L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.35 − 1.08i)3-s + (−0.499 + 0.866i)4-s + (0.281 + 0.487i)5-s + (−0.260 + 1.71i)6-s + (0.502 − 0.870i)7-s + 0.999·8-s + (0.660 + 2.92i)9-s + (0.281 − 0.487i)10-s − 0.144·11-s + (1.61 − 0.630i)12-s + (2.35 + 4.08i)13-s − 1.00·14-s + (0.146 − 0.963i)15-s + (−0.5 − 0.866i)16-s + (0.900 + 1.55i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.781 − 0.624i)3-s + (−0.249 + 0.433i)4-s + (0.125 + 0.217i)5-s + (−0.106 + 0.699i)6-s + (0.189 − 0.328i)7-s + 0.353·8-s + (0.220 + 0.975i)9-s + (0.0889 − 0.154i)10-s − 0.0435·11-s + (0.465 − 0.182i)12-s + (0.654 + 1.13i)13-s − 0.268·14-s + (0.0378 − 0.248i)15-s + (−0.125 − 0.216i)16-s + (0.218 + 0.378i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.897101 - 0.378149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.897101 - 0.378149i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (1.35 + 1.08i)T \) |
| 31 | \( 1 + (-4.75 - 2.90i)T \) |
good | 5 | \( 1 + (-0.281 - 0.487i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.502 + 0.870i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 0.144T + 11T^{2} \) |
| 13 | \( 1 + (-2.35 - 4.08i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.900 - 1.55i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.19 - 2.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.87 + 3.24i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.145 + 0.251i)T + (-14.5 + 25.1i)T^{2} \) |
| 37 | \( 1 + (-1.95 - 3.39i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.763 + 1.32i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.55 + 7.89i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.11 + 8.86i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.18 + 3.77i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 1.17T + 59T^{2} \) |
| 61 | \( 1 + (-1.68 - 2.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.87 - 10.1i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.93 + 5.09i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.10 + 3.65i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.92 - 5.06i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.17T + 83T^{2} \) |
| 89 | \( 1 + 6.44T + 89T^{2} \) |
| 97 | \( 1 + (-2.71 - 4.69i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63464988199907963241609859300, −10.17140434679075674403219259789, −8.861845838794052549293234972319, −8.055828920124165690604855972550, −6.96944388610797112271255434272, −6.28491157869578406698597461179, −4.99410934497910983288968189906, −3.91353911065928250285133925564, −2.31350414369264506158853156274, −1.08118862682528103481473692065,
0.956568894775976311929072018853, 3.20025074803121119182023251045, 4.63150873699592568523795405915, 5.45434536967467855967235821706, 6.11575736342298120472709000849, 7.26665844340274362421845409294, 8.258052535271227436981147363391, 9.256486325323203283932842304694, 9.836538171213809447643534866223, 10.91118578845706888063268039522