Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [54,8,Mod(7,54)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(54, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([16]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("54.7");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.e (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(16.8687913761\) |
Analytic rank: | \(0\) |
Dimension: | \(66\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | 7.51754 | − | 2.73616i | −45.8155 | + | 9.37779i | 49.0268 | − | 41.1384i | 28.4674 | + | 161.447i | −318.761 | + | 195.856i | −626.525 | − | 525.717i | 256.000 | − | 443.405i | 2011.11 | − | 859.295i | 655.749 | + | 1135.79i |
7.2 | 7.51754 | − | 2.73616i | −45.6144 | − | 10.3117i | 49.0268 | − | 41.1384i | −8.01649 | − | 45.4638i | −371.122 | + | 47.2898i | 1037.92 | + | 870.920i | 256.000 | − | 443.405i | 1974.34 | + | 940.721i | −184.661 | − | 319.841i |
7.3 | 7.51754 | − | 2.73616i | −31.2009 | + | 34.8354i | 49.0268 | − | 41.1384i | −25.2309 | − | 143.092i | −139.239 | + | 347.247i | 591.389 | + | 496.234i | 256.000 | − | 443.405i | −240.006 | − | 2173.79i | −581.196 | − | 1006.66i |
7.4 | 7.51754 | − | 2.73616i | −30.6695 | − | 35.3041i | 49.0268 | − | 41.1384i | −78.9512 | − | 447.755i | −327.157 | − | 181.484i | −442.034 | − | 370.911i | 256.000 | − | 443.405i | −305.764 | + | 2165.52i | −1818.65 | − | 3149.99i |
7.5 | 7.51754 | − | 2.73616i | −24.5414 | − | 39.8086i | 49.0268 | − | 41.1384i | 50.0623 | + | 283.917i | −293.413 | − | 232.113i | −793.355 | − | 665.704i | 256.000 | − | 443.405i | −982.442 | + | 1953.91i | 1153.19 | + | 1997.38i |
7.6 | 7.51754 | − | 2.73616i | 6.43466 | − | 46.3206i | 49.0268 | − | 41.1384i | 60.2827 | + | 341.880i | −78.3677 | − | 365.823i | 1314.87 | + | 1103.31i | 256.000 | − | 443.405i | −2104.19 | − | 596.114i | 1388.62 | + | 2405.15i |
7.7 | 7.51754 | − | 2.73616i | 8.34949 | + | 46.0140i | 49.0268 | − | 41.1384i | −47.1028 | − | 267.133i | 188.669 | + | 323.066i | −885.713 | − | 743.201i | 256.000 | − | 443.405i | −2047.57 | + | 768.386i | −1085.02 | − | 1879.30i |
7.8 | 7.51754 | − | 2.73616i | 33.7094 | − | 32.4142i | 49.0268 | − | 41.1384i | 13.6066 | + | 77.1671i | 164.721 | − | 335.909i | −711.029 | − | 596.624i | 256.000 | − | 443.405i | 85.6427 | − | 2185.32i | 313.430 | + | 542.877i |
7.9 | 7.51754 | − | 2.73616i | 35.4628 | − | 30.4859i | 49.0268 | − | 41.1384i | −84.4758 | − | 479.086i | 183.179 | − | 326.211i | 666.476 | + | 559.239i | 256.000 | − | 443.405i | 328.222 | − | 2162.23i | −1945.91 | − | 3370.41i |
7.10 | 7.51754 | − | 2.73616i | 37.5285 | + | 27.9037i | 49.0268 | − | 41.1384i | −21.4637 | − | 121.726i | 358.471 | + | 107.083i | 674.452 | + | 565.932i | 256.000 | − | 443.405i | 629.771 | + | 2094.36i | −494.417 | − | 856.356i |
7.11 | 7.51754 | − | 2.73616i | 43.9672 | + | 15.9339i | 49.0268 | − | 41.1384i | 72.2267 | + | 409.618i | 374.123 | − | 0.517653i | −152.227 | − | 127.734i | 256.000 | − | 443.405i | 1679.22 | + | 1401.13i | 1663.75 | + | 2881.70i |
13.1 | −1.38919 | − | 7.87846i | −45.0005 | − | 12.7261i | −60.1403 | + | 21.8893i | −56.5716 | − | 47.4692i | −37.7478 | + | 372.214i | 1413.94 | + | 514.632i | 256.000 | + | 443.405i | 1863.09 | + | 1145.36i | −295.396 | + | 511.640i |
13.2 | −1.38919 | − | 7.87846i | −44.6459 | − | 13.9191i | −60.1403 | + | 21.8893i | 200.637 | + | 168.354i | −47.6395 | + | 371.077i | −437.811 | − | 159.350i | 256.000 | + | 443.405i | 1799.52 | + | 1242.86i | 1047.65 | − | 1814.59i |
13.3 | −1.38919 | − | 7.87846i | −43.4440 | + | 17.3094i | −60.1403 | + | 21.8893i | −179.661 | − | 150.754i | 196.723 | + | 318.226i | −1557.21 | − | 566.780i | 256.000 | + | 443.405i | 1587.77 | − | 1503.98i | −938.125 | + | 1624.88i |
13.4 | −1.38919 | − | 7.87846i | −23.2566 | + | 40.5725i | −60.1403 | + | 21.8893i | 297.214 | + | 249.392i | 351.957 | + | 126.863i | 210.527 | + | 76.6255i | 256.000 | + | 443.405i | −1105.26 | − | 1887.16i | 1551.94 | − | 2688.04i |
13.5 | −1.38919 | − | 7.87846i | −7.96623 | − | 46.0819i | −60.1403 | + | 21.8893i | −406.101 | − | 340.759i | −351.988 | + | 126.778i | −407.930 | − | 148.474i | 256.000 | + | 443.405i | −2060.08 | + | 734.197i | −2120.51 | + | 3672.83i |
13.6 | −1.38919 | − | 7.87846i | −2.46752 | − | 46.7002i | −60.1403 | + | 21.8893i | 138.474 | + | 116.193i | −364.498 | + | 84.3155i | 95.8895 | + | 34.9009i | 256.000 | + | 443.405i | −2174.82 | + | 230.467i | 723.058 | − | 1252.37i |
13.7 | −1.38919 | − | 7.87846i | 10.3801 | + | 45.5988i | −60.1403 | + | 21.8893i | −119.330 | − | 100.129i | 344.829 | − | 145.124i | 96.2629 | + | 35.0368i | 256.000 | + | 443.405i | −1971.51 | + | 946.640i | −623.095 | + | 1079.23i |
13.8 | −1.38919 | − | 7.87846i | 33.5262 | − | 32.6035i | −60.1403 | + | 21.8893i | −0.605177 | − | 0.507804i | −303.440 | − | 218.843i | 1422.78 | + | 517.850i | 256.000 | + | 443.405i | 61.0178 | − | 2186.15i | −3.16001 | + | 5.47330i |
13.9 | −1.38919 | − | 7.87846i | 38.4590 | − | 26.6064i | −60.1403 | + | 21.8893i | 337.131 | + | 282.886i | −263.044 | − | 266.037i | −1612.97 | − | 587.074i | 256.000 | + | 443.405i | 771.197 | − | 2046.52i | 1760.37 | − | 3049.05i |
See all 66 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 54.8.e.b | ✓ | 66 |
27.e | even | 9 | 1 | inner | 54.8.e.b | ✓ | 66 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.8.e.b | ✓ | 66 | 1.a | even | 1 | 1 | trivial |
54.8.e.b | ✓ | 66 | 27.e | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{66} - 213 T_{5}^{65} - 256815 T_{5}^{64} + 11205726 T_{5}^{63} + 31529071476 T_{5}^{62} + \cdots + 21\!\cdots\!00 \) acting on \(S_{8}^{\mathrm{new}}(54, [\chi])\).