Properties

Label 5328.2.e.f
Level $5328$
Weight $2$
Character orbit 5328.e
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 32 q^{25} - 24 q^{37} - 80 q^{49} - 48 q^{61} - 48 q^{73} - 40 q^{85} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2591.1 0 0 0 3.80589i 0 3.34969i 0 0 0
2591.2 0 0 0 3.80589i 0 3.34969i 0 0 0
2591.3 0 0 0 3.05740i 0 1.35466i 0 0 0
2591.4 0 0 0 3.05740i 0 1.35466i 0 0 0
2591.5 0 0 0 2.80927i 0 4.99414i 0 0 0
2591.6 0 0 0 2.80927i 0 4.99414i 0 0 0
2591.7 0 0 0 2.30074i 0 4.07997i 0 0 0
2591.8 0 0 0 2.30074i 0 4.07997i 0 0 0
2591.9 0 0 0 0.774903i 0 1.59995i 0 0 0
2591.10 0 0 0 0.774903i 0 1.59995i 0 0 0
2591.11 0 0 0 0.617709i 0 2.19022i 0 0 0
2591.12 0 0 0 0.617709i 0 2.19022i 0 0 0
2591.13 0 0 0 0.617709i 0 2.19022i 0 0 0
2591.14 0 0 0 0.617709i 0 2.19022i 0 0 0
2591.15 0 0 0 0.774903i 0 1.59995i 0 0 0
2591.16 0 0 0 0.774903i 0 1.59995i 0 0 0
2591.17 0 0 0 2.30074i 0 4.07997i 0 0 0
2591.18 0 0 0 2.30074i 0 4.07997i 0 0 0
2591.19 0 0 0 2.80927i 0 4.99414i 0 0 0
2591.20 0 0 0 2.80927i 0 4.99414i 0 0 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2591.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5328.2.e.f 24
3.b odd 2 1 inner 5328.2.e.f 24
4.b odd 2 1 inner 5328.2.e.f 24
12.b even 2 1 inner 5328.2.e.f 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5328.2.e.f 24 1.a even 1 1 trivial
5328.2.e.f 24 3.b odd 2 1 inner
5328.2.e.f 24 4.b odd 2 1 inner
5328.2.e.f 24 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5328, [\chi])\):

\( T_{5}^{12} + 38T_{5}^{10} + 528T_{5}^{8} + 3272T_{5}^{6} + 8500T_{5}^{4} + 6192T_{5}^{2} + 1296 \) Copy content Toggle raw display
\( T_{11}^{12} - 62T_{11}^{10} + 1409T_{11}^{8} - 15128T_{11}^{6} + 79712T_{11}^{4} - 183200T_{11}^{2} + 107584 \) Copy content Toggle raw display