Properties

Label 531.2.i.b.64.3
Level $531$
Weight $2$
Character 531.64
Analytic conductor $4.240$
Analytic rank $0$
Dimension $140$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(19,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(58)) chi = DirichletCharacter(H, H._module([0, 38])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.i (of order \(29\), degree \(28\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [140,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(140\)
Relative dimension: \(5\) over \(\Q(\zeta_{29})\)
Twist minimal: no (minimal twist has level 177)
Sato-Tate group: $\mathrm{SU}(2)[C_{29}]$

Embedding invariants

Embedding label 64.3
Character \(\chi\) \(=\) 531.64
Dual form 531.2.i.b.307.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.815839 - 0.274888i) q^{2} +(-1.00216 - 0.761819i) q^{4} +(-1.45570 + 3.65354i) q^{5} +(0.847760 - 0.392216i) q^{7} +(1.57444 + 2.32213i) q^{8} +(2.19193 - 2.58054i) q^{10} +(1.30482 - 4.69955i) q^{11} +(-1.78293 + 3.36297i) q^{13} +(-0.799452 + 0.0869456i) q^{14} +(0.0273873 + 0.0986401i) q^{16} +(-4.49242 - 2.07842i) q^{17} +(-1.47865 + 0.325475i) q^{19} +(4.24218 - 2.55243i) q^{20} +(-2.35638 + 3.47539i) q^{22} +(0.497085 - 3.03208i) q^{23} +(-7.59929 - 7.19843i) q^{25} +(2.37903 - 2.25353i) q^{26} +(-1.14839 - 0.252779i) q^{28} +(-8.77673 + 2.95723i) q^{29} +(-7.13289 - 1.57007i) q^{31} +(0.308551 - 5.69088i) q^{32} +(3.09376 + 2.93057i) q^{34} +(0.198888 + 3.66827i) q^{35} +(2.45943 - 3.62739i) q^{37} +(1.29581 + 0.140928i) q^{38} +(-10.7759 + 2.37195i) q^{40} +(1.69060 + 10.3122i) q^{41} +(-0.416141 - 1.49880i) q^{43} +(-4.88784 + 3.71564i) q^{44} +(-1.23903 + 2.33705i) q^{46} +(-2.56001 - 6.42514i) q^{47} +(-3.96684 + 4.67012i) q^{49} +(4.22103 + 7.96172i) q^{50} +(4.34875 - 2.01195i) q^{52} +(0.552469 + 0.650416i) q^{53} +(15.2705 + 11.6084i) q^{55} +(2.24552 + 1.35109i) q^{56} +7.97331 q^{58} +(4.84647 - 5.95917i) q^{59} +(-2.47741 - 0.834738i) q^{61} +(5.38770 + 3.24167i) q^{62} +(-1.74030 + 4.36782i) q^{64} +(-9.69131 - 11.4095i) q^{65} +(-4.60495 - 6.79179i) q^{67} +(2.91873 + 5.50531i) q^{68} +(0.846105 - 3.04739i) q^{70} +(-0.745934 - 1.87215i) q^{71} +(-10.4550 + 1.13705i) q^{73} +(-3.00363 + 2.28330i) q^{74} +(1.72979 + 0.800286i) q^{76} +(-0.737059 - 4.49586i) q^{77} +(3.21106 - 1.93203i) q^{79} +(-0.400253 - 0.0435301i) q^{80} +(1.45545 - 8.87783i) q^{82} +(0.128318 + 2.36669i) q^{83} +(14.1332 - 13.3877i) q^{85} +(-0.0724995 + 1.33718i) q^{86} +(12.9673 - 4.36919i) q^{88} +(-4.43874 + 1.49559i) q^{89} +(-0.192491 + 3.55028i) q^{91} +(-2.80806 + 2.65993i) q^{92} +(0.322361 + 5.94559i) q^{94} +(0.963337 - 5.87610i) q^{95} +(-7.49293 - 0.814905i) q^{97} +(4.52007 - 2.71963i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 140 q - q^{2} - q^{4} - 2 q^{5} - 2 q^{7} + 3 q^{8} - 116 q^{10} - 2 q^{11} + 4 q^{13} + 43 q^{14} + 7 q^{16} - 2 q^{19} - 4 q^{20} + 6 q^{22} - 6 q^{23} - 57 q^{25} - 12 q^{26} - 10 q^{28} + 4 q^{29}+ \cdots + 143 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{29}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.815839 0.274888i −0.576885 0.194375i 0.0157086 0.999877i \(-0.495000\pi\)
−0.592594 + 0.805501i \(0.701896\pi\)
\(3\) 0 0
\(4\) −1.00216 0.761819i −0.501078 0.380910i
\(5\) −1.45570 + 3.65354i −0.651010 + 1.63391i 0.116740 + 0.993162i \(0.462755\pi\)
−0.767750 + 0.640749i \(0.778624\pi\)
\(6\) 0 0
\(7\) 0.847760 0.392216i 0.320423 0.148244i −0.253083 0.967444i \(-0.581445\pi\)
0.573507 + 0.819201i \(0.305583\pi\)
\(8\) 1.57444 + 2.32213i 0.556649 + 0.820995i
\(9\) 0 0
\(10\) 2.19193 2.58054i 0.693150 0.816040i
\(11\) 1.30482 4.69955i 0.393419 1.41697i −0.456345 0.889803i \(-0.650842\pi\)
0.849764 0.527164i \(-0.176745\pi\)
\(12\) 0 0
\(13\) −1.78293 + 3.36297i −0.494496 + 0.932719i 0.503153 + 0.864197i \(0.332173\pi\)
−0.997650 + 0.0685218i \(0.978172\pi\)
\(14\) −0.799452 + 0.0869456i −0.213662 + 0.0232372i
\(15\) 0 0
\(16\) 0.0273873 + 0.0986401i 0.00684682 + 0.0246600i
\(17\) −4.49242 2.07842i −1.08957 0.504090i −0.208959 0.977924i \(-0.567007\pi\)
−0.880614 + 0.473834i \(0.842870\pi\)
\(18\) 0 0
\(19\) −1.47865 + 0.325475i −0.339225 + 0.0746691i −0.381316 0.924445i \(-0.624529\pi\)
0.0420909 + 0.999114i \(0.486598\pi\)
\(20\) 4.24218 2.55243i 0.948580 0.570741i
\(21\) 0 0
\(22\) −2.35638 + 3.47539i −0.502381 + 0.740957i
\(23\) 0.497085 3.03208i 0.103649 0.632233i −0.883000 0.469373i \(-0.844480\pi\)
0.986649 0.162860i \(-0.0520718\pi\)
\(24\) 0 0
\(25\) −7.59929 7.19843i −1.51986 1.43969i
\(26\) 2.37903 2.25353i 0.466565 0.441954i
\(27\) 0 0
\(28\) −1.14839 0.252779i −0.217025 0.0477707i
\(29\) −8.77673 + 2.95723i −1.62980 + 0.549143i −0.977884 0.209150i \(-0.932930\pi\)
−0.651914 + 0.758293i \(0.726034\pi\)
\(30\) 0 0
\(31\) −7.13289 1.57007i −1.28110 0.281992i −0.478280 0.878208i \(-0.658739\pi\)
−0.802825 + 0.596215i \(0.796670\pi\)
\(32\) 0.308551 5.69088i 0.0545446 1.00602i
\(33\) 0 0
\(34\) 3.09376 + 2.93057i 0.530576 + 0.502588i
\(35\) 0.198888 + 3.66827i 0.0336182 + 0.620051i
\(36\) 0 0
\(37\) 2.45943 3.62739i 0.404328 0.596339i −0.569953 0.821678i \(-0.693038\pi\)
0.974281 + 0.225338i \(0.0723488\pi\)
\(38\) 1.29581 + 0.140928i 0.210208 + 0.0228615i
\(39\) 0 0
\(40\) −10.7759 + 2.37195i −1.70382 + 0.375039i
\(41\) 1.69060 + 10.3122i 0.264027 + 1.61050i 0.702454 + 0.711729i \(0.252088\pi\)
−0.438427 + 0.898767i \(0.644464\pi\)
\(42\) 0 0
\(43\) −0.416141 1.49880i −0.0634609 0.228565i 0.925018 0.379923i \(-0.124049\pi\)
−0.988479 + 0.151357i \(0.951636\pi\)
\(44\) −4.88784 + 3.71564i −0.736870 + 0.560154i
\(45\) 0 0
\(46\) −1.23903 + 2.33705i −0.182684 + 0.344579i
\(47\) −2.56001 6.42514i −0.373416 0.937202i −0.988837 0.149004i \(-0.952393\pi\)
0.615421 0.788199i \(-0.288986\pi\)
\(48\) 0 0
\(49\) −3.96684 + 4.67012i −0.566691 + 0.667161i
\(50\) 4.22103 + 7.96172i 0.596944 + 1.12596i
\(51\) 0 0
\(52\) 4.34875 2.01195i 0.603063 0.279007i
\(53\) 0.552469 + 0.650416i 0.0758874 + 0.0893416i 0.798796 0.601603i \(-0.205471\pi\)
−0.722908 + 0.690944i \(0.757195\pi\)
\(54\) 0 0
\(55\) 15.2705 + 11.6084i 2.05908 + 1.56527i
\(56\) 2.24552 + 1.35109i 0.300071 + 0.180546i
\(57\) 0 0
\(58\) 7.97331 1.04695
\(59\) 4.84647 5.95917i 0.630956 0.775818i
\(60\) 0 0
\(61\) −2.47741 0.834738i −0.317200 0.106877i 0.156198 0.987726i \(-0.450076\pi\)
−0.473398 + 0.880849i \(0.656973\pi\)
\(62\) 5.38770 + 3.24167i 0.684238 + 0.411692i
\(63\) 0 0
\(64\) −1.74030 + 4.36782i −0.217538 + 0.545978i
\(65\) −9.69131 11.4095i −1.20206 1.41517i
\(66\) 0 0
\(67\) −4.60495 6.79179i −0.562584 0.829749i 0.434912 0.900473i \(-0.356779\pi\)
−0.997496 + 0.0707238i \(0.977469\pi\)
\(68\) 2.91873 + 5.50531i 0.353948 + 0.667617i
\(69\) 0 0
\(70\) 0.846105 3.04739i 0.101129 0.364233i
\(71\) −0.745934 1.87215i −0.0885261 0.222184i 0.878047 0.478574i \(-0.158846\pi\)
−0.966573 + 0.256390i \(0.917467\pi\)
\(72\) 0 0
\(73\) −10.4550 + 1.13705i −1.22367 + 0.133082i −0.697052 0.717020i \(-0.745505\pi\)
−0.526617 + 0.850102i \(0.676540\pi\)
\(74\) −3.00363 + 2.28330i −0.349165 + 0.265428i
\(75\) 0 0
\(76\) 1.72979 + 0.800286i 0.198421 + 0.0917991i
\(77\) −0.737059 4.49586i −0.0839957 0.512351i
\(78\) 0 0
\(79\) 3.21106 1.93203i 0.361273 0.217371i −0.323331 0.946286i \(-0.604803\pi\)
0.684604 + 0.728915i \(0.259975\pi\)
\(80\) −0.400253 0.0435301i −0.0447497 0.00486682i
\(81\) 0 0
\(82\) 1.45545 8.87783i 0.160727 0.980392i
\(83\) 0.128318 + 2.36669i 0.0140848 + 0.259778i 0.997092 + 0.0762102i \(0.0242820\pi\)
−0.983007 + 0.183568i \(0.941235\pi\)
\(84\) 0 0
\(85\) 14.1332 13.3877i 1.53296 1.45210i
\(86\) −0.0724995 + 1.33718i −0.00781783 + 0.144191i
\(87\) 0 0
\(88\) 12.9673 4.36919i 1.38232 0.465758i
\(89\) −4.43874 + 1.49559i −0.470506 + 0.158532i −0.544559 0.838722i \(-0.683303\pi\)
0.0740534 + 0.997254i \(0.476406\pi\)
\(90\) 0 0
\(91\) −0.192491 + 3.55028i −0.0201785 + 0.372171i
\(92\) −2.80806 + 2.65993i −0.292760 + 0.277317i
\(93\) 0 0
\(94\) 0.322361 + 5.94559i 0.0332490 + 0.613241i
\(95\) 0.963337 5.87610i 0.0988363 0.602875i
\(96\) 0 0
\(97\) −7.49293 0.814905i −0.760791 0.0827411i −0.280505 0.959853i \(-0.590502\pi\)
−0.480287 + 0.877112i \(0.659467\pi\)
\(98\) 4.52007 2.71963i 0.456596 0.274724i
\(99\) 0 0
\(100\) 2.13177 + 13.0032i 0.213177 + 1.30032i
\(101\) 7.05094 + 3.26211i 0.701595 + 0.324592i 0.738053 0.674743i \(-0.235745\pi\)
−0.0364579 + 0.999335i \(0.511607\pi\)
\(102\) 0 0
\(103\) 14.5612 11.0691i 1.43475 1.09067i 0.454994 0.890495i \(-0.349641\pi\)
0.979760 0.200177i \(-0.0641516\pi\)
\(104\) −10.6163 + 1.15460i −1.04102 + 0.113218i
\(105\) 0 0
\(106\) −0.271934 0.682502i −0.0264125 0.0662905i
\(107\) −3.74902 + 13.5028i −0.362432 + 1.30536i 0.527611 + 0.849486i \(0.323088\pi\)
−0.890043 + 0.455876i \(0.849326\pi\)
\(108\) 0 0
\(109\) 3.08301 + 5.81517i 0.295299 + 0.556992i 0.986120 0.166033i \(-0.0530958\pi\)
−0.690822 + 0.723025i \(0.742751\pi\)
\(110\) −9.26730 13.6682i −0.883603 1.30322i
\(111\) 0 0
\(112\) 0.0619061 + 0.0728815i 0.00584957 + 0.00688665i
\(113\) 2.77017 6.95259i 0.260595 0.654045i −0.739216 0.673468i \(-0.764804\pi\)
0.999811 + 0.0194234i \(0.00618306\pi\)
\(114\) 0 0
\(115\) 10.3542 + 6.22993i 0.965536 + 0.580944i
\(116\) 11.0485 + 3.72268i 1.02583 + 0.345642i
\(117\) 0 0
\(118\) −5.59204 + 3.52949i −0.514789 + 0.324916i
\(119\) −4.62369 −0.423853
\(120\) 0 0
\(121\) −10.9578 6.59306i −0.996159 0.599369i
\(122\) 1.79171 + 1.36202i 0.162214 + 0.123312i
\(123\) 0 0
\(124\) 5.95216 + 7.00742i 0.534520 + 0.629285i
\(125\) 19.5152 9.02869i 1.74549 0.807551i
\(126\) 0 0
\(127\) 4.38785 + 8.27636i 0.389359 + 0.734408i 0.998268 0.0588315i \(-0.0187375\pi\)
−0.608909 + 0.793240i \(0.708393\pi\)
\(128\) −4.75875 + 5.60243i −0.420618 + 0.495190i
\(129\) 0 0
\(130\) 4.77021 + 11.9723i 0.418375 + 1.05004i
\(131\) −0.450959 + 0.850600i −0.0394005 + 0.0743172i −0.902431 0.430835i \(-0.858219\pi\)
0.863030 + 0.505153i \(0.168564\pi\)
\(132\) 0 0
\(133\) −1.12588 + 0.855874i −0.0976265 + 0.0742137i
\(134\) 1.88991 + 6.80685i 0.163264 + 0.588023i
\(135\) 0 0
\(136\) −2.24671 13.7043i −0.192654 1.17514i
\(137\) −5.56507 + 1.22496i −0.475456 + 0.104656i −0.446232 0.894917i \(-0.647235\pi\)
−0.0292236 + 0.999573i \(0.509303\pi\)
\(138\) 0 0
\(139\) 2.38178 + 0.259034i 0.202020 + 0.0219710i 0.208569 0.978008i \(-0.433119\pi\)
−0.00654964 + 0.999979i \(0.502085\pi\)
\(140\) 2.59525 3.82770i 0.219338 0.323500i
\(141\) 0 0
\(142\) 0.0939293 + 1.73242i 0.00788237 + 0.145382i
\(143\) 13.4780 + 12.7670i 1.12709 + 1.06763i
\(144\) 0 0
\(145\) 1.97198 36.3710i 0.163764 3.02044i
\(146\) 8.84219 + 1.94631i 0.731785 + 0.161078i
\(147\) 0 0
\(148\) −5.22815 + 1.76157i −0.429751 + 0.144800i
\(149\) 10.2903 + 2.26506i 0.843012 + 0.185561i 0.615424 0.788196i \(-0.288985\pi\)
0.227589 + 0.973757i \(0.426916\pi\)
\(150\) 0 0
\(151\) −9.90209 + 9.37975i −0.805820 + 0.763313i −0.974984 0.222274i \(-0.928652\pi\)
0.169164 + 0.985588i \(0.445893\pi\)
\(152\) −3.08384 2.92117i −0.250132 0.236938i
\(153\) 0 0
\(154\) −0.634538 + 3.87051i −0.0511325 + 0.311895i
\(155\) 16.1197 23.7747i 1.29476 1.90963i
\(156\) 0 0
\(157\) 1.32846 0.799306i 0.106022 0.0637915i −0.461555 0.887112i \(-0.652708\pi\)
0.567577 + 0.823320i \(0.307881\pi\)
\(158\) −3.15080 + 0.693544i −0.250664 + 0.0551754i
\(159\) 0 0
\(160\) 20.3427 + 9.41153i 1.60823 + 0.744047i
\(161\) −0.767822 2.76544i −0.0605128 0.217948i
\(162\) 0 0
\(163\) −14.8014 + 1.60975i −1.15933 + 0.126085i −0.667504 0.744607i \(-0.732637\pi\)
−0.491829 + 0.870692i \(0.663672\pi\)
\(164\) 6.16179 11.6224i 0.481155 0.907555i
\(165\) 0 0
\(166\) 0.545889 1.96611i 0.0423692 0.152600i
\(167\) −7.82764 + 9.21542i −0.605721 + 0.713110i −0.976477 0.215620i \(-0.930823\pi\)
0.370756 + 0.928730i \(0.379099\pi\)
\(168\) 0 0
\(169\) −0.835263 1.23192i −0.0642510 0.0947632i
\(170\) −15.2105 + 7.03715i −1.16660 + 0.539724i
\(171\) 0 0
\(172\) −0.724780 + 1.81906i −0.0552639 + 0.138702i
\(173\) 17.3150 + 13.1625i 1.31644 + 1.00073i 0.998617 + 0.0525764i \(0.0167433\pi\)
0.317818 + 0.948152i \(0.397050\pi\)
\(174\) 0 0
\(175\) −9.26572 3.12198i −0.700422 0.236000i
\(176\) 0.499299 0.0376361
\(177\) 0 0
\(178\) 4.03242 0.302243
\(179\) −4.45704 1.50175i −0.333135 0.112246i 0.147763 0.989023i \(-0.452793\pi\)
−0.480898 + 0.876777i \(0.659689\pi\)
\(180\) 0 0
\(181\) 19.5700 + 14.8767i 1.45462 + 1.10578i 0.973382 + 0.229189i \(0.0736073\pi\)
0.481242 + 0.876588i \(0.340186\pi\)
\(182\) 1.13297 2.84355i 0.0839815 0.210778i
\(183\) 0 0
\(184\) 7.82351 3.61954i 0.576757 0.266836i
\(185\) 9.67261 + 14.2660i 0.711144 + 1.04886i
\(186\) 0 0
\(187\) −15.6294 + 18.4004i −1.14294 + 1.34557i
\(188\) −2.32926 + 8.38925i −0.169879 + 0.611849i
\(189\) 0 0
\(190\) −2.40120 + 4.52914i −0.174201 + 0.328578i
\(191\) −18.0506 + 1.96313i −1.30610 + 0.142047i −0.734568 0.678535i \(-0.762615\pi\)
−0.571530 + 0.820581i \(0.693650\pi\)
\(192\) 0 0
\(193\) 3.19213 + 11.4970i 0.229775 + 0.827573i 0.985065 + 0.172183i \(0.0550820\pi\)
−0.755290 + 0.655390i \(0.772504\pi\)
\(194\) 5.88901 + 2.72455i 0.422807 + 0.195611i
\(195\) 0 0
\(196\) 7.53318 1.65818i 0.538085 0.118441i
\(197\) 0.372221 0.223958i 0.0265196 0.0159563i −0.502232 0.864733i \(-0.667488\pi\)
0.528752 + 0.848776i \(0.322660\pi\)
\(198\) 0 0
\(199\) 1.20428 1.77618i 0.0853692 0.125910i −0.782607 0.622516i \(-0.786110\pi\)
0.867976 + 0.496606i \(0.165421\pi\)
\(200\) 4.75103 28.9800i 0.335949 2.04920i
\(201\) 0 0
\(202\) −4.85572 4.59958i −0.341647 0.323625i
\(203\) −6.28070 + 5.94939i −0.440818 + 0.417565i
\(204\) 0 0
\(205\) −40.1370 8.83483i −2.80329 0.617051i
\(206\) −14.9223 + 5.02792i −1.03969 + 0.350312i
\(207\) 0 0
\(208\) −0.380553 0.0837660i −0.0263866 0.00580813i
\(209\) −0.399789 + 7.37367i −0.0276540 + 0.510047i
\(210\) 0 0
\(211\) −2.89916 2.74623i −0.199586 0.189058i 0.581379 0.813633i \(-0.302514\pi\)
−0.780965 + 0.624575i \(0.785272\pi\)
\(212\) −0.0581601 1.07270i −0.00399445 0.0736733i
\(213\) 0 0
\(214\) 6.77035 9.98552i 0.462812 0.682596i
\(215\) 6.08171 + 0.661426i 0.414769 + 0.0451089i
\(216\) 0 0
\(217\) −6.66278 + 1.46659i −0.452299 + 0.0995586i
\(218\) −0.916717 5.59173i −0.0620879 0.378720i
\(219\) 0 0
\(220\) −6.45999 23.2668i −0.435532 1.56865i
\(221\) 14.9993 11.4022i 1.00896 0.766995i
\(222\) 0 0
\(223\) −8.22210 + 15.5085i −0.550593 + 1.03853i 0.439517 + 0.898234i \(0.355150\pi\)
−0.990110 + 0.140294i \(0.955195\pi\)
\(224\) −1.97048 4.94552i −0.131658 0.330437i
\(225\) 0 0
\(226\) −4.17120 + 4.91071i −0.277464 + 0.326656i
\(227\) −5.24199 9.88745i −0.347923 0.656253i 0.646359 0.763033i \(-0.276291\pi\)
−0.994283 + 0.106780i \(0.965946\pi\)
\(228\) 0 0
\(229\) 14.8892 6.88847i 0.983905 0.455203i 0.139101 0.990278i \(-0.455579\pi\)
0.844804 + 0.535075i \(0.179717\pi\)
\(230\) −6.73485 7.92887i −0.444083 0.522814i
\(231\) 0 0
\(232\) −20.6855 15.7247i −1.35807 1.03238i
\(233\) 6.33096 + 3.80921i 0.414755 + 0.249550i 0.707604 0.706609i \(-0.249776\pi\)
−0.292850 + 0.956159i \(0.594603\pi\)
\(234\) 0 0
\(235\) 27.2011 1.77440
\(236\) −9.39673 + 2.27989i −0.611675 + 0.148408i
\(237\) 0 0
\(238\) 3.77219 + 1.27100i 0.244514 + 0.0823865i
\(239\) −11.5251 6.93444i −0.745499 0.448552i 0.0914663 0.995808i \(-0.470845\pi\)
−0.836965 + 0.547257i \(0.815672\pi\)
\(240\) 0 0
\(241\) 1.99880 5.01661i 0.128754 0.323149i −0.850441 0.526071i \(-0.823665\pi\)
0.979195 + 0.202922i \(0.0650439\pi\)
\(242\) 7.12741 + 8.39104i 0.458167 + 0.539396i
\(243\) 0 0
\(244\) 1.84684 + 2.72388i 0.118232 + 0.174378i
\(245\) −11.2879 21.2913i −0.721160 1.36025i
\(246\) 0 0
\(247\) 1.54177 5.55295i 0.0981004 0.353326i
\(248\) −7.58441 19.0354i −0.481611 1.20875i
\(249\) 0 0
\(250\) −18.4031 + 2.00146i −1.16392 + 0.126584i
\(251\) −7.01937 + 5.33599i −0.443059 + 0.336805i −0.802801 0.596247i \(-0.796658\pi\)
0.359742 + 0.933052i \(0.382865\pi\)
\(252\) 0 0
\(253\) −13.6008 6.29240i −0.855076 0.395600i
\(254\) −1.30471 7.95835i −0.0818645 0.499351i
\(255\) 0 0
\(256\) 13.4799 8.11058i 0.842493 0.506911i
\(257\) −30.3073 3.29612i −1.89052 0.205606i −0.911773 0.410694i \(-0.865287\pi\)
−0.978744 + 0.205088i \(0.934252\pi\)
\(258\) 0 0
\(259\) 0.662289 4.03979i 0.0411527 0.251020i
\(260\) 1.02023 + 18.8171i 0.0632722 + 1.16699i
\(261\) 0 0
\(262\) 0.601730 0.569989i 0.0371750 0.0352140i
\(263\) 0.504510 9.30515i 0.0311094 0.573780i −0.940878 0.338746i \(-0.889997\pi\)
0.971987 0.235034i \(-0.0755201\pi\)
\(264\) 0 0
\(265\) −3.18055 + 1.07165i −0.195380 + 0.0658311i
\(266\) 1.15381 0.388764i 0.0707446 0.0238366i
\(267\) 0 0
\(268\) −0.559240 + 10.3146i −0.0341610 + 0.630063i
\(269\) −12.5579 + 11.8955i −0.765672 + 0.725283i −0.967149 0.254210i \(-0.918184\pi\)
0.201477 + 0.979493i \(0.435426\pi\)
\(270\) 0 0
\(271\) 1.01650 + 18.7482i 0.0617479 + 1.13887i 0.851124 + 0.524964i \(0.175921\pi\)
−0.789376 + 0.613909i \(0.789596\pi\)
\(272\) 0.0819799 0.500055i 0.00497076 0.0303203i
\(273\) 0 0
\(274\) 4.87693 + 0.530398i 0.294626 + 0.0320425i
\(275\) −43.7451 + 26.3205i −2.63793 + 1.58719i
\(276\) 0 0
\(277\) −4.00805 24.4480i −0.240820 1.46894i −0.779486 0.626419i \(-0.784520\pi\)
0.538666 0.842519i \(-0.318929\pi\)
\(278\) −1.87194 0.866052i −0.112272 0.0519424i
\(279\) 0 0
\(280\) −8.20506 + 6.23732i −0.490346 + 0.372751i
\(281\) −14.4013 + 1.56624i −0.859109 + 0.0934337i −0.527060 0.849828i \(-0.676706\pi\)
−0.332049 + 0.943262i \(0.607740\pi\)
\(282\) 0 0
\(283\) −9.83311 24.6792i −0.584518 1.46703i −0.862306 0.506387i \(-0.830981\pi\)
0.277789 0.960642i \(-0.410398\pi\)
\(284\) −0.678700 + 2.44446i −0.0402734 + 0.145052i
\(285\) 0 0
\(286\) −7.48638 14.1208i −0.442679 0.834981i
\(287\) 5.47783 + 8.07920i 0.323346 + 0.476900i
\(288\) 0 0
\(289\) 4.85649 + 5.71750i 0.285676 + 0.336324i
\(290\) −11.6068 + 29.1308i −0.681573 + 1.71062i
\(291\) 0 0
\(292\) 11.3438 + 6.82534i 0.663846 + 0.399423i
\(293\) 22.9583 + 7.73554i 1.34124 + 0.451915i 0.896221 0.443608i \(-0.146302\pi\)
0.445015 + 0.895523i \(0.353198\pi\)
\(294\) 0 0
\(295\) 14.7171 + 26.3815i 0.856860 + 1.53599i
\(296\) 12.2955 0.714661
\(297\) 0 0
\(298\) −7.77257 4.67660i −0.450253 0.270908i
\(299\) 9.31052 + 7.07768i 0.538441 + 0.409313i
\(300\) 0 0
\(301\) −0.940642 1.10741i −0.0542177 0.0638300i
\(302\) 10.6569 4.93040i 0.613235 0.283713i
\(303\) 0 0
\(304\) −0.0726011 0.136940i −0.00416396 0.00785406i
\(305\) 6.65612 7.83619i 0.381128 0.448699i
\(306\) 0 0
\(307\) −6.18243 15.5167i −0.352850 0.885586i −0.993084 0.117406i \(-0.962542\pi\)
0.640234 0.768180i \(-0.278837\pi\)
\(308\) −2.68639 + 5.06706i −0.153071 + 0.288723i
\(309\) 0 0
\(310\) −19.6864 + 14.9652i −1.11811 + 0.849969i
\(311\) 7.12289 + 25.6543i 0.403902 + 1.45472i 0.833911 + 0.551899i \(0.186097\pi\)
−0.430009 + 0.902825i \(0.641490\pi\)
\(312\) 0 0
\(313\) 0.351118 + 2.14173i 0.0198464 + 0.121058i 0.994892 0.100949i \(-0.0321878\pi\)
−0.975045 + 0.222006i \(0.928739\pi\)
\(314\) −1.30353 + 0.286928i −0.0735622 + 0.0161923i
\(315\) 0 0
\(316\) −4.68984 0.510051i −0.263824 0.0286926i
\(317\) 2.31476 3.41401i 0.130010 0.191750i −0.757113 0.653284i \(-0.773391\pi\)
0.887122 + 0.461535i \(0.152701\pi\)
\(318\) 0 0
\(319\) 2.44554 + 45.1053i 0.136924 + 2.52541i
\(320\) −13.4247 12.7165i −0.750461 0.710874i
\(321\) 0 0
\(322\) −0.133769 + 2.46722i −0.00745465 + 0.137493i
\(323\) 7.31919 + 1.61108i 0.407251 + 0.0896427i
\(324\) 0 0
\(325\) 37.7571 12.7218i 2.09439 0.705681i
\(326\) 12.5180 + 2.75543i 0.693310 + 0.152609i
\(327\) 0 0
\(328\) −21.2845 + 20.1617i −1.17524 + 1.11325i
\(329\) −4.69031 4.44290i −0.258585 0.244945i
\(330\) 0 0
\(331\) −3.32944 + 20.3087i −0.183003 + 1.11627i 0.722325 + 0.691554i \(0.243074\pi\)
−0.905328 + 0.424714i \(0.860375\pi\)
\(332\) 1.67440 2.46955i 0.0918945 0.135534i
\(333\) 0 0
\(334\) 8.91931 5.36657i 0.488043 0.293646i
\(335\) 31.5175 6.93752i 1.72198 0.379037i
\(336\) 0 0
\(337\) −8.30529 3.84244i −0.452418 0.209311i 0.180428 0.983588i \(-0.442252\pi\)
−0.632847 + 0.774277i \(0.718114\pi\)
\(338\) 0.342800 + 1.23465i 0.0186459 + 0.0671563i
\(339\) 0 0
\(340\) −24.3627 + 2.64960i −1.32125 + 0.143695i
\(341\) −16.6858 + 31.4727i −0.903584 + 1.70434i
\(342\) 0 0
\(343\) −3.28051 + 11.8153i −0.177131 + 0.637968i
\(344\) 2.82522 3.32611i 0.152326 0.179332i
\(345\) 0 0
\(346\) −10.5080 15.4982i −0.564915 0.833188i
\(347\) −9.71905 + 4.49651i −0.521746 + 0.241385i −0.663042 0.748582i \(-0.730735\pi\)
0.141296 + 0.989967i \(0.454873\pi\)
\(348\) 0 0
\(349\) 4.14086 10.3928i 0.221655 0.556312i −0.775528 0.631313i \(-0.782516\pi\)
0.997184 + 0.0750004i \(0.0238958\pi\)
\(350\) 6.70114 + 5.09407i 0.358191 + 0.272290i
\(351\) 0 0
\(352\) −26.3420 8.87564i −1.40403 0.473073i
\(353\) −12.7467 −0.678437 −0.339219 0.940708i \(-0.610163\pi\)
−0.339219 + 0.940708i \(0.610163\pi\)
\(354\) 0 0
\(355\) 7.92584 0.420660
\(356\) 5.58768 + 1.88271i 0.296146 + 0.0997834i
\(357\) 0 0
\(358\) 3.22341 + 2.45037i 0.170363 + 0.129506i
\(359\) 10.5960 26.5940i 0.559237 1.40358i −0.329060 0.944309i \(-0.606732\pi\)
0.888297 0.459270i \(-0.151889\pi\)
\(360\) 0 0
\(361\) −15.1635 + 7.01537i −0.798077 + 0.369230i
\(362\) −11.8765 17.5165i −0.624216 0.920649i
\(363\) 0 0
\(364\) 2.89758 3.41130i 0.151874 0.178800i
\(365\) 11.0652 39.8531i 0.579177 2.08601i
\(366\) 0 0
\(367\) −0.514026 + 0.969555i −0.0268319 + 0.0506104i −0.896566 0.442911i \(-0.853946\pi\)
0.869734 + 0.493521i \(0.164291\pi\)
\(368\) 0.312699 0.0340080i 0.0163006 0.00177279i
\(369\) 0 0
\(370\) −3.96973 14.2977i −0.206376 0.743300i
\(371\) 0.723465 + 0.334710i 0.0375604 + 0.0173773i
\(372\) 0 0
\(373\) 10.0189 2.20532i 0.518758 0.114187i 0.0521288 0.998640i \(-0.483399\pi\)
0.466629 + 0.884453i \(0.345468\pi\)
\(374\) 17.8092 10.7154i 0.920890 0.554081i
\(375\) 0 0
\(376\) 10.8894 16.0607i 0.561578 0.828265i
\(377\) 5.70327 34.7884i 0.293733 1.79169i
\(378\) 0 0
\(379\) −7.91161 7.49428i −0.406392 0.384955i 0.457018 0.889457i \(-0.348917\pi\)
−0.863410 + 0.504502i \(0.831676\pi\)
\(380\) −5.44194 + 5.15488i −0.279165 + 0.264440i
\(381\) 0 0
\(382\) 15.2661 + 3.36031i 0.781079 + 0.171929i
\(383\) 19.4082 6.53938i 0.991712 0.334147i 0.223753 0.974646i \(-0.428169\pi\)
0.767959 + 0.640499i \(0.221273\pi\)
\(384\) 0 0
\(385\) 17.4987 + 3.85176i 0.891818 + 0.196304i
\(386\) 0.556129 10.2572i 0.0283062 0.522077i
\(387\) 0 0
\(388\) 6.88827 + 6.52492i 0.349699 + 0.331253i
\(389\) −1.29459 23.8773i −0.0656382 1.21063i −0.826964 0.562255i \(-0.809934\pi\)
0.761326 0.648370i \(-0.224549\pi\)
\(390\) 0 0
\(391\) −8.53505 + 12.5883i −0.431636 + 0.636615i
\(392\) −17.0902 1.85867i −0.863184 0.0938769i
\(393\) 0 0
\(394\) −0.365236 + 0.0803944i −0.0184003 + 0.00405021i
\(395\) 2.38440 + 14.5442i 0.119972 + 0.731798i
\(396\) 0 0
\(397\) −9.22544 33.2270i −0.463011 1.66762i −0.714406 0.699731i \(-0.753303\pi\)
0.251395 0.967885i \(-0.419111\pi\)
\(398\) −1.47075 + 1.11804i −0.0737220 + 0.0560420i
\(399\) 0 0
\(400\) 0.501930 0.946740i 0.0250965 0.0473370i
\(401\) 5.69657 + 14.2973i 0.284473 + 0.713974i 0.999883 + 0.0152691i \(0.00486050\pi\)
−0.715410 + 0.698705i \(0.753760\pi\)
\(402\) 0 0
\(403\) 17.9975 21.1883i 0.896521 1.05547i
\(404\) −4.58101 8.64069i −0.227914 0.429891i
\(405\) 0 0
\(406\) 6.75945 3.12726i 0.335466 0.155203i
\(407\) −13.8380 16.2913i −0.685923 0.807531i
\(408\) 0 0
\(409\) 24.6708 + 18.7542i 1.21989 + 0.927336i 0.998851 0.0479285i \(-0.0152620\pi\)
0.221039 + 0.975265i \(0.429055\pi\)
\(410\) 30.3168 + 18.2410i 1.49724 + 0.900859i
\(411\) 0 0
\(412\) −23.0252 −1.13437
\(413\) 1.77136 6.95281i 0.0871630 0.342126i
\(414\) 0 0
\(415\) −8.83359 2.97638i −0.433624 0.146105i
\(416\) 18.5881 + 11.1841i 0.911357 + 0.548345i
\(417\) 0 0
\(418\) 2.35310 5.90583i 0.115094 0.288864i
\(419\) 18.0466 + 21.2461i 0.881636 + 1.03794i 0.998994 + 0.0448523i \(0.0142817\pi\)
−0.117358 + 0.993090i \(0.537442\pi\)
\(420\) 0 0
\(421\) 19.5363 + 28.8138i 0.952139 + 1.40430i 0.914310 + 0.405016i \(0.132734\pi\)
0.0378290 + 0.999284i \(0.487956\pi\)
\(422\) 1.61034 + 3.03742i 0.0783901 + 0.147859i
\(423\) 0 0
\(424\) −0.640520 + 2.30694i −0.0311064 + 0.112035i
\(425\) 19.1779 + 48.1329i 0.930265 + 2.33479i
\(426\) 0 0
\(427\) −2.42765 + 0.264023i −0.117482 + 0.0127770i
\(428\) 14.0438 10.6758i 0.678832 0.516034i
\(429\) 0 0
\(430\) −4.77988 2.21141i −0.230506 0.106644i
\(431\) −5.97149 36.4245i −0.287637 1.75451i −0.595763 0.803160i \(-0.703150\pi\)
0.308126 0.951345i \(-0.400298\pi\)
\(432\) 0 0
\(433\) −19.1067 + 11.4961i −0.918210 + 0.552469i −0.894410 0.447248i \(-0.852404\pi\)
−0.0238002 + 0.999717i \(0.507577\pi\)
\(434\) 5.83891 + 0.635020i 0.280277 + 0.0304819i
\(435\) 0 0
\(436\) 1.34045 8.17641i 0.0641961 0.391579i
\(437\) 0.251854 + 4.64518i 0.0120478 + 0.222209i
\(438\) 0 0
\(439\) 17.8204 16.8804i 0.850523 0.805658i −0.132107 0.991236i \(-0.542174\pi\)
0.982630 + 0.185577i \(0.0594155\pi\)
\(440\) −2.91352 + 53.7368i −0.138897 + 2.56180i
\(441\) 0 0
\(442\) −15.3714 + 5.17922i −0.731142 + 0.246350i
\(443\) −7.49796 + 2.52636i −0.356239 + 0.120031i −0.491730 0.870748i \(-0.663635\pi\)
0.135491 + 0.990779i \(0.456739\pi\)
\(444\) 0 0
\(445\) 0.997307 18.3942i 0.0472769 0.871971i
\(446\) 10.9710 10.3923i 0.519493 0.492090i
\(447\) 0 0
\(448\) 0.237772 + 4.38544i 0.0112337 + 0.207193i
\(449\) 0.717636 4.37739i 0.0338674 0.206582i −0.964472 0.264184i \(-0.914897\pi\)
0.998340 + 0.0576025i \(0.0183456\pi\)
\(450\) 0 0
\(451\) 50.6686 + 5.51055i 2.38589 + 0.259481i
\(452\) −8.07276 + 4.85722i −0.379711 + 0.228464i
\(453\) 0 0
\(454\) 1.55868 + 9.50753i 0.0731525 + 0.446210i
\(455\) −12.6909 5.87143i −0.594958 0.275257i
\(456\) 0 0
\(457\) 21.9627 16.6956i 1.02737 0.780986i 0.0513529 0.998681i \(-0.483647\pi\)
0.976017 + 0.217694i \(0.0698536\pi\)
\(458\) −14.0407 + 1.52702i −0.656081 + 0.0713531i
\(459\) 0 0
\(460\) −5.63047 14.1314i −0.262522 0.658880i
\(461\) 8.27878 29.8175i 0.385581 1.38874i −0.475252 0.879850i \(-0.657643\pi\)
0.860833 0.508888i \(-0.169943\pi\)
\(462\) 0 0
\(463\) −3.53517 6.66804i −0.164293 0.309890i 0.787673 0.616094i \(-0.211286\pi\)
−0.951966 + 0.306204i \(0.900941\pi\)
\(464\) −0.532072 0.784747i −0.0247008 0.0364310i
\(465\) 0 0
\(466\) −4.11794 4.84801i −0.190760 0.224580i
\(467\) 1.84084 4.62016i 0.0851838 0.213795i −0.880214 0.474577i \(-0.842601\pi\)
0.965398 + 0.260782i \(0.0839803\pi\)
\(468\) 0 0
\(469\) −6.56774 3.95168i −0.303270 0.182472i
\(470\) −22.1917 7.47726i −1.02363 0.344900i
\(471\) 0 0
\(472\) 21.4684 + 1.87174i 0.988164 + 0.0861539i
\(473\) −7.58669 −0.348836
\(474\) 0 0
\(475\) 13.5796 + 8.17057i 0.623075 + 0.374891i
\(476\) 4.63366 + 3.52241i 0.212383 + 0.161450i
\(477\) 0 0
\(478\) 7.49646 + 8.82551i 0.342880 + 0.403669i
\(479\) −24.7085 + 11.4313i −1.12896 + 0.522312i −0.893272 0.449517i \(-0.851596\pi\)
−0.235687 + 0.971829i \(0.575734\pi\)
\(480\) 0 0
\(481\) 7.81379 + 14.7384i 0.356278 + 0.672012i
\(482\) −3.00971 + 3.54330i −0.137088 + 0.161393i
\(483\) 0 0
\(484\) 5.95866 + 14.9551i 0.270848 + 0.679778i
\(485\) 13.8848 26.1894i 0.630474 1.18920i
\(486\) 0 0
\(487\) −18.6787 + 14.1992i −0.846412 + 0.643426i −0.935784 0.352573i \(-0.885307\pi\)
0.0893724 + 0.995998i \(0.471514\pi\)
\(488\) −1.96217 7.06711i −0.0888234 0.319913i
\(489\) 0 0
\(490\) 3.35641 + 20.4732i 0.151627 + 0.924885i
\(491\) 1.44042 0.317060i 0.0650052 0.0143087i −0.182349 0.983234i \(-0.558370\pi\)
0.247354 + 0.968925i \(0.420439\pi\)
\(492\) 0 0
\(493\) 45.5751 + 4.95660i 2.05260 + 0.223234i
\(494\) −2.78427 + 4.10650i −0.125270 + 0.184760i
\(495\) 0 0
\(496\) −0.0404789 0.746589i −0.00181755 0.0335228i
\(497\) −1.36666 1.29457i −0.0613031 0.0580694i
\(498\) 0 0
\(499\) −1.39473 + 25.7242i −0.0624366 + 1.15158i 0.784587 + 0.620019i \(0.212875\pi\)
−0.847023 + 0.531556i \(0.821608\pi\)
\(500\) −26.4355 5.81889i −1.18223 0.260229i
\(501\) 0 0
\(502\) 7.19348 2.42376i 0.321061 0.108178i
\(503\) −7.66561 1.68733i −0.341792 0.0752342i 0.0407574 0.999169i \(-0.487023\pi\)
−0.382550 + 0.923935i \(0.624954\pi\)
\(504\) 0 0
\(505\) −22.1823 + 21.0122i −0.987101 + 0.935032i
\(506\) 9.36636 + 8.87229i 0.416386 + 0.394421i
\(507\) 0 0
\(508\) 1.90778 11.6370i 0.0846442 0.516306i
\(509\) −17.2146 + 25.3896i −0.763024 + 1.12538i 0.225490 + 0.974245i \(0.427602\pi\)
−0.988514 + 0.151130i \(0.951709\pi\)
\(510\) 0 0
\(511\) −8.41740 + 5.06458i −0.372364 + 0.224044i
\(512\) 1.13079 0.248905i 0.0499742 0.0110002i
\(513\) 0 0
\(514\) 23.8198 + 11.0202i 1.05065 + 0.486081i
\(515\) 19.2447 + 69.3131i 0.848022 + 3.05430i
\(516\) 0 0
\(517\) −33.5356 + 3.64722i −1.47489 + 0.160404i
\(518\) −1.65081 + 3.11376i −0.0725325 + 0.136811i
\(519\) 0 0
\(520\) 11.2359 40.4680i 0.492726 1.77464i
\(521\) 7.98919 9.40560i 0.350013 0.412067i −0.558779 0.829317i \(-0.688730\pi\)
0.908792 + 0.417250i \(0.137006\pi\)
\(522\) 0 0
\(523\) −10.5802 15.6047i −0.462641 0.682345i 0.522782 0.852467i \(-0.324894\pi\)
−0.985423 + 0.170122i \(0.945584\pi\)
\(524\) 1.09993 0.508884i 0.0480509 0.0222307i
\(525\) 0 0
\(526\) −2.96947 + 7.45282i −0.129475 + 0.324958i
\(527\) 28.7807 + 21.8785i 1.25371 + 0.953043i
\(528\) 0 0
\(529\) 12.8496 + 4.32953i 0.558678 + 0.188240i
\(530\) 2.88940 0.125508
\(531\) 0 0
\(532\) 1.78033 0.0771872
\(533\) −37.6938 12.7005i −1.63270 0.550121i
\(534\) 0 0
\(535\) −43.8754 33.3532i −1.89690 1.44199i
\(536\) 8.52117 21.3865i 0.368059 0.923758i
\(537\) 0 0
\(538\) 13.5152 6.25280i 0.582682 0.269577i
\(539\) 16.7714 + 24.7360i 0.722397 + 1.06546i
\(540\) 0 0
\(541\) −4.27027 + 5.02736i −0.183593 + 0.216143i −0.846258 0.532774i \(-0.821150\pi\)
0.662664 + 0.748916i \(0.269426\pi\)
\(542\) 4.32437 15.5750i 0.185747 0.669002i
\(543\) 0 0
\(544\) −13.2142 + 24.9246i −0.566553 + 1.06863i
\(545\) −25.7339 + 2.79873i −1.10232 + 0.119884i
\(546\) 0 0
\(547\) −7.19485 25.9135i −0.307629 1.10798i −0.942182 0.335102i \(-0.891229\pi\)
0.634553 0.772880i \(-0.281184\pi\)
\(548\) 6.51027 + 3.01197i 0.278105 + 0.128665i
\(549\) 0 0
\(550\) 42.9242 9.44832i 1.83029 0.402878i
\(551\) 12.0152 7.22931i 0.511865 0.307979i
\(552\) 0 0
\(553\) 1.96444 2.89733i 0.0835364 0.123207i
\(554\) −3.45055 + 21.0474i −0.146600 + 0.894219i
\(555\) 0 0
\(556\) −2.18958 2.07408i −0.0928587 0.0879604i
\(557\) 10.7301 10.1641i 0.454647 0.430665i −0.425794 0.904820i \(-0.640005\pi\)
0.880441 + 0.474155i \(0.157246\pi\)
\(558\) 0 0
\(559\) 5.78238 + 1.27280i 0.244569 + 0.0538336i
\(560\) −0.356392 + 0.120082i −0.0150603 + 0.00507441i
\(561\) 0 0
\(562\) 12.1797 + 2.68095i 0.513769 + 0.113089i
\(563\) −1.35680 + 25.0247i −0.0571823 + 1.05467i 0.819341 + 0.573307i \(0.194340\pi\)
−0.876523 + 0.481360i \(0.840143\pi\)
\(564\) 0 0
\(565\) 21.3690 + 20.2418i 0.899002 + 0.851580i
\(566\) 1.23820 + 22.8373i 0.0520455 + 0.959923i
\(567\) 0 0
\(568\) 3.17295 4.67975i 0.133134 0.196358i
\(569\) 2.50413 + 0.272340i 0.104979 + 0.0114171i 0.160457 0.987043i \(-0.448703\pi\)
−0.0554789 + 0.998460i \(0.517669\pi\)
\(570\) 0 0
\(571\) 18.9840 4.17870i 0.794456 0.174873i 0.200843 0.979623i \(-0.435632\pi\)
0.593613 + 0.804750i \(0.297701\pi\)
\(572\) −3.78089 23.0624i −0.158087 0.964287i
\(573\) 0 0
\(574\) −2.24815 8.09712i −0.0938361 0.337967i
\(575\) −25.6037 + 19.4634i −1.06775 + 0.811682i
\(576\) 0 0
\(577\) −9.20921 + 17.3704i −0.383384 + 0.723139i −0.997832 0.0658184i \(-0.979034\pi\)
0.614447 + 0.788958i \(0.289379\pi\)
\(578\) −2.39044 5.99956i −0.0994293 0.249549i
\(579\) 0 0
\(580\) −29.6843 + 34.9471i −1.23257 + 1.45110i
\(581\) 1.03704 + 1.95606i 0.0430236 + 0.0811510i
\(582\) 0 0
\(583\) 3.77754 1.74767i 0.156450 0.0723813i
\(584\) −19.1012 22.4877i −0.790414 0.930547i
\(585\) 0 0
\(586\) −16.6038 12.6219i −0.685899 0.521407i
\(587\) 2.57509 + 1.54938i 0.106285 + 0.0639497i 0.567704 0.823233i \(-0.307832\pi\)
−0.461419 + 0.887182i \(0.652659\pi\)
\(588\) 0 0
\(589\) 11.0581 0.455639
\(590\) −4.75477 25.5686i −0.195751 1.05264i
\(591\) 0 0
\(592\) 0.425163 + 0.143254i 0.0174741 + 0.00588771i
\(593\) 13.3789 + 8.04984i 0.549407 + 0.330567i 0.763045 0.646346i \(-0.223704\pi\)
−0.213637 + 0.976913i \(0.568531\pi\)
\(594\) 0 0
\(595\) 6.73071 16.8928i 0.275932 0.692538i
\(596\) −8.58690 10.1093i −0.351733 0.414092i
\(597\) 0 0
\(598\) −5.65032 8.33360i −0.231059 0.340786i
\(599\) 2.30439 + 4.34655i 0.0941550 + 0.177595i 0.926116 0.377239i \(-0.123127\pi\)
−0.831961 + 0.554834i \(0.812782\pi\)
\(600\) 0 0
\(601\) −5.26560 + 18.9650i −0.214788 + 0.773598i 0.775111 + 0.631825i \(0.217694\pi\)
−0.989899 + 0.141773i \(0.954720\pi\)
\(602\) 0.462999 + 1.16204i 0.0188704 + 0.0473612i
\(603\) 0 0
\(604\) 17.0691 1.85638i 0.694532 0.0755349i
\(605\) 40.0392 30.4370i 1.62783 1.23744i
\(606\) 0 0
\(607\) 11.3634 + 5.25726i 0.461225 + 0.213386i 0.636720 0.771095i \(-0.280291\pi\)
−0.175495 + 0.984480i \(0.556153\pi\)
\(608\) 1.39600 + 8.51524i 0.0566154 + 0.345339i
\(609\) 0 0
\(610\) −7.58440 + 4.56338i −0.307083 + 0.184766i
\(611\) 26.1718 + 2.84636i 1.05880 + 0.115151i
\(612\) 0 0
\(613\) −1.16504 + 7.10644i −0.0470556 + 0.287026i −0.999863 0.0165488i \(-0.994732\pi\)
0.952807 + 0.303575i \(0.0981804\pi\)
\(614\) 0.778502 + 14.3586i 0.0314178 + 0.579467i
\(615\) 0 0
\(616\) 9.27950 8.79001i 0.373882 0.354160i
\(617\) 1.65703 30.5622i 0.0667097 1.23039i −0.753160 0.657838i \(-0.771471\pi\)
0.819870 0.572550i \(-0.194046\pi\)
\(618\) 0 0
\(619\) −19.9157 + 6.71040i −0.800481 + 0.269714i −0.689666 0.724127i \(-0.742243\pi\)
−0.110815 + 0.993841i \(0.535346\pi\)
\(620\) −34.2665 + 11.5457i −1.37617 + 0.463687i
\(621\) 0 0
\(622\) 1.24094 22.8878i 0.0497572 0.917717i
\(623\) −3.17640 + 3.00884i −0.127260 + 0.120547i
\(624\) 0 0
\(625\) 1.74487 + 32.1823i 0.0697950 + 1.28729i
\(626\) 0.302279 1.84382i 0.0120815 0.0736940i
\(627\) 0 0
\(628\) −1.94025 0.211015i −0.0774243 0.00842040i
\(629\) −18.5880 + 11.1841i −0.741154 + 0.445937i
\(630\) 0 0
\(631\) −4.66776 28.4721i −0.185821 1.13346i −0.900775 0.434285i \(-0.857001\pi\)
0.714955 0.699171i \(-0.246447\pi\)
\(632\) 9.54205 + 4.41462i 0.379562 + 0.175604i
\(633\) 0 0
\(634\) −2.82694 + 2.14898i −0.112272 + 0.0853470i
\(635\) −36.6254 + 3.98325i −1.45344 + 0.158071i
\(636\) 0 0
\(637\) −8.63287 21.6669i −0.342047 0.858472i
\(638\) 10.4038 37.4709i 0.411889 1.48349i
\(639\) 0 0
\(640\) −13.5414 25.5417i −0.535270 1.00963i
\(641\) −20.0454 29.5647i −0.791744 1.16774i −0.982530 0.186104i \(-0.940414\pi\)
0.190786 0.981632i \(-0.438896\pi\)
\(642\) 0 0
\(643\) 15.0536 + 17.7225i 0.593658 + 0.698908i 0.974157 0.225873i \(-0.0725236\pi\)
−0.380499 + 0.924781i \(0.624248\pi\)
\(644\) −1.33729 + 3.35635i −0.0526967 + 0.132259i
\(645\) 0 0
\(646\) −5.52842 3.32634i −0.217513 0.130873i
\(647\) 24.9343 + 8.40133i 0.980267 + 0.330290i 0.763411 0.645913i \(-0.223523\pi\)
0.216856 + 0.976204i \(0.430420\pi\)
\(648\) 0 0
\(649\) −21.6816 30.5519i −0.851079 1.19927i
\(650\) −34.3008 −1.34539
\(651\) 0 0
\(652\) 16.0596 + 9.66275i 0.628943 + 0.378423i
\(653\) −14.8329 11.2757i −0.580456 0.441251i 0.273297 0.961930i \(-0.411886\pi\)
−0.853753 + 0.520679i \(0.825679\pi\)
\(654\) 0 0
\(655\) −2.45123 2.88582i −0.0957777 0.112758i
\(656\) −0.970896 + 0.449184i −0.0379071 + 0.0175377i
\(657\) 0 0
\(658\) 2.60524 + 4.91400i 0.101563 + 0.191568i
\(659\) 11.4312 13.4578i 0.445296 0.524243i −0.493022 0.870017i \(-0.664108\pi\)
0.938318 + 0.345774i \(0.112384\pi\)
\(660\) 0 0
\(661\) 6.54181 + 16.4187i 0.254447 + 0.638614i 0.999600 0.0282798i \(-0.00900293\pi\)
−0.745153 + 0.666893i \(0.767624\pi\)
\(662\) 8.29892 15.6534i 0.322547 0.608387i
\(663\) 0 0
\(664\) −5.29373 + 4.02419i −0.205436 + 0.156169i
\(665\) −1.48802 5.35936i −0.0577029 0.207827i
\(666\) 0 0
\(667\) 4.60377 + 28.0818i 0.178259 + 1.08733i
\(668\) 14.8650 3.27203i 0.575144 0.126599i
\(669\) 0 0
\(670\) −27.6202 3.00388i −1.06706 0.116050i
\(671\) −7.15547 + 10.5535i −0.276234 + 0.407415i
\(672\) 0 0
\(673\) 0.0532889 + 0.982856i 0.00205414 + 0.0378863i 0.999381 0.0351860i \(-0.0112024\pi\)
−0.997327 + 0.0730723i \(0.976720\pi\)
\(674\) 5.71954 + 5.41784i 0.220309 + 0.208687i
\(675\) 0 0
\(676\) −0.101437 + 1.87090i −0.00390143 + 0.0719576i
\(677\) 9.53187 + 2.09812i 0.366339 + 0.0806374i 0.394325 0.918971i \(-0.370978\pi\)
−0.0279859 + 0.999608i \(0.508909\pi\)
\(678\) 0 0
\(679\) −6.67183 + 2.24800i −0.256041 + 0.0862703i
\(680\) 53.3398 + 11.7410i 2.04549 + 0.450246i
\(681\) 0 0
\(682\) 22.2644 21.0899i 0.852547 0.807575i
\(683\) −17.0339 16.1353i −0.651783 0.617402i 0.288628 0.957441i \(-0.406801\pi\)
−0.940411 + 0.340040i \(0.889560\pi\)
\(684\) 0 0
\(685\) 3.62563 22.1154i 0.138528 0.844985i
\(686\) 5.92426 8.73763i 0.226189 0.333604i
\(687\) 0 0
\(688\) 0.136445 0.0820964i 0.00520193 0.00312989i
\(689\) −3.17234 + 0.698285i −0.120857 + 0.0266026i
\(690\) 0 0
\(691\) 13.1217 + 6.07073i 0.499172 + 0.230941i 0.653286 0.757112i \(-0.273390\pi\)
−0.154114 + 0.988053i \(0.549252\pi\)
\(692\) −7.32487 26.3818i −0.278450 1.00289i
\(693\) 0 0
\(694\) 9.16522 0.996777i 0.347907 0.0378372i
\(695\) −4.41355 + 8.32483i −0.167415 + 0.315779i
\(696\) 0 0
\(697\) 13.8382 49.8406i 0.524158 1.88785i
\(698\) −6.23512 + 7.34056i −0.236003 + 0.277844i
\(699\) 0 0
\(700\) 6.90731 + 10.1875i 0.261072 + 0.385052i
\(701\) −13.9571 + 6.45725i −0.527153 + 0.243887i −0.665368 0.746515i \(-0.731725\pi\)
0.138215 + 0.990402i \(0.455863\pi\)
\(702\) 0 0
\(703\) −2.45601 + 6.16412i −0.0926302 + 0.232484i
\(704\) 18.2560 + 13.8779i 0.688049 + 0.523042i
\(705\) 0 0
\(706\) 10.3992 + 3.50391i 0.391381 + 0.131871i
\(707\) 7.25696 0.272926
\(708\) 0 0
\(709\) −23.0178 −0.864452 −0.432226 0.901765i \(-0.642272\pi\)
−0.432226 + 0.901765i \(0.642272\pi\)
\(710\) −6.46621 2.17872i −0.242673 0.0817659i
\(711\) 0 0
\(712\) −10.4615 7.95261i −0.392060 0.298037i
\(713\) −8.30622 + 20.8470i −0.311070 + 0.780728i
\(714\) 0 0
\(715\) −66.2649 + 30.6574i −2.47817 + 1.14652i
\(716\) 3.32258 + 4.90044i 0.124171 + 0.183138i
\(717\) 0 0
\(718\) −15.9550 + 18.7837i −0.595437 + 0.701002i
\(719\) 6.42442 23.1387i 0.239590 0.862927i −0.741755 0.670671i \(-0.766006\pi\)
0.981345 0.192255i \(-0.0615801\pi\)
\(720\) 0 0
\(721\) 8.00290 15.0951i 0.298043 0.562170i
\(722\) 14.2994 1.55515i 0.532168 0.0578768i
\(723\) 0 0
\(724\) −8.27880 29.8176i −0.307679 1.10816i
\(725\) 87.9843 + 40.7059i 3.26766 + 1.51178i
\(726\) 0 0
\(727\) −48.1883 + 10.6071i −1.78721 + 0.393394i −0.980336 0.197335i \(-0.936771\pi\)
−0.806870 + 0.590729i \(0.798840\pi\)
\(728\) −8.54727 + 5.14272i −0.316783 + 0.190602i
\(729\) 0 0
\(730\) −19.9825 + 29.4720i −0.739587 + 1.09081i
\(731\) −1.24566 + 7.59818i −0.0460723 + 0.281029i
\(732\) 0 0
\(733\) 8.55482 + 8.10355i 0.315979 + 0.299312i 0.829208 0.558941i \(-0.188792\pi\)
−0.513228 + 0.858252i \(0.671551\pi\)
\(734\) 0.685882 0.649701i 0.0253163 0.0239809i
\(735\) 0 0
\(736\) −17.1018 3.76440i −0.630382 0.138758i
\(737\) −37.9270 + 12.7791i −1.39706 + 0.470724i
\(738\) 0 0
\(739\) −38.0617 8.37800i −1.40012 0.308190i −0.550170 0.835052i \(-0.685437\pi\)
−0.849950 + 0.526863i \(0.823368\pi\)
\(740\) 1.17467 21.6656i 0.0431818 0.796442i
\(741\) 0 0
\(742\) −0.498223 0.471942i −0.0182903 0.0173255i
\(743\) −0.845612 15.5964i −0.0310225 0.572176i −0.972184 0.234219i \(-0.924747\pi\)
0.941161 0.337958i \(-0.109736\pi\)
\(744\) 0 0
\(745\) −23.2551 + 34.2987i −0.852000 + 1.25661i
\(746\) −8.78001 0.954884i −0.321459 0.0349608i
\(747\) 0 0
\(748\) 29.6809 6.53326i 1.08524 0.238880i
\(749\) 2.11772 + 12.9175i 0.0773799 + 0.471997i
\(750\) 0 0
\(751\) −7.49205 26.9839i −0.273389 0.984658i −0.964970 0.262359i \(-0.915499\pi\)
0.691581 0.722299i \(-0.256914\pi\)
\(752\) 0.563664 0.428487i 0.0205547 0.0156253i
\(753\) 0 0
\(754\) −14.2159 + 26.8140i −0.517711 + 0.976507i
\(755\) −19.8548 49.8318i −0.722590 1.81356i
\(756\) 0 0
\(757\) 10.9511 12.8927i 0.398026 0.468592i −0.526243 0.850334i \(-0.676400\pi\)
0.924269 + 0.381742i \(0.124676\pi\)
\(758\) 4.39451 + 8.28893i 0.159616 + 0.301068i
\(759\) 0 0
\(760\) 15.1617 7.01457i 0.549974 0.254445i
\(761\) 1.68160 + 1.97973i 0.0609578 + 0.0717650i 0.791796 0.610786i \(-0.209146\pi\)
−0.730838 + 0.682551i \(0.760871\pi\)
\(762\) 0 0
\(763\) 4.89446 + 3.72067i 0.177191 + 0.134697i
\(764\) 19.5851 + 11.7840i 0.708564 + 0.426329i
\(765\) 0 0
\(766\) −17.6316 −0.637054
\(767\) 11.3996 + 26.9233i 0.411615 + 0.972144i
\(768\) 0 0
\(769\) −15.3230 5.16292i −0.552561 0.186180i 0.0291497 0.999575i \(-0.490720\pi\)
−0.581711 + 0.813395i \(0.697617\pi\)
\(770\) −13.2174 7.95262i −0.476320 0.286592i
\(771\) 0 0
\(772\) 5.55963 13.9536i 0.200096 0.502202i
\(773\) −6.44197 7.58408i −0.231702 0.272780i 0.634008 0.773326i \(-0.281408\pi\)
−0.865710 + 0.500546i \(0.833133\pi\)
\(774\) 0 0
\(775\) 42.9029 + 63.2770i 1.54112 + 2.27298i
\(776\) −9.90485 18.6825i −0.355564 0.670664i
\(777\) 0 0
\(778\) −5.50740 + 19.8359i −0.197450 + 0.711150i
\(779\) −5.85617 14.6979i −0.209819 0.526606i
\(780\) 0 0
\(781\) −9.77158 + 1.06272i −0.349655 + 0.0380272i
\(782\) 10.4236 7.92381i 0.372747 0.283355i
\(783\) 0 0
\(784\) −0.569303 0.263387i −0.0203322 0.00940669i
\(785\) 0.986456 + 6.01712i 0.0352081 + 0.214760i
\(786\) 0 0
\(787\) 17.5190 10.5408i 0.624484 0.375740i −0.167863 0.985810i \(-0.553687\pi\)
0.792347 + 0.610071i \(0.208859\pi\)
\(788\) −0.543639 0.0591243i −0.0193663 0.00210621i
\(789\) 0 0
\(790\) 2.05274 12.5212i 0.0730333 0.445483i
\(791\) −0.378479 6.98064i −0.0134572 0.248203i
\(792\) 0 0
\(793\) 7.22425 6.84318i 0.256541 0.243008i
\(794\) −1.60724 + 29.6439i −0.0570389 + 1.05202i
\(795\) 0 0
\(796\) −2.56001 + 0.862566i −0.0907370 + 0.0305729i
\(797\) −27.7248 + 9.34158i −0.982064 + 0.330896i −0.764126 0.645067i \(-0.776830\pi\)
−0.217938 + 0.975963i \(0.569933\pi\)
\(798\) 0 0
\(799\) −1.85347 + 34.1852i −0.0655710 + 1.20939i
\(800\) −43.3102 + 41.0256i −1.53125 + 1.45047i
\(801\) 0 0
\(802\) −0.717322 13.2302i −0.0253295 0.467176i
\(803\) −8.29833 + 50.6176i −0.292842 + 1.78626i
\(804\) 0 0
\(805\) 11.2214 + 1.22040i 0.395502 + 0.0430134i
\(806\) −20.5075 + 12.3390i −0.722346 + 0.434621i
\(807\) 0 0
\(808\) 3.52625 + 21.5092i 0.124053 + 0.756690i
\(809\) 6.29495 + 2.91235i 0.221319 + 0.102393i 0.527416 0.849607i \(-0.323161\pi\)
−0.306097 + 0.952000i \(0.599023\pi\)
\(810\) 0 0
\(811\) 2.57537 1.95774i 0.0904334 0.0687457i −0.558981 0.829181i \(-0.688807\pi\)
0.649414 + 0.760435i \(0.275014\pi\)
\(812\) 10.8266 1.17746i 0.379939 0.0413209i
\(813\) 0 0
\(814\) 6.81127 + 17.0950i 0.238735 + 0.599179i
\(815\) 15.6651 56.4207i 0.548725 1.97633i
\(816\) 0 0
\(817\) 1.10315 + 2.08076i 0.0385943 + 0.0727966i
\(818\) −14.9721 22.0821i −0.523485 0.772083i
\(819\) 0 0
\(820\) 33.4930 + 39.4310i 1.16963 + 1.37699i
\(821\) −17.3314 + 43.4986i −0.604871 + 1.51811i 0.233131 + 0.972445i \(0.425103\pi\)
−0.838002 + 0.545667i \(0.816276\pi\)
\(822\) 0 0
\(823\) −17.8352 10.7311i −0.621695 0.374061i 0.169585 0.985516i \(-0.445757\pi\)
−0.791280 + 0.611454i \(0.790585\pi\)
\(824\) 48.6295 + 16.3852i 1.69409 + 0.570805i
\(825\) 0 0
\(826\) −3.35639 + 5.18545i −0.116784 + 0.180425i
\(827\) 32.9263 1.14496 0.572479 0.819919i \(-0.305982\pi\)
0.572479 + 0.819919i \(0.305982\pi\)
\(828\) 0 0
\(829\) −18.7064 11.2553i −0.649701 0.390912i 0.152216 0.988347i \(-0.451359\pi\)
−0.801917 + 0.597435i \(0.796187\pi\)
\(830\) 6.38862 + 4.85650i 0.221752 + 0.168572i
\(831\) 0 0
\(832\) −11.5860 13.6401i −0.401673 0.472886i
\(833\) 27.5272 12.7354i 0.953761 0.441257i
\(834\) 0 0
\(835\) −22.2741 42.0135i −0.770829 1.45394i
\(836\) 6.01805 7.08500i 0.208139 0.245040i
\(837\) 0 0
\(838\) −8.88284 22.2942i −0.306853 0.770142i
\(839\) −1.14401 + 2.15783i −0.0394956 + 0.0744966i −0.902474 0.430744i \(-0.858251\pi\)
0.862979 + 0.505240i \(0.168596\pi\)
\(840\) 0 0
\(841\) 45.1991 34.3595i 1.55859 1.18481i
\(842\) −8.01786 28.8777i −0.276314 0.995192i
\(843\) 0 0
\(844\) 0.813279 + 4.96078i 0.0279942 + 0.170757i
\(845\) 5.71677 1.25836i 0.196663 0.0432887i
\(846\) 0 0
\(847\) −11.8755 1.29153i −0.408045 0.0443776i
\(848\) −0.0490265 + 0.0723087i −0.00168358 + 0.00248309i
\(849\) 0 0
\(850\) −2.41491 44.5405i −0.0828309 1.52773i
\(851\) −9.77600 9.26032i −0.335117 0.317440i
\(852\) 0 0
\(853\) 2.73173 50.3838i 0.0935327 1.72511i −0.456292 0.889830i \(-0.650823\pi\)
0.549825 0.835280i \(-0.314694\pi\)
\(854\) 2.05315 + 0.451932i 0.0702573 + 0.0154648i
\(855\) 0 0
\(856\) −37.2577 + 12.5536i −1.27344 + 0.429073i
\(857\) −42.8693 9.43625i −1.46439 0.322336i −0.589936 0.807450i \(-0.700847\pi\)
−0.874451 + 0.485114i \(0.838778\pi\)
\(858\) 0 0
\(859\) 40.5723 38.4322i 1.38431 1.31129i 0.484643 0.874712i \(-0.338949\pi\)
0.899667 0.436577i \(-0.143809\pi\)
\(860\) −5.59094 5.29602i −0.190649 0.180593i
\(861\) 0 0
\(862\) −5.14089 + 31.3580i −0.175099 + 1.06806i
\(863\) −4.51714 + 6.66228i −0.153765 + 0.226787i −0.896767 0.442502i \(-0.854091\pi\)
0.743002 + 0.669289i \(0.233401\pi\)
\(864\) 0 0
\(865\) −73.2953 + 44.1003i −2.49211 + 1.49946i
\(866\) 18.7482 4.12678i 0.637088 0.140234i
\(867\) 0 0
\(868\) 7.79443 + 3.60609i 0.264560 + 0.122399i
\(869\) −4.88981 17.6115i −0.165875 0.597429i
\(870\) 0 0
\(871\) 31.0509 3.37698i 1.05212 0.114425i
\(872\) −8.64955 + 16.3148i −0.292911 + 0.552488i
\(873\) 0 0
\(874\) 1.07143 3.85895i 0.0362417 0.130531i
\(875\) 13.0030 15.3083i 0.439582 0.517516i
\(876\) 0 0
\(877\) 13.0290 + 19.2163i 0.439958 + 0.648889i 0.981428 0.191831i \(-0.0614425\pi\)
−0.541470 + 0.840720i \(0.682132\pi\)
\(878\) −19.1788 + 8.87307i −0.647254 + 0.299452i
\(879\) 0 0
\(880\) −0.726831 + 1.82421i −0.0245015 + 0.0614941i
\(881\) −14.5397 11.0528i −0.489856 0.372379i 0.330893 0.943668i \(-0.392650\pi\)
−0.820749 + 0.571290i \(0.806443\pi\)
\(882\) 0 0
\(883\) −21.5958 7.27646i −0.726755 0.244872i −0.0684829 0.997652i \(-0.521816\pi\)
−0.658272 + 0.752780i \(0.728712\pi\)
\(884\) −23.7181 −0.797725
\(885\) 0 0
\(886\) 6.81159 0.228840
\(887\) −22.3149 7.51876i −0.749261 0.252455i −0.0813386 0.996687i \(-0.525920\pi\)
−0.667922 + 0.744231i \(0.732816\pi\)
\(888\) 0 0
\(889\) 6.96597 + 5.29539i 0.233631 + 0.177602i
\(890\) −5.87000 + 14.7326i −0.196763 + 0.493838i
\(891\) 0 0
\(892\) 20.0545 9.27822i 0.671475 0.310658i
\(893\) 5.87658 + 8.66730i 0.196652 + 0.290040i
\(894\) 0 0
\(895\) 11.9748 14.0978i 0.400274 0.471239i
\(896\) −1.83692 + 6.61598i −0.0613671 + 0.221024i
\(897\) 0 0
\(898\) −1.78877 + 3.37397i −0.0596920 + 0.112591i
\(899\) 67.2465 7.31349i 2.24280 0.243919i
\(900\) 0 0
\(901\) −1.13009 4.07021i −0.0376487 0.135598i
\(902\) −39.8227 18.4239i −1.32595 0.613450i
\(903\) 0 0
\(904\) 20.5063 4.51377i 0.682028 0.150126i
\(905\) −82.8406 + 49.8436i −2.75372 + 1.65686i
\(906\) 0 0
\(907\) 19.2342 28.3683i 0.638661 0.941954i −0.361294 0.932452i \(-0.617665\pi\)
0.999955 0.00950243i \(-0.00302476\pi\)
\(908\) −2.27915 + 13.9022i −0.0756363 + 0.461361i
\(909\) 0 0
\(910\) 8.73973 + 8.27872i 0.289719 + 0.274437i
\(911\) −6.41888 + 6.08028i −0.212667 + 0.201449i −0.786617 0.617442i \(-0.788169\pi\)
0.573950 + 0.818891i \(0.305410\pi\)
\(912\) 0 0
\(913\) 11.2898 + 2.48508i 0.373638 + 0.0822440i
\(914\) −22.5074 + 7.58363i −0.744479 + 0.250844i
\(915\) 0 0
\(916\) −20.1691 4.43955i −0.666405 0.146687i
\(917\) −0.0486870 + 0.897978i −0.00160778 + 0.0296538i
\(918\) 0 0
\(919\) 15.9256 + 15.0855i 0.525338 + 0.497626i 0.903779 0.427999i \(-0.140781\pi\)
−0.378442 + 0.925625i \(0.623540\pi\)
\(920\) 1.83543 + 33.8525i 0.0605122 + 1.11608i
\(921\) 0 0
\(922\) −14.9506 + 22.0505i −0.492372 + 0.726195i
\(923\) 7.62594 + 0.829371i 0.251011 + 0.0272991i
\(924\) 0 0
\(925\) −44.8014 + 9.86154i −1.47306 + 0.324246i
\(926\) 1.05116 + 6.41182i 0.0345434 + 0.210706i
\(927\) 0 0
\(928\) 14.1211 + 50.8598i 0.463549 + 1.66955i
\(929\) 23.4765 17.8463i 0.770238 0.585520i −0.144530 0.989500i \(-0.546167\pi\)
0.914767 + 0.403981i \(0.132374\pi\)
\(930\) 0 0
\(931\) 4.34555 8.19658i 0.142420 0.268632i
\(932\) −3.44268 8.64047i −0.112769 0.283028i
\(933\) 0 0
\(934\) −2.77185 + 3.26328i −0.0906978 + 0.106778i
\(935\) −44.4747 83.8882i −1.45448 2.74344i
\(936\) 0 0
\(937\) −25.9720 + 12.0159i −0.848469 + 0.392544i −0.795428 0.606049i \(-0.792754\pi\)
−0.0530418 + 0.998592i \(0.516892\pi\)
\(938\) 4.27195 + 5.02933i 0.139484 + 0.164213i
\(939\) 0 0
\(940\) −27.2597 20.7223i −0.889115 0.675887i
\(941\) 27.7117 + 16.6736i 0.903376 + 0.543543i 0.889793 0.456364i \(-0.150849\pi\)
0.0135832 + 0.999908i \(0.495676\pi\)
\(942\) 0 0
\(943\) 32.1078 1.04557
\(944\) 0.720545 + 0.314850i 0.0234517 + 0.0102475i
\(945\) 0 0
\(946\) 6.18952 + 2.08549i 0.201239 + 0.0678052i
\(947\) 52.1193 + 31.3591i 1.69365 + 1.01903i 0.925488 + 0.378778i \(0.123655\pi\)
0.768161 + 0.640257i \(0.221172\pi\)
\(948\) 0 0
\(949\) 14.8167 37.1872i 0.480972 1.20715i
\(950\) −8.83277 10.3987i −0.286573 0.337380i
\(951\) 0 0
\(952\) −7.27972 10.7368i −0.235937 0.347981i
\(953\) −3.64723 6.87940i −0.118145 0.222846i 0.817385 0.576091i \(-0.195423\pi\)
−0.935531 + 0.353246i \(0.885078\pi\)
\(954\) 0 0
\(955\) 19.1040 68.8064i 0.618191 2.22652i
\(956\) 6.26719 + 15.7295i 0.202695 + 0.508727i
\(957\) 0 0
\(958\) 23.3005 2.53408i 0.752804 0.0818724i
\(959\) −4.23740 + 3.22118i −0.136833 + 0.104017i
\(960\) 0 0
\(961\) 20.2781 + 9.38166i 0.654133 + 0.302634i
\(962\) −2.32339 14.1721i −0.0749092 0.456926i
\(963\) 0 0
\(964\) −5.82486 + 3.50470i −0.187606 + 0.112879i
\(965\) −46.6516 5.07366i −1.50177 0.163327i
\(966\) 0 0
\(967\) 4.36544 26.6280i 0.140383 0.856300i −0.818917 0.573912i \(-0.805425\pi\)
0.959300 0.282388i \(-0.0911265\pi\)
\(968\) −1.94241 35.8257i −0.0624315 1.15148i
\(969\) 0 0
\(970\) −18.5269 + 17.5496i −0.594863 + 0.563484i
\(971\) 2.11244 38.9616i 0.0677913 1.25034i −0.744714 0.667384i \(-0.767414\pi\)
0.812505 0.582954i \(-0.198103\pi\)
\(972\) 0 0
\(973\) 2.12077 0.714572i 0.0679889 0.0229081i
\(974\) 19.1420 6.44969i 0.613349 0.206661i
\(975\) 0 0
\(976\) 0.0144890 0.267233i 0.000463781 0.00855393i
\(977\) 10.2053 9.66694i 0.326495 0.309273i −0.506841 0.862040i \(-0.669187\pi\)
0.833336 + 0.552767i \(0.186428\pi\)
\(978\) 0 0
\(979\) 1.23681 + 22.8116i 0.0395285 + 0.729061i
\(980\) −4.90785 + 29.9366i −0.156776 + 0.956289i
\(981\) 0 0
\(982\) −1.26231 0.137284i −0.0402818 0.00438091i
\(983\) −12.6688 + 7.62255i −0.404071 + 0.243122i −0.703053 0.711137i \(-0.748180\pi\)
0.298982 + 0.954259i \(0.403353\pi\)
\(984\) 0 0
\(985\) 0.276396 + 1.68594i 0.00880669 + 0.0537185i
\(986\) −35.8195 16.5719i −1.14072 0.527755i
\(987\) 0 0
\(988\) −5.77543 + 4.39037i −0.183741 + 0.139676i
\(989\) −4.75136 + 0.516741i −0.151084 + 0.0164314i
\(990\) 0 0
\(991\) 20.7725 + 52.1351i 0.659860 + 1.65612i 0.751013 + 0.660288i \(0.229566\pi\)
−0.0911522 + 0.995837i \(0.529055\pi\)
\(992\) −11.1359 + 40.1080i −0.353566 + 1.27343i
\(993\) 0 0
\(994\) 0.759114 + 1.43184i 0.0240776 + 0.0454152i
\(995\) 4.73627 + 6.98547i 0.150150 + 0.221454i
\(996\) 0 0
\(997\) −21.7319 25.5848i −0.688256 0.810278i 0.301436 0.953486i \(-0.402534\pi\)
−0.989693 + 0.143209i \(0.954258\pi\)
\(998\) 8.20916 20.6034i 0.259857 0.652191i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.i.b.64.3 140
3.2 odd 2 177.2.e.b.64.3 140
59.12 even 29 inner 531.2.i.b.307.3 140
177.71 odd 58 177.2.e.b.130.3 yes 140
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
177.2.e.b.64.3 140 3.2 odd 2
177.2.e.b.130.3 yes 140 177.71 odd 58
531.2.i.b.64.3 140 1.1 even 1 trivial
531.2.i.b.307.3 140 59.12 even 29 inner