Properties

Label 54.8
Level 54
Weight 8
Dimension 150
Nonzero newspaces 3
Newform subspaces 12
Sturm bound 1296
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 12 \)
Sturm bound: \(1296\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(54))\).

Total New Old
Modular forms 597 150 447
Cusp forms 537 150 387
Eisenstein series 60 0 60

Trace form

\( 150 q - 8 q^{2} + 192 q^{4} + 318 q^{5} - 1392 q^{6} + 1452 q^{7} + 2560 q^{8} + 3444 q^{9} - 5520 q^{10} - 27018 q^{11} - 2496 q^{12} + 3330 q^{13} + 24800 q^{14} - 12762 q^{15} + 12288 q^{16} + 140718 q^{17}+ \cdots + 140319180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(54))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
54.8.a \(\chi_{54}(1, \cdot)\) 54.8.a.a 1 1
54.8.a.b 1
54.8.a.c 1
54.8.a.d 1
54.8.a.e 1
54.8.a.f 1
54.8.a.g 2
54.8.a.h 2
54.8.c \(\chi_{54}(19, \cdot)\) 54.8.c.a 6 2
54.8.c.b 8
54.8.e \(\chi_{54}(7, \cdot)\) 54.8.e.a 60 6
54.8.e.b 66

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(54))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(54)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 1}\)