Properties

Label 5328.2.e.f.2591.6
Level $5328$
Weight $2$
Character 5328.2591
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.6
Character \(\chi\) \(=\) 5328.2591
Dual form 5328.2.e.f.2591.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.80927i q^{5} +4.99414i q^{7} +2.88061 q^{11} +6.56921 q^{13} +4.32005i q^{17} +5.96095i q^{19} +4.50495 q^{23} -2.89201 q^{25} -8.08102i q^{29} +8.78197i q^{31} +14.0299 q^{35} -1.00000 q^{37} -2.06855i q^{41} +0.596608i q^{43} -11.3419 q^{47} -17.9415 q^{49} +9.48922i q^{53} -8.09243i q^{55} -6.93395 q^{59} +7.45537 q^{61} -18.4547i q^{65} -0.0130947i q^{67} -7.35239 q^{71} -9.27712 q^{73} +14.3862i q^{77} +11.9267i q^{79} +1.66304 q^{83} +12.1362 q^{85} -15.4386i q^{89} +32.8076i q^{91} +16.7459 q^{95} +5.35179 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 32 q^{25} - 24 q^{37} - 80 q^{49} - 48 q^{61} - 48 q^{73} - 40 q^{85} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.80927i − 1.25634i −0.778074 0.628172i \(-0.783803\pi\)
0.778074 0.628172i \(-0.216197\pi\)
\(6\) 0 0
\(7\) 4.99414i 1.88761i 0.330505 + 0.943804i \(0.392781\pi\)
−0.330505 + 0.943804i \(0.607219\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.88061 0.868538 0.434269 0.900783i \(-0.357007\pi\)
0.434269 + 0.900783i \(0.357007\pi\)
\(12\) 0 0
\(13\) 6.56921 1.82197 0.910985 0.412439i \(-0.135323\pi\)
0.910985 + 0.412439i \(0.135323\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.32005i 1.04777i 0.851790 + 0.523883i \(0.175517\pi\)
−0.851790 + 0.523883i \(0.824483\pi\)
\(18\) 0 0
\(19\) 5.96095i 1.36753i 0.729700 + 0.683767i \(0.239660\pi\)
−0.729700 + 0.683767i \(0.760340\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.50495 0.939348 0.469674 0.882840i \(-0.344371\pi\)
0.469674 + 0.882840i \(0.344371\pi\)
\(24\) 0 0
\(25\) −2.89201 −0.578402
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 8.08102i − 1.50061i −0.661094 0.750303i \(-0.729907\pi\)
0.661094 0.750303i \(-0.270093\pi\)
\(30\) 0 0
\(31\) 8.78197i 1.57729i 0.614849 + 0.788644i \(0.289217\pi\)
−0.614849 + 0.788644i \(0.710783\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14.0299 2.37149
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 2.06855i − 0.323053i −0.986868 0.161526i \(-0.948358\pi\)
0.986868 0.161526i \(-0.0516417\pi\)
\(42\) 0 0
\(43\) 0.596608i 0.0909819i 0.998965 + 0.0454909i \(0.0144852\pi\)
−0.998965 + 0.0454909i \(0.985515\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.3419 −1.65439 −0.827195 0.561915i \(-0.810065\pi\)
−0.827195 + 0.561915i \(0.810065\pi\)
\(48\) 0 0
\(49\) −17.9415 −2.56306
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.48922i 1.30345i 0.758457 + 0.651723i \(0.225953\pi\)
−0.758457 + 0.651723i \(0.774047\pi\)
\(54\) 0 0
\(55\) − 8.09243i − 1.09118i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.93395 −0.902723 −0.451361 0.892341i \(-0.649061\pi\)
−0.451361 + 0.892341i \(0.649061\pi\)
\(60\) 0 0
\(61\) 7.45537 0.954562 0.477281 0.878751i \(-0.341622\pi\)
0.477281 + 0.878751i \(0.341622\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 18.4547i − 2.28902i
\(66\) 0 0
\(67\) − 0.0130947i − 0.00159977i −1.00000 0.000799886i \(-0.999745\pi\)
1.00000 0.000799886i \(-0.000254612\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.35239 −0.872568 −0.436284 0.899809i \(-0.643706\pi\)
−0.436284 + 0.899809i \(0.643706\pi\)
\(72\) 0 0
\(73\) −9.27712 −1.08580 −0.542902 0.839796i \(-0.682675\pi\)
−0.542902 + 0.839796i \(0.682675\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.3862i 1.63946i
\(78\) 0 0
\(79\) 11.9267i 1.34186i 0.741520 + 0.670931i \(0.234105\pi\)
−0.741520 + 0.670931i \(0.765895\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.66304 0.182543 0.0912713 0.995826i \(-0.470907\pi\)
0.0912713 + 0.995826i \(0.470907\pi\)
\(84\) 0 0
\(85\) 12.1362 1.31635
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 15.4386i − 1.63648i −0.574874 0.818242i \(-0.694949\pi\)
0.574874 0.818242i \(-0.305051\pi\)
\(90\) 0 0
\(91\) 32.8076i 3.43917i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 16.7459 1.71810
\(96\) 0 0
\(97\) 5.35179 0.543392 0.271696 0.962383i \(-0.412415\pi\)
0.271696 + 0.962383i \(0.412415\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.22126i 0.221024i 0.993875 + 0.110512i \(0.0352491\pi\)
−0.993875 + 0.110512i \(0.964751\pi\)
\(102\) 0 0
\(103\) − 2.91996i − 0.287712i −0.989599 0.143856i \(-0.954050\pi\)
0.989599 0.143856i \(-0.0459502\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.67767 −0.548881 −0.274441 0.961604i \(-0.588493\pi\)
−0.274441 + 0.961604i \(0.588493\pi\)
\(108\) 0 0
\(109\) −4.78518 −0.458337 −0.229169 0.973387i \(-0.573601\pi\)
−0.229169 + 0.973387i \(0.573601\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.9280i 1.40430i 0.712027 + 0.702152i \(0.247777\pi\)
−0.712027 + 0.702152i \(0.752223\pi\)
\(114\) 0 0
\(115\) − 12.6556i − 1.18014i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −21.5749 −1.97777
\(120\) 0 0
\(121\) −2.70206 −0.245642
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 5.92191i − 0.529672i
\(126\) 0 0
\(127\) − 16.2265i − 1.43987i −0.694042 0.719934i \(-0.744172\pi\)
0.694042 0.719934i \(-0.255828\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.7424 1.11331 0.556653 0.830745i \(-0.312085\pi\)
0.556653 + 0.830745i \(0.312085\pi\)
\(132\) 0 0
\(133\) −29.7698 −2.58137
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.8647i 1.69716i 0.529067 + 0.848580i \(0.322542\pi\)
−0.529067 + 0.848580i \(0.677458\pi\)
\(138\) 0 0
\(139\) − 11.4689i − 0.972778i −0.873742 0.486389i \(-0.838314\pi\)
0.873742 0.486389i \(-0.161686\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 18.9234 1.58245
\(144\) 0 0
\(145\) −22.7018 −1.88528
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.10383i 0.254275i 0.991885 + 0.127138i \(0.0405790\pi\)
−0.991885 + 0.127138i \(0.959421\pi\)
\(150\) 0 0
\(151\) − 3.01200i − 0.245113i −0.992462 0.122557i \(-0.960891\pi\)
0.992462 0.122557i \(-0.0391093\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 24.6710 1.98162
\(156\) 0 0
\(157\) 3.11574 0.248663 0.124331 0.992241i \(-0.460321\pi\)
0.124331 + 0.992241i \(0.460321\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.4984i 1.77312i
\(162\) 0 0
\(163\) − 2.86040i − 0.224044i −0.993706 0.112022i \(-0.964267\pi\)
0.993706 0.112022i \(-0.0357327\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.8364 1.53499 0.767494 0.641056i \(-0.221503\pi\)
0.767494 + 0.641056i \(0.221503\pi\)
\(168\) 0 0
\(169\) 30.1545 2.31958
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.7176i 0.814846i 0.913240 + 0.407423i \(0.133573\pi\)
−0.913240 + 0.407423i \(0.866427\pi\)
\(174\) 0 0
\(175\) − 14.4431i − 1.09180i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.2555 −0.990763 −0.495381 0.868676i \(-0.664972\pi\)
−0.495381 + 0.868676i \(0.664972\pi\)
\(180\) 0 0
\(181\) −8.85296 −0.658035 −0.329018 0.944324i \(-0.606718\pi\)
−0.329018 + 0.944324i \(0.606718\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.80927i 0.206542i
\(186\) 0 0
\(187\) 12.4444i 0.910024i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.98799 −0.216203 −0.108102 0.994140i \(-0.534477\pi\)
−0.108102 + 0.994140i \(0.534477\pi\)
\(192\) 0 0
\(193\) 23.3101 1.67790 0.838948 0.544212i \(-0.183171\pi\)
0.838948 + 0.544212i \(0.183171\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.9047i 0.919421i 0.888069 + 0.459711i \(0.152047\pi\)
−0.888069 + 0.459711i \(0.847953\pi\)
\(198\) 0 0
\(199\) 10.4496i 0.740753i 0.928882 + 0.370377i \(0.120771\pi\)
−0.928882 + 0.370377i \(0.879229\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 40.3577 2.83256
\(204\) 0 0
\(205\) −5.81111 −0.405866
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 17.1712i 1.18776i
\(210\) 0 0
\(211\) − 10.7080i − 0.737172i −0.929594 0.368586i \(-0.879842\pi\)
0.929594 0.368586i \(-0.120158\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.67603 0.114305
\(216\) 0 0
\(217\) −43.8584 −2.97730
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 28.3793i 1.90900i
\(222\) 0 0
\(223\) − 7.09988i − 0.475443i −0.971333 0.237722i \(-0.923599\pi\)
0.971333 0.237722i \(-0.0764006\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.9594 1.78936 0.894679 0.446710i \(-0.147405\pi\)
0.894679 + 0.446710i \(0.147405\pi\)
\(228\) 0 0
\(229\) 5.93993 0.392522 0.196261 0.980552i \(-0.437120\pi\)
0.196261 + 0.980552i \(0.437120\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 27.4804i − 1.80030i −0.435577 0.900152i \(-0.643456\pi\)
0.435577 0.900152i \(-0.356544\pi\)
\(234\) 0 0
\(235\) 31.8626i 2.07848i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.6175 −0.751475 −0.375737 0.926726i \(-0.622611\pi\)
−0.375737 + 0.926726i \(0.622611\pi\)
\(240\) 0 0
\(241\) −11.3986 −0.734248 −0.367124 0.930172i \(-0.619658\pi\)
−0.367124 + 0.930172i \(0.619658\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 50.4024i 3.22009i
\(246\) 0 0
\(247\) 39.1587i 2.49161i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.2860 1.09108 0.545542 0.838083i \(-0.316324\pi\)
0.545542 + 0.838083i \(0.316324\pi\)
\(252\) 0 0
\(253\) 12.9770 0.815859
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.3791i 0.896941i 0.893798 + 0.448470i \(0.148031\pi\)
−0.893798 + 0.448470i \(0.851969\pi\)
\(258\) 0 0
\(259\) − 4.99414i − 0.310321i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.8206 −1.09887 −0.549434 0.835537i \(-0.685157\pi\)
−0.549434 + 0.835537i \(0.685157\pi\)
\(264\) 0 0
\(265\) 26.6578 1.63758
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 7.74849i − 0.472434i −0.971700 0.236217i \(-0.924092\pi\)
0.971700 0.236217i \(-0.0759076\pi\)
\(270\) 0 0
\(271\) 9.18463i 0.557927i 0.960302 + 0.278963i \(0.0899908\pi\)
−0.960302 + 0.278963i \(0.910009\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.33077 −0.502365
\(276\) 0 0
\(277\) −8.74135 −0.525217 −0.262608 0.964903i \(-0.584583\pi\)
−0.262608 + 0.964903i \(0.584583\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 0.0344009i − 0.00205218i −0.999999 0.00102609i \(-0.999673\pi\)
0.999999 0.00102609i \(-0.000326615\pi\)
\(282\) 0 0
\(283\) 2.15402i 0.128043i 0.997949 + 0.0640216i \(0.0203927\pi\)
−0.997949 + 0.0640216i \(0.979607\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.3306 0.609797
\(288\) 0 0
\(289\) −1.66281 −0.0978125
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 19.6228i − 1.14638i −0.819424 0.573188i \(-0.805707\pi\)
0.819424 0.573188i \(-0.194293\pi\)
\(294\) 0 0
\(295\) 19.4793i 1.13413i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29.5940 1.71146
\(300\) 0 0
\(301\) −2.97955 −0.171738
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 20.9442i − 1.19926i
\(306\) 0 0
\(307\) − 4.15577i − 0.237182i −0.992943 0.118591i \(-0.962162\pi\)
0.992943 0.118591i \(-0.0378378\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.66432 0.0943749 0.0471875 0.998886i \(-0.484974\pi\)
0.0471875 + 0.998886i \(0.484974\pi\)
\(312\) 0 0
\(313\) 13.4910 0.762554 0.381277 0.924461i \(-0.375484\pi\)
0.381277 + 0.924461i \(0.375484\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.5212i 0.871760i 0.900005 + 0.435880i \(0.143563\pi\)
−0.900005 + 0.435880i \(0.856437\pi\)
\(318\) 0 0
\(319\) − 23.2783i − 1.30333i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −25.7516 −1.43286
\(324\) 0 0
\(325\) −18.9982 −1.05383
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 56.6432i − 3.12284i
\(330\) 0 0
\(331\) − 16.2371i − 0.892470i −0.894916 0.446235i \(-0.852765\pi\)
0.894916 0.446235i \(-0.147235\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.0367866 −0.00200987
\(336\) 0 0
\(337\) 14.9415 0.813913 0.406956 0.913448i \(-0.366590\pi\)
0.406956 + 0.913448i \(0.366590\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 25.2975i 1.36994i
\(342\) 0 0
\(343\) − 54.6432i − 2.95045i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.6889 0.895908 0.447954 0.894057i \(-0.352153\pi\)
0.447954 + 0.894057i \(0.352153\pi\)
\(348\) 0 0
\(349\) −4.97254 −0.266174 −0.133087 0.991104i \(-0.542489\pi\)
−0.133087 + 0.991104i \(0.542489\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 14.0170i − 0.746050i −0.927821 0.373025i \(-0.878321\pi\)
0.927821 0.373025i \(-0.121679\pi\)
\(354\) 0 0
\(355\) 20.6549i 1.09625i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.2867 1.49291 0.746456 0.665435i \(-0.231754\pi\)
0.746456 + 0.665435i \(0.231754\pi\)
\(360\) 0 0
\(361\) −16.5329 −0.870152
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.0620i 1.36415i
\(366\) 0 0
\(367\) 10.0489i 0.524548i 0.964993 + 0.262274i \(0.0844724\pi\)
−0.964993 + 0.262274i \(0.915528\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −47.3905 −2.46039
\(372\) 0 0
\(373\) 25.7348 1.33250 0.666248 0.745730i \(-0.267899\pi\)
0.666248 + 0.745730i \(0.267899\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 53.0859i − 2.73406i
\(378\) 0 0
\(379\) − 24.8403i − 1.27596i −0.770054 0.637979i \(-0.779771\pi\)
0.770054 0.637979i \(-0.220229\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.81256 0.143715 0.0718576 0.997415i \(-0.477107\pi\)
0.0718576 + 0.997415i \(0.477107\pi\)
\(384\) 0 0
\(385\) 40.4148 2.05973
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 17.3522i − 0.879790i −0.898049 0.439895i \(-0.855016\pi\)
0.898049 0.439895i \(-0.144984\pi\)
\(390\) 0 0
\(391\) 19.4616i 0.984216i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.5054 1.68584
\(396\) 0 0
\(397\) −15.5886 −0.782369 −0.391185 0.920312i \(-0.627935\pi\)
−0.391185 + 0.920312i \(0.627935\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.7383i 0.785931i 0.919553 + 0.392965i \(0.128551\pi\)
−0.919553 + 0.392965i \(0.871449\pi\)
\(402\) 0 0
\(403\) 57.6906i 2.87377i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.88061 −0.142787
\(408\) 0 0
\(409\) −10.1860 −0.503663 −0.251832 0.967771i \(-0.581033\pi\)
−0.251832 + 0.967771i \(0.581033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 34.6291i − 1.70399i
\(414\) 0 0
\(415\) − 4.67194i − 0.229336i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.23998 0.109430 0.0547150 0.998502i \(-0.482575\pi\)
0.0547150 + 0.998502i \(0.482575\pi\)
\(420\) 0 0
\(421\) 29.9767 1.46098 0.730488 0.682926i \(-0.239293\pi\)
0.730488 + 0.682926i \(0.239293\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 12.4936i − 0.606030i
\(426\) 0 0
\(427\) 37.2332i 1.80184i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −32.0400 −1.54331 −0.771655 0.636041i \(-0.780571\pi\)
−0.771655 + 0.636041i \(0.780571\pi\)
\(432\) 0 0
\(433\) 6.21916 0.298874 0.149437 0.988771i \(-0.452254\pi\)
0.149437 + 0.988771i \(0.452254\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.8538i 1.28459i
\(438\) 0 0
\(439\) 23.4644i 1.11990i 0.828528 + 0.559948i \(0.189179\pi\)
−0.828528 + 0.559948i \(0.810821\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.55338 −0.406383 −0.203192 0.979139i \(-0.565131\pi\)
−0.203192 + 0.979139i \(0.565131\pi\)
\(444\) 0 0
\(445\) −43.3711 −2.05599
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.1931i 1.23613i 0.786128 + 0.618064i \(0.212083\pi\)
−0.786128 + 0.618064i \(0.787917\pi\)
\(450\) 0 0
\(451\) − 5.95869i − 0.280584i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 92.1654 4.32078
\(456\) 0 0
\(457\) 31.1055 1.45505 0.727527 0.686079i \(-0.240669\pi\)
0.727527 + 0.686079i \(0.240669\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 17.8226i − 0.830080i −0.909803 0.415040i \(-0.863768\pi\)
0.909803 0.415040i \(-0.136232\pi\)
\(462\) 0 0
\(463\) 16.8725i 0.784134i 0.919937 + 0.392067i \(0.128240\pi\)
−0.919937 + 0.392067i \(0.871760\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.73795 0.358070 0.179035 0.983843i \(-0.442703\pi\)
0.179035 + 0.983843i \(0.442703\pi\)
\(468\) 0 0
\(469\) 0.0653968 0.00301974
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.71860i 0.0790212i
\(474\) 0 0
\(475\) − 17.2391i − 0.790986i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.8421 0.632464 0.316232 0.948682i \(-0.397582\pi\)
0.316232 + 0.948682i \(0.397582\pi\)
\(480\) 0 0
\(481\) −6.56921 −0.299530
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 15.0346i − 0.682688i
\(486\) 0 0
\(487\) − 0.106116i − 0.00480856i −0.999997 0.00240428i \(-0.999235\pi\)
0.999997 0.00240428i \(-0.000765308\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.23946 0.0559359 0.0279680 0.999609i \(-0.491096\pi\)
0.0279680 + 0.999609i \(0.491096\pi\)
\(492\) 0 0
\(493\) 34.9104 1.57228
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 36.7189i − 1.64707i
\(498\) 0 0
\(499\) 10.3008i 0.461126i 0.973057 + 0.230563i \(0.0740568\pi\)
−0.973057 + 0.230563i \(0.925943\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.50295 0.0670130 0.0335065 0.999438i \(-0.489333\pi\)
0.0335065 + 0.999438i \(0.489333\pi\)
\(504\) 0 0
\(505\) 6.24014 0.277683
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.2718i 1.12015i 0.828441 + 0.560076i \(0.189228\pi\)
−0.828441 + 0.560076i \(0.810772\pi\)
\(510\) 0 0
\(511\) − 46.3312i − 2.04957i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.20296 −0.361466
\(516\) 0 0
\(517\) −32.6717 −1.43690
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 29.2373i − 1.28091i −0.767995 0.640456i \(-0.778746\pi\)
0.767995 0.640456i \(-0.221254\pi\)
\(522\) 0 0
\(523\) − 36.3425i − 1.58915i −0.607168 0.794574i \(-0.707694\pi\)
0.607168 0.794574i \(-0.292306\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −37.9385 −1.65263
\(528\) 0 0
\(529\) −2.70539 −0.117626
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 13.5887i − 0.588593i
\(534\) 0 0
\(535\) 15.9501i 0.689584i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −51.6824 −2.22612
\(540\) 0 0
\(541\) −43.7494 −1.88093 −0.940466 0.339887i \(-0.889611\pi\)
−0.940466 + 0.339887i \(0.889611\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.4429i 0.575830i
\(546\) 0 0
\(547\) − 37.5332i − 1.60480i −0.596785 0.802401i \(-0.703556\pi\)
0.596785 0.802401i \(-0.296444\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 48.1705 2.05213
\(552\) 0 0
\(553\) −59.5638 −2.53291
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.6108i 1.33939i 0.742634 + 0.669697i \(0.233576\pi\)
−0.742634 + 0.669697i \(0.766424\pi\)
\(558\) 0 0
\(559\) 3.91924i 0.165766i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.6405 −1.41778 −0.708888 0.705321i \(-0.750803\pi\)
−0.708888 + 0.705321i \(0.750803\pi\)
\(564\) 0 0
\(565\) 41.9367 1.76429
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 45.6502i − 1.91376i −0.290487 0.956879i \(-0.593817\pi\)
0.290487 0.956879i \(-0.406183\pi\)
\(570\) 0 0
\(571\) 29.5804i 1.23790i 0.785429 + 0.618951i \(0.212442\pi\)
−0.785429 + 0.618951i \(0.787558\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13.0284 −0.543321
\(576\) 0 0
\(577\) 0.645125 0.0268569 0.0134285 0.999910i \(-0.495725\pi\)
0.0134285 + 0.999910i \(0.495725\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.30547i 0.344569i
\(582\) 0 0
\(583\) 27.3348i 1.13209i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.10398 0.0455659 0.0227830 0.999740i \(-0.492747\pi\)
0.0227830 + 0.999740i \(0.492747\pi\)
\(588\) 0 0
\(589\) −52.3489 −2.15700
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.3175i 0.587951i 0.955813 + 0.293976i \(0.0949784\pi\)
−0.955813 + 0.293976i \(0.905022\pi\)
\(594\) 0 0
\(595\) 60.6099i 2.48476i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.2290 0.458805 0.229403 0.973332i \(-0.426323\pi\)
0.229403 + 0.973332i \(0.426323\pi\)
\(600\) 0 0
\(601\) 15.7720 0.643354 0.321677 0.946849i \(-0.395753\pi\)
0.321677 + 0.946849i \(0.395753\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.59082i 0.308611i
\(606\) 0 0
\(607\) 24.5109i 0.994866i 0.867502 + 0.497433i \(0.165724\pi\)
−0.867502 + 0.497433i \(0.834276\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −74.5075 −3.01425
\(612\) 0 0
\(613\) −4.77579 −0.192892 −0.0964462 0.995338i \(-0.530748\pi\)
−0.0964462 + 0.995338i \(0.530748\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7.14769i − 0.287755i −0.989596 0.143878i \(-0.954043\pi\)
0.989596 0.143878i \(-0.0459571\pi\)
\(618\) 0 0
\(619\) 31.7803i 1.27736i 0.769473 + 0.638679i \(0.220519\pi\)
−0.769473 + 0.638679i \(0.779481\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 77.1024 3.08904
\(624\) 0 0
\(625\) −31.0963 −1.24385
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 4.32005i − 0.172252i
\(630\) 0 0
\(631\) 48.1374i 1.91632i 0.286235 + 0.958159i \(0.407596\pi\)
−0.286235 + 0.958159i \(0.592404\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −45.5846 −1.80897
\(636\) 0 0
\(637\) −117.861 −4.66983
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.9698i 0.986249i 0.869959 + 0.493124i \(0.164145\pi\)
−0.869959 + 0.493124i \(0.835855\pi\)
\(642\) 0 0
\(643\) − 6.97278i − 0.274979i −0.990503 0.137490i \(-0.956097\pi\)
0.990503 0.137490i \(-0.0439034\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.72733 −0.146536 −0.0732681 0.997312i \(-0.523343\pi\)
−0.0732681 + 0.997312i \(0.523343\pi\)
\(648\) 0 0
\(649\) −19.9740 −0.784049
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 21.8097i − 0.853478i −0.904375 0.426739i \(-0.859662\pi\)
0.904375 0.426739i \(-0.140338\pi\)
\(654\) 0 0
\(655\) − 35.7968i − 1.39870i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.8067 −0.810512 −0.405256 0.914203i \(-0.632818\pi\)
−0.405256 + 0.914203i \(0.632818\pi\)
\(660\) 0 0
\(661\) −4.38317 −0.170485 −0.0852427 0.996360i \(-0.527167\pi\)
−0.0852427 + 0.996360i \(0.527167\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 83.6315i 3.24309i
\(666\) 0 0
\(667\) − 36.4046i − 1.40959i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 21.4760 0.829074
\(672\) 0 0
\(673\) 41.9917 1.61866 0.809331 0.587353i \(-0.199830\pi\)
0.809331 + 0.587353i \(0.199830\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.1585i 0.736320i 0.929762 + 0.368160i \(0.120012\pi\)
−0.929762 + 0.368160i \(0.879988\pi\)
\(678\) 0 0
\(679\) 26.7276i 1.02571i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.9290 −0.456449 −0.228224 0.973609i \(-0.573292\pi\)
−0.228224 + 0.973609i \(0.573292\pi\)
\(684\) 0 0
\(685\) 55.8055 2.13222
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 62.3367i 2.37484i
\(690\) 0 0
\(691\) − 42.1880i − 1.60491i −0.596716 0.802453i \(-0.703528\pi\)
0.596716 0.802453i \(-0.296472\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −32.2192 −1.22214
\(696\) 0 0
\(697\) 8.93622 0.338484
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 42.5643i 1.60763i 0.594879 + 0.803815i \(0.297200\pi\)
−0.594879 + 0.803815i \(0.702800\pi\)
\(702\) 0 0
\(703\) − 5.96095i − 0.224821i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.0933 −0.417207
\(708\) 0 0
\(709\) 45.0421 1.69159 0.845796 0.533507i \(-0.179126\pi\)
0.845796 + 0.533507i \(0.179126\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 39.5624i 1.48162i
\(714\) 0 0
\(715\) − 53.1609i − 1.98810i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.08858 −0.338947 −0.169473 0.985535i \(-0.554207\pi\)
−0.169473 + 0.985535i \(0.554207\pi\)
\(720\) 0 0
\(721\) 14.5827 0.543088
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 23.3704i 0.867955i
\(726\) 0 0
\(727\) 8.38952i 0.311150i 0.987824 + 0.155575i \(0.0497230\pi\)
−0.987824 + 0.155575i \(0.950277\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.57738 −0.0953277
\(732\) 0 0
\(733\) 21.3101 0.787106 0.393553 0.919302i \(-0.371246\pi\)
0.393553 + 0.919302i \(0.371246\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 0.0377208i − 0.00138946i
\(738\) 0 0
\(739\) − 20.5320i − 0.755282i −0.925952 0.377641i \(-0.876735\pi\)
0.925952 0.377641i \(-0.123265\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.1598 0.372726 0.186363 0.982481i \(-0.440330\pi\)
0.186363 + 0.982481i \(0.440330\pi\)
\(744\) 0 0
\(745\) 8.71950 0.319458
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 28.3551i − 1.03607i
\(750\) 0 0
\(751\) 47.3726i 1.72865i 0.502933 + 0.864325i \(0.332254\pi\)
−0.502933 + 0.864325i \(0.667746\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.46153 −0.307947
\(756\) 0 0
\(757\) −10.0246 −0.364350 −0.182175 0.983266i \(-0.558314\pi\)
−0.182175 + 0.983266i \(0.558314\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 31.9570i − 1.15844i −0.815171 0.579221i \(-0.803357\pi\)
0.815171 0.579221i \(-0.196643\pi\)
\(762\) 0 0
\(763\) − 23.8979i − 0.865162i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −45.5505 −1.64473
\(768\) 0 0
\(769\) 23.8880 0.861422 0.430711 0.902490i \(-0.358263\pi\)
0.430711 + 0.902490i \(0.358263\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 16.2119i 0.583100i 0.956556 + 0.291550i \(0.0941709\pi\)
−0.956556 + 0.291550i \(0.905829\pi\)
\(774\) 0 0
\(775\) − 25.3976i − 0.912308i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.3305 0.441786
\(780\) 0 0
\(781\) −21.1794 −0.757859
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 8.75295i − 0.312406i
\(786\) 0 0
\(787\) − 19.6053i − 0.698853i −0.936964 0.349426i \(-0.886376\pi\)
0.936964 0.349426i \(-0.113624\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −74.5524 −2.65078
\(792\) 0 0
\(793\) 48.9759 1.73918
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 55.7424i − 1.97450i −0.159183 0.987249i \(-0.550886\pi\)
0.159183 0.987249i \(-0.449114\pi\)
\(798\) 0 0
\(799\) − 48.9977i − 1.73341i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −26.7238 −0.943063
\(804\) 0 0
\(805\) 63.2041 2.22765
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 29.6082i − 1.04097i −0.853871 0.520484i \(-0.825752\pi\)
0.853871 0.520484i \(-0.174248\pi\)
\(810\) 0 0
\(811\) 27.7499i 0.974432i 0.873281 + 0.487216i \(0.161988\pi\)
−0.873281 + 0.487216i \(0.838012\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.03564 −0.281476
\(816\) 0 0
\(817\) −3.55635 −0.124421
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.1379i 1.81962i 0.415020 + 0.909812i \(0.363774\pi\)
−0.415020 + 0.909812i \(0.636226\pi\)
\(822\) 0 0
\(823\) 40.0353i 1.39554i 0.716321 + 0.697771i \(0.245825\pi\)
−0.716321 + 0.697771i \(0.754175\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 47.6451 1.65678 0.828391 0.560150i \(-0.189257\pi\)
0.828391 + 0.560150i \(0.189257\pi\)
\(828\) 0 0
\(829\) −16.8437 −0.585005 −0.292503 0.956265i \(-0.594488\pi\)
−0.292503 + 0.956265i \(0.594488\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 77.5079i − 2.68549i
\(834\) 0 0
\(835\) − 55.7259i − 1.92847i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.3141 −0.563225 −0.281613 0.959528i \(-0.590869\pi\)
−0.281613 + 0.959528i \(0.590869\pi\)
\(840\) 0 0
\(841\) −36.3028 −1.25182
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 84.7122i − 2.91419i
\(846\) 0 0
\(847\) − 13.4945i − 0.463675i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.50495 −0.154428
\(852\) 0 0
\(853\) −51.2845 −1.75595 −0.877974 0.478708i \(-0.841105\pi\)
−0.877974 + 0.478708i \(0.841105\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 10.2021i − 0.348496i −0.984702 0.174248i \(-0.944251\pi\)
0.984702 0.174248i \(-0.0557495\pi\)
\(858\) 0 0
\(859\) − 19.6655i − 0.670977i −0.942044 0.335489i \(-0.891099\pi\)
0.942044 0.335489i \(-0.108901\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.6692 −0.873789 −0.436894 0.899513i \(-0.643922\pi\)
−0.436894 + 0.899513i \(0.643922\pi\)
\(864\) 0 0
\(865\) 30.1087 1.02373
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 34.3563i 1.16546i
\(870\) 0 0
\(871\) − 0.0860218i − 0.00291474i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29.5749 0.999813
\(876\) 0 0
\(877\) −11.4498 −0.386634 −0.193317 0.981136i \(-0.561925\pi\)
−0.193317 + 0.981136i \(0.561925\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 30.6017i − 1.03100i −0.856890 0.515499i \(-0.827607\pi\)
0.856890 0.515499i \(-0.172393\pi\)
\(882\) 0 0
\(883\) 8.82961i 0.297140i 0.988902 + 0.148570i \(0.0474670\pi\)
−0.988902 + 0.148570i \(0.952533\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −23.1925 −0.778726 −0.389363 0.921084i \(-0.627305\pi\)
−0.389363 + 0.921084i \(0.627305\pi\)
\(888\) 0 0
\(889\) 81.0374 2.71791
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 67.6086i − 2.26244i
\(894\) 0 0
\(895\) 37.2383i 1.24474i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 70.9673 2.36689
\(900\) 0 0
\(901\) −40.9939 −1.36570
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.8704i 0.826719i
\(906\) 0 0
\(907\) 17.9132i 0.594799i 0.954753 + 0.297400i \(0.0961193\pi\)
−0.954753 + 0.297400i \(0.903881\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.2905 0.738517 0.369259 0.929327i \(-0.379612\pi\)
0.369259 + 0.929327i \(0.379612\pi\)
\(912\) 0 0
\(913\) 4.79058 0.158545
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 63.6372i 2.10149i
\(918\) 0 0
\(919\) − 40.0238i − 1.32026i −0.751150 0.660131i \(-0.770501\pi\)
0.751150 0.660131i \(-0.229499\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −48.2994 −1.58979
\(924\) 0 0
\(925\) 2.89201 0.0950888
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 42.3223i − 1.38855i −0.719710 0.694275i \(-0.755725\pi\)
0.719710 0.694275i \(-0.244275\pi\)
\(930\) 0 0
\(931\) − 106.948i − 3.50508i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 34.9597 1.14330
\(936\) 0 0
\(937\) 1.30170 0.0425247 0.0212624 0.999774i \(-0.493231\pi\)
0.0212624 + 0.999774i \(0.493231\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.1447i 0.656700i 0.944556 + 0.328350i \(0.106493\pi\)
−0.944556 + 0.328350i \(0.893507\pi\)
\(942\) 0 0
\(943\) − 9.31871i − 0.303459i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.8590 0.482853 0.241426 0.970419i \(-0.422385\pi\)
0.241426 + 0.970419i \(0.422385\pi\)
\(948\) 0 0
\(949\) −60.9433 −1.97830
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 10.1548i − 0.328945i −0.986382 0.164473i \(-0.947408\pi\)
0.986382 0.164473i \(-0.0525922\pi\)
\(954\) 0 0
\(955\) 8.39408i 0.271626i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −99.2074 −3.20357
\(960\) 0 0
\(961\) −46.1231 −1.48784
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 65.4844i − 2.10802i
\(966\) 0 0
\(967\) − 39.0327i − 1.25521i −0.778533 0.627603i \(-0.784036\pi\)
0.778533 0.627603i \(-0.215964\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 38.0931 1.22247 0.611233 0.791451i \(-0.290674\pi\)
0.611233 + 0.791451i \(0.290674\pi\)
\(972\) 0 0
\(973\) 57.2772 1.83622
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 28.7066i − 0.918406i −0.888331 0.459203i \(-0.848135\pi\)
0.888331 0.459203i \(-0.151865\pi\)
\(978\) 0 0
\(979\) − 44.4726i − 1.42135i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.7424 1.17190 0.585951 0.810347i \(-0.300721\pi\)
0.585951 + 0.810347i \(0.300721\pi\)
\(984\) 0 0
\(985\) 36.2528 1.15511
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.68769i 0.0854636i
\(990\) 0 0
\(991\) − 13.0344i − 0.414050i −0.978336 0.207025i \(-0.933622\pi\)
0.978336 0.207025i \(-0.0663782\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 29.3558 0.930641
\(996\) 0 0
\(997\) 37.3268 1.18215 0.591075 0.806616i \(-0.298704\pi\)
0.591075 + 0.806616i \(0.298704\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5328.2.e.f.2591.6 yes 24
3.2 odd 2 inner 5328.2.e.f.2591.20 yes 24
4.3 odd 2 inner 5328.2.e.f.2591.5 24
12.11 even 2 inner 5328.2.e.f.2591.19 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5328.2.e.f.2591.5 24 4.3 odd 2 inner
5328.2.e.f.2591.6 yes 24 1.1 even 1 trivial
5328.2.e.f.2591.19 yes 24 12.11 even 2 inner
5328.2.e.f.2591.20 yes 24 3.2 odd 2 inner