Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [54,8,Mod(7,54)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(54, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([16]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("54.7");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.e (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(16.8687913761\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −7.51754 | + | 2.73616i | −46.7582 | − | 0.818523i | 49.0268 | − | 41.1384i | 7.81200 | + | 44.3040i | 353.746 | − | 121.785i | −714.875 | − | 599.852i | −256.000 | + | 443.405i | 2185.66 | + | 76.5453i | −179.950 | − | 311.683i |
7.2 | −7.51754 | + | 2.73616i | −42.7347 | + | 18.9932i | 49.0268 | − | 41.1384i | −81.8382 | − | 464.127i | 269.292 | − | 259.711i | 742.983 | + | 623.437i | −256.000 | + | 443.405i | 1465.52 | − | 1623.34i | 1885.15 | + | 3265.17i |
7.3 | −7.51754 | + | 2.73616i | −28.0663 | − | 37.4070i | 49.0268 | − | 41.1384i | 4.03154 | + | 22.8640i | 313.341 | + | 204.415i | 250.482 | + | 210.179i | −256.000 | + | 443.405i | −611.569 | + | 2099.75i | −92.8669 | − | 160.850i |
7.4 | −7.51754 | + | 2.73616i | −22.4250 | + | 41.0380i | 49.0268 | − | 41.1384i | 54.0576 | + | 306.576i | 56.2941 | − | 369.863i | −1071.67 | − | 899.235i | −256.000 | + | 443.405i | −1181.24 | − | 1840.55i | −1245.22 | − | 2156.79i |
7.5 | −7.51754 | + | 2.73616i | −11.2841 | + | 45.3836i | 49.0268 | − | 41.1384i | −4.70644 | − | 26.6915i | −39.3482 | − | 372.048i | 243.254 | + | 204.114i | −256.000 | + | 443.405i | −1932.34 | − | 1024.22i | 108.413 | + | 187.777i |
7.6 | −7.51754 | + | 2.73616i | 14.5144 | − | 44.4560i | 49.0268 | − | 41.1384i | −80.0788 | − | 454.149i | 12.5263 | + | 373.913i | −1075.14 | − | 902.152i | −256.000 | + | 443.405i | −1765.67 | − | 1290.50i | 1844.62 | + | 3194.98i |
7.7 | −7.51754 | + | 2.73616i | 20.9112 | − | 41.8297i | 49.0268 | − | 41.1384i | 71.6637 | + | 406.425i | −42.7476 | + | 371.673i | −194.379 | − | 163.103i | −256.000 | + | 443.405i | −1312.45 | − | 1749.41i | −1650.78 | − | 2859.23i |
7.8 | −7.51754 | + | 2.73616i | 28.8790 | + | 36.7832i | 49.0268 | − | 41.1384i | 67.5637 | + | 383.173i | −317.744 | − | 197.501i | 619.597 | + | 519.903i | −256.000 | + | 443.405i | −519.005 | + | 2124.52i | −1556.34 | − | 2695.65i |
7.9 | −7.51754 | + | 2.73616i | 32.1805 | + | 33.9325i | 49.0268 | − | 41.1384i | −56.1070 | − | 318.199i | −334.763 | − | 167.038i | −287.281 | − | 241.057i | −256.000 | + | 443.405i | −115.825 | + | 2183.93i | 1292.43 | + | 2238.55i |
7.10 | −7.51754 | + | 2.73616i | 44.9983 | − | 12.7340i | 49.0268 | − | 41.1384i | −22.9934 | − | 130.402i | −303.434 | + | 218.851i | 812.804 | + | 682.023i | −256.000 | + | 443.405i | 1862.69 | − | 1146.01i | 529.655 | + | 917.389i |
13.1 | 1.38919 | + | 7.87846i | −46.5298 | + | 4.68829i | −60.1403 | + | 21.8893i | 269.395 | + | 226.049i | −101.575 | − | 360.070i | 989.779 | + | 360.250i | −256.000 | − | 443.405i | 2143.04 | − | 436.290i | −1406.68 | + | 2436.44i |
13.2 | 1.38919 | + | 7.87846i | −43.7763 | − | 16.4511i | −60.1403 | + | 21.8893i | −250.391 | − | 210.103i | 68.7958 | − | 367.743i | −714.560 | − | 260.079i | −256.000 | − | 443.405i | 1645.72 | + | 1440.33i | 1307.45 | − | 2264.57i |
13.3 | 1.38919 | + | 7.87846i | −25.6010 | + | 39.1355i | −60.1403 | + | 21.8893i | 192.012 | + | 161.117i | −343.892 | − | 147.330i | −1238.25 | − | 450.687i | −256.000 | − | 443.405i | −876.175 | − | 2003.82i | −1002.62 | + | 1736.58i |
13.4 | 1.38919 | + | 7.87846i | −20.8780 | − | 41.8463i | −60.1403 | + | 21.8893i | 134.896 | + | 113.191i | 300.681 | − | 222.619i | 168.898 | + | 61.4738i | −256.000 | − | 443.405i | −1315.22 | + | 1747.33i | −704.377 | + | 1220.02i |
13.5 | 1.38919 | + | 7.87846i | −14.0270 | + | 44.6122i | −60.1403 | + | 21.8893i | −224.372 | − | 188.270i | −370.961 | − | 48.5362i | 356.182 | + | 129.640i | −256.000 | − | 443.405i | −1793.49 | − | 1251.55i | 1171.59 | − | 2029.25i |
13.6 | 1.38919 | + | 7.87846i | 14.6775 | − | 44.4024i | −60.1403 | + | 21.8893i | −379.082 | − | 318.088i | 370.212 | + | 53.9532i | 1350.21 | + | 491.436i | −256.000 | − | 443.405i | −1756.14 | − | 1303.43i | 1979.43 | − | 3428.47i |
13.7 | 1.38919 | + | 7.87846i | 28.7664 | + | 36.8713i | −60.1403 | + | 21.8893i | 32.6732 | + | 27.4161i | −250.528 | + | 277.856i | 1319.07 | + | 480.101i | −256.000 | − | 443.405i | −531.991 | + | 2121.31i | −170.607 | + | 295.501i |
13.8 | 1.38919 | + | 7.87846i | 36.2871 | − | 29.5000i | −60.1403 | + | 21.8893i | 329.484 | + | 276.470i | 282.824 | + | 244.906i | 438.081 | + | 159.448i | −256.000 | − | 443.405i | 446.505 | − | 2140.93i | −1720.44 | + | 2979.90i |
13.9 | 1.38919 | + | 7.87846i | 37.6126 | + | 27.7902i | −60.1403 | + | 21.8893i | 100.967 | + | 84.7217i | −166.693 | + | 334.935i | −905.523 | − | 329.583i | −256.000 | − | 443.405i | 642.413 | + | 2090.52i | −527.214 | + | 913.162i |
13.10 | 1.38919 | + | 7.87846i | 46.4505 | − | 5.41765i | −60.1403 | + | 21.8893i | −199.121 | − | 167.082i | 107.211 | + | 358.432i | −314.460 | − | 114.454i | −256.000 | − | 443.405i | 2128.30 | − | 503.305i | 1039.74 | − | 1800.88i |
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 54.8.e.a | ✓ | 60 |
27.e | even | 9 | 1 | inner | 54.8.e.a | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
54.8.e.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
54.8.e.a | ✓ | 60 | 27.e | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{60} - 213 T_{5}^{59} + 194193 T_{5}^{58} - 84858978 T_{5}^{57} + 22693137750 T_{5}^{56} + \cdots + 10\!\cdots\!00 \) acting on \(S_{8}^{\mathrm{new}}(54, [\chi])\).