Defining parameters
Level: | \( N \) | \(=\) | \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5328.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(1824\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5328, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 936 | 72 | 864 |
Cusp forms | 888 | 72 | 816 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(5328, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
5328.2.e.a | $2$ | $42.544$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{5}-4q^{11}-\beta q^{17}-2\beta q^{19}+\cdots\) |
5328.2.e.b | $2$ | $42.544$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{5}+4q^{11}-\beta q^{17}+2\beta q^{19}+\cdots\) |
5328.2.e.c | $4$ | $42.544$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta _{1}q^{5}+2\beta _{2}q^{11}-6q^{13}-2\beta _{1}q^{17}+\cdots\) |
5328.2.e.d | $4$ | $42.544$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta_1 q^{7}+2\beta_{3} q^{11}+6 q^{13}+4\beta_{2} q^{17}+\cdots\) |
5328.2.e.e | $12$ | $42.544$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{6}q^{5}+\beta _{2}q^{7}+(-1+\beta _{1})q^{13}+\cdots\) |
5328.2.e.f | $24$ | $42.544$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
5328.2.e.g | $24$ | $42.544$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(5328, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5328, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(444, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1776, [\chi])\)\(^{\oplus 2}\)