 1530 T_{5}^{28} + 448 T_{5}^{27} + \cdots + 123201 \)
acting on \(S_{2}^{\mathrm{new}}(558, [\chi])\).