Newspace parameters
Level: | \( N \) | \(=\) | \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5328.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(42.5442941969\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2591.1 | 0 | 0 | 0 | − | 3.80589i | 0 | − | 3.34969i | 0 | 0 | 0 | ||||||||||||||||
2591.2 | 0 | 0 | 0 | − | 3.80589i | 0 | 3.34969i | 0 | 0 | 0 | |||||||||||||||||
2591.3 | 0 | 0 | 0 | − | 3.05740i | 0 | − | 1.35466i | 0 | 0 | 0 | ||||||||||||||||
2591.4 | 0 | 0 | 0 | − | 3.05740i | 0 | 1.35466i | 0 | 0 | 0 | |||||||||||||||||
2591.5 | 0 | 0 | 0 | − | 2.80927i | 0 | − | 4.99414i | 0 | 0 | 0 | ||||||||||||||||
2591.6 | 0 | 0 | 0 | − | 2.80927i | 0 | 4.99414i | 0 | 0 | 0 | |||||||||||||||||
2591.7 | 0 | 0 | 0 | − | 2.30074i | 0 | − | 4.07997i | 0 | 0 | 0 | ||||||||||||||||
2591.8 | 0 | 0 | 0 | − | 2.30074i | 0 | 4.07997i | 0 | 0 | 0 | |||||||||||||||||
2591.9 | 0 | 0 | 0 | − | 0.774903i | 0 | − | 1.59995i | 0 | 0 | 0 | ||||||||||||||||
2591.10 | 0 | 0 | 0 | − | 0.774903i | 0 | 1.59995i | 0 | 0 | 0 | |||||||||||||||||
2591.11 | 0 | 0 | 0 | − | 0.617709i | 0 | − | 2.19022i | 0 | 0 | 0 | ||||||||||||||||
2591.12 | 0 | 0 | 0 | − | 0.617709i | 0 | 2.19022i | 0 | 0 | 0 | |||||||||||||||||
2591.13 | 0 | 0 | 0 | 0.617709i | 0 | − | 2.19022i | 0 | 0 | 0 | |||||||||||||||||
2591.14 | 0 | 0 | 0 | 0.617709i | 0 | 2.19022i | 0 | 0 | 0 | ||||||||||||||||||
2591.15 | 0 | 0 | 0 | 0.774903i | 0 | − | 1.59995i | 0 | 0 | 0 | |||||||||||||||||
2591.16 | 0 | 0 | 0 | 0.774903i | 0 | 1.59995i | 0 | 0 | 0 | ||||||||||||||||||
2591.17 | 0 | 0 | 0 | 2.30074i | 0 | − | 4.07997i | 0 | 0 | 0 | |||||||||||||||||
2591.18 | 0 | 0 | 0 | 2.30074i | 0 | 4.07997i | 0 | 0 | 0 | ||||||||||||||||||
2591.19 | 0 | 0 | 0 | 2.80927i | 0 | − | 4.99414i | 0 | 0 | 0 | |||||||||||||||||
2591.20 | 0 | 0 | 0 | 2.80927i | 0 | 4.99414i | 0 | 0 | 0 | ||||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 5328.2.e.f | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 5328.2.e.f | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 5328.2.e.f | ✓ | 24 |
12.b | even | 2 | 1 | inner | 5328.2.e.f | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
5328.2.e.f | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
5328.2.e.f | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
5328.2.e.f | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
5328.2.e.f | ✓ | 24 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5328, [\chi])\):
\( T_{5}^{12} + 38T_{5}^{10} + 528T_{5}^{8} + 3272T_{5}^{6} + 8500T_{5}^{4} + 6192T_{5}^{2} + 1296 \)
|
\( T_{11}^{12} - 62T_{11}^{10} + 1409T_{11}^{8} - 15128T_{11}^{6} + 79712T_{11}^{4} - 183200T_{11}^{2} + 107584 \)
|