Properties

Label 5328.2.e
Level $5328$
Weight $2$
Character orbit 5328.e
Rep. character $\chi_{5328}(2591,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $7$
Sturm bound $1824$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(1824\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(5328, [\chi])\).

Total New Old
Modular forms 936 72 864
Cusp forms 888 72 816
Eisenstein series 48 0 48

Trace form

\( 72 q - 24 q^{25} - 120 q^{49} - 48 q^{73} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(5328, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
5328.2.e.a 5328.e 12.b $2$ $42.544$ \(\Q(\sqrt{-2}) \) None 5328.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{5}-4q^{11}-\beta q^{17}-2\beta q^{19}+\cdots\)
5328.2.e.b 5328.e 12.b $2$ $42.544$ \(\Q(\sqrt{-2}) \) None 5328.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{5}+4q^{11}-\beta q^{17}+2\beta q^{19}+\cdots\)
5328.2.e.c 5328.e 12.b $4$ $42.544$ \(\Q(\sqrt{-2}, \sqrt{-5})\) None 5328.2.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{1}q^{5}+2\beta _{2}q^{11}-6q^{13}-2\beta _{1}q^{17}+\cdots\)
5328.2.e.d 5328.e 12.b $4$ $42.544$ \(\Q(\zeta_{8})\) None 5328.2.e.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta_1 q^{7}+2\beta_{3} q^{11}+6 q^{13}+4\beta_{2} q^{17}+\cdots\)
5328.2.e.e 5328.e 12.b $12$ $42.544$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 5328.2.e.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{5}+\beta _{2}q^{7}+(-1+\beta _{1})q^{13}+\cdots\)
5328.2.e.f 5328.e 12.b $24$ $42.544$ None 5328.2.e.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
5328.2.e.g 5328.e 12.b $24$ $42.544$ None 5328.2.e.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(5328, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(5328, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(444, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1776, [\chi])\)\(^{\oplus 2}\)