Properties

Label 54.8.e
Level $54$
Weight $8$
Character orbit 54.e
Rep. character $\chi_{54}(7,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $126$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 54.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(54, [\chi])\).

Total New Old
Modular forms 390 126 264
Cusp forms 366 126 240
Eisenstein series 24 0 24

Trace form

\( 126 q + 426 q^{5} - 1392 q^{6} + 1536 q^{8} + 3444 q^{9} - 18267 q^{11} - 2496 q^{12} + 26832 q^{14} - 12762 q^{15} + 58956 q^{17} + 72528 q^{18} - 54528 q^{20} + 124512 q^{21} - 105768 q^{22} + 284712 q^{23}+ \cdots + 140319180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(54, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
54.8.e.a 54.e 27.e $60$ $16.869$ None 54.8.e.a \(0\) \(0\) \(213\) \(1677\) $\mathrm{SU}(2)[C_{9}]$
54.8.e.b 54.e 27.e $66$ $16.869$ None 54.8.e.b \(0\) \(0\) \(213\) \(-1677\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{8}^{\mathrm{old}}(54, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)