Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.e (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(54, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 390 | 126 | 264 |
Cusp forms | 366 | 126 | 240 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(54, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
54.8.e.a | $60$ | $16.869$ | None | \(0\) | \(0\) | \(213\) | \(1677\) | ||
54.8.e.b | $66$ | $16.869$ | None | \(0\) | \(0\) | \(213\) | \(-1677\) |
Decomposition of \(S_{8}^{\mathrm{old}}(54, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)