L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.735 + 1.56i)3-s + (−0.499 + 0.866i)4-s + (0.112 + 0.194i)5-s + (1.72 − 0.146i)6-s + (1.36 − 2.37i)7-s + 0.999·8-s + (−1.91 − 2.30i)9-s + (0.112 − 0.194i)10-s − 1.78·11-s + (−0.989 − 1.42i)12-s + (−2.36 − 4.08i)13-s − 2.73·14-s + (−0.387 + 0.0329i)15-s + (−0.5 − 0.866i)16-s + (1.76 + 3.06i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.424 + 0.905i)3-s + (−0.249 + 0.433i)4-s + (0.0501 + 0.0868i)5-s + (0.704 − 0.0599i)6-s + (0.517 − 0.896i)7-s + 0.353·8-s + (−0.639 − 0.769i)9-s + (0.0354 − 0.0614i)10-s − 0.539·11-s + (−0.285 − 0.410i)12-s + (−0.654 − 1.13i)13-s − 0.731·14-s + (−0.0999 + 0.00850i)15-s + (−0.125 − 0.216i)16-s + (0.429 + 0.743i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.301 + 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.301 + 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.723719 - 0.529982i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.723719 - 0.529982i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.735 - 1.56i)T \) |
| 31 | \( 1 + (0.472 + 5.54i)T \) |
good | 5 | \( 1 + (-0.112 - 0.194i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.36 + 2.37i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 1.78T + 11T^{2} \) |
| 13 | \( 1 + (2.36 + 4.08i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.76 - 3.06i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.48 - 2.57i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.28 + 7.42i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.91 - 5.05i)T + (-14.5 + 25.1i)T^{2} \) |
| 37 | \( 1 + (5.39 + 9.33i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.86 + 3.22i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.34 + 7.53i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.95 - 6.84i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.39 - 2.40i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 0.735T + 59T^{2} \) |
| 61 | \( 1 + (-0.690 - 1.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.77 - 10.0i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.76 + 9.99i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.13 - 1.96i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.08 + 12.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 10.9T + 83T^{2} \) |
| 89 | \( 1 + 13.3T + 89T^{2} \) |
| 97 | \( 1 + (-6.40 - 11.0i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49844709899771701388986392580, −10.20942010614630142470284487673, −8.970009566448183617127422221718, −8.109546250130694768269209726776, −7.16564101038652420691940116922, −5.72520986353285418507490341489, −4.79174992218270531807385231584, −3.85225725419628714253459701686, −2.69709515972558456075231731477, −0.66452005209993419296844071447,
1.42704798286351533541034424214, 2.75863241490234324042271110813, 5.06621215245536594910418162429, 5.27165893290003282563740860031, 6.64823336633767212337972054351, 7.26588915329405012013880907005, 8.160269549755802047849952948233, 9.028189038691084325724842447157, 9.840897393448407444296372503733, 11.25430214185135264423600229366