Properties

Label 2-5328-12.11-c1-0-27
Degree $2$
Conductor $5328$
Sign $0.418 - 0.908i$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.80i·5-s + 4.99i·7-s + 2.88·11-s + 6.56·13-s + 4.32i·17-s + 5.96i·19-s + 4.50·23-s − 2.89·25-s − 8.08i·29-s + 8.78i·31-s + 14.0·35-s − 37-s − 2.06i·41-s + 0.596i·43-s − 11.3·47-s + ⋯
L(s)  = 1  − 1.25i·5-s + 1.88i·7-s + 0.868·11-s + 1.82·13-s + 1.04i·17-s + 1.36i·19-s + 0.939·23-s − 0.578·25-s − 1.50i·29-s + 1.57i·31-s + 2.37·35-s − 0.164·37-s − 0.323i·41-s + 0.0909i·43-s − 1.65·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.418 - 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.418 - 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $0.418 - 0.908i$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5328} (2591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 0.418 - 0.908i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.183555222\)
\(L(\frac12)\) \(\approx\) \(2.183555222\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 2.80iT - 5T^{2} \)
7 \( 1 - 4.99iT - 7T^{2} \)
11 \( 1 - 2.88T + 11T^{2} \)
13 \( 1 - 6.56T + 13T^{2} \)
17 \( 1 - 4.32iT - 17T^{2} \)
19 \( 1 - 5.96iT - 19T^{2} \)
23 \( 1 - 4.50T + 23T^{2} \)
29 \( 1 + 8.08iT - 29T^{2} \)
31 \( 1 - 8.78iT - 31T^{2} \)
41 \( 1 + 2.06iT - 41T^{2} \)
43 \( 1 - 0.596iT - 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 - 9.48iT - 53T^{2} \)
59 \( 1 + 6.93T + 59T^{2} \)
61 \( 1 - 7.45T + 61T^{2} \)
67 \( 1 + 0.0130iT - 67T^{2} \)
71 \( 1 + 7.35T + 71T^{2} \)
73 \( 1 + 9.27T + 73T^{2} \)
79 \( 1 - 11.9iT - 79T^{2} \)
83 \( 1 - 1.66T + 83T^{2} \)
89 \( 1 + 15.4iT - 89T^{2} \)
97 \( 1 - 5.35T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.470937042068620179098125168541, −8.044625689721380338855099523923, −6.58437190307294402342943729125, −5.96906406450901130582981652662, −5.62828337837466297244914060363, −4.70862131622527079341125502296, −3.87205771383191038313262940907, −3.08051313707943178131364958123, −1.70840009762858937391365742831, −1.31879351215184879506473292589, 0.62984569808829105877017884475, 1.50742860332334738406686942996, 3.01057642483662825050101615140, 3.45730426849715335280551983467, 4.20170130827182545093136330184, 5.01035450987858706837502846555, 6.27384066927055111406766308304, 6.81630635909058262264534613995, 7.06022012322310798587385827963, 7.85724805409679198918757209014

Graph of the $Z$-function along the critical line