L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.72 + 0.199i)3-s + (−0.499 + 0.866i)4-s + (0.513 + 0.889i)5-s + (−0.687 − 1.58i)6-s + (−2.21 + 3.84i)7-s + 0.999·8-s + (2.92 + 0.687i)9-s + (0.513 − 0.889i)10-s + 0.288·11-s + (−1.03 + 1.39i)12-s + (−2.84 − 4.92i)13-s + 4.43·14-s + (0.705 + 1.63i)15-s + (−0.5 − 0.866i)16-s + (3.27 + 5.67i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.993 + 0.115i)3-s + (−0.249 + 0.433i)4-s + (0.229 + 0.397i)5-s + (−0.280 − 0.649i)6-s + (−0.838 + 1.45i)7-s + 0.353·8-s + (0.973 + 0.229i)9-s + (0.162 − 0.281i)10-s + 0.0870·11-s + (−0.298 + 0.401i)12-s + (−0.788 − 1.36i)13-s + 1.18·14-s + (0.182 + 0.421i)15-s + (−0.125 − 0.216i)16-s + (0.795 + 1.37i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.778 - 0.627i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.778 - 0.627i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.44558 + 0.509961i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44558 + 0.509961i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.72 - 0.199i)T \) |
| 31 | \( 1 + (-5.46 - 1.05i)T \) |
good | 5 | \( 1 + (-0.513 - 0.889i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.21 - 3.84i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 0.288T + 11T^{2} \) |
| 13 | \( 1 + (2.84 + 4.92i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.27 - 5.67i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.23 - 3.87i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.05 - 7.02i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.342 - 0.593i)T + (-14.5 + 25.1i)T^{2} \) |
| 37 | \( 1 + (-0.516 - 0.894i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.50 + 4.33i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.687 - 1.19i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.41 + 4.18i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.03 - 3.52i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 9.82T + 59T^{2} \) |
| 61 | \( 1 + (2.40 + 4.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.37 + 4.11i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.62 + 6.28i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.25 + 10.8i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.06 + 10.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 9.65T + 83T^{2} \) |
| 89 | \( 1 - 5.37T + 89T^{2} \) |
| 97 | \( 1 + (3.01 + 5.23i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33196064649125306946646910006, −10.05499469500639348685531537397, −9.271683920926881748189683799553, −8.266391629903557417089281511264, −7.74911418838067140689559441167, −6.27828547756468760532538713293, −5.31546145185676423531041784329, −3.56373659381490930058833947186, −2.97469302374402092521554947188, −1.90522383945684676777111228082,
0.928814262979280024201263924991, 2.69461478792230556466723810551, 4.07857126043264459588663337600, 4.89124589561736257910380198229, 6.70835579520528761362495456315, 7.00225664128878754581166054071, 7.915542337161162525122908576438, 8.999291648962852937585758184841, 9.749564133433044720625490235284, 10.04568363992219966077728291181