gp: [N,k,chi] = [531,2,Mod(19,531)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("531.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(531, base_ring=CyclotomicField(58))
chi = DirichletCharacter(H, H._module([0, 38]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [140,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{140} + T_{2}^{139} + 6 T_{2}^{138} + 6 T_{2}^{137} + 28 T_{2}^{136} - 3 T_{2}^{135} + \cdots + 335952241 \)
T2^140 + T2^139 + 6*T2^138 + 6*T2^137 + 28*T2^136 - 3*T2^135 - 142*T2^134 - 280*T2^133 - 966*T2^132 - 1677*T2^131 - 4278*T2^130 + 33262*T2^129 + 72494*T2^128 + 323883*T2^127 + 262312*T2^126 + 1309778*T2^125 + 3345140*T2^124 + 4679930*T2^123 + 23866827*T2^122 + 5672551*T2^121 + 83238604*T2^120 - 26792505*T2^119 + 1416423386*T2^118 - 248081043*T2^117 + 3211793078*T2^116 - 16417301031*T2^115 + 2021416654*T2^114 - 31911792301*T2^113 + 72108801713*T2^112 - 487780098073*T2^111 + 533006814938*T2^110 - 1787924826530*T2^109 + 2373390504365*T2^108 + 6747080805743*T2^107 + 29039186787978*T2^106 + 75973079853758*T2^105 + 329127849999624*T2^104 + 634934310388852*T2^103 + 2448333420173838*T2^102 + 4111450068546434*T2^101 + 13313472671528637*T2^100 + 32903308462948969*T2^99 + 93430592180243684*T2^98 + 174728071317391643*T2^97 + 546990022981541771*T2^96 + 789875583894151363*T2^95 + 2284676428520632872*T2^94 + 5372242858760861093*T2^93 + 10532764756198334614*T2^92 + 25480204270309123994*T2^91 + 48347040801151178037*T2^90 + 88347814284058184877*T2^89 + 201284589583255185842*T2^88 + 355548687328392050017*T2^87 + 844592465559424785160*T2^86 + 1503052881792669674029*T2^85 + 3119782210730326286452*T2^84 + 5749612245108127063522*T2^83 + 9685624051474884050980*T2^82 + 20302054350780006215000*T2^81 + 34298267922311463373654*T2^80 + 70051022003653716891942*T2^79 + 122058975421402441630158*T2^78 + 204563160520681755697762*T2^77 + 326753690483892027760146*T2^76 + 488230343144422713900709*T2^75 + 845473959309871550157747*T2^74 + 1247598905297066921829819*T2^73 + 2098481107091912203249182*T2^72 + 2728598117759183586713104*T2^71 + 3901084233428449656503468*T2^70 + 4246312203507138612064091*T2^69 + 7077001486053172196361346*T2^68 + 6450216301283276609218882*T2^67 + 13595470256794102305828954*T2^66 + 11003657069845942470195783*T2^65 + 21948711381821317411260146*T2^64 + 3377005563766457357112468*T2^63 + 21292850473826603076472494*T2^62 - 5870787146865059912350979*T2^61 + 61952798064137337176554593*T2^60 + 75267660939221273441245002*T2^59 + 213253962389306412057930930*T2^58 + 191270954655582434678963618*T2^57 + 321115029707793624856477012*T2^56 - 116570453789542480425802395*T2^55 - 155758682340868790340762057*T2^54 - 697252354743362293104522221*T2^53 + 307685773713880541998477774*T2^52 + 1058026640129541539400805679*T2^51 + 2039120690204109003875388047*T2^50 - 27470605525279371755784487*T2^49 - 627795561734997618010778185*T2^48 - 997796701526014325746073066*T2^47 + 1558040593406231960511307464*T2^46 + 1338252450294422155114798684*T2^45 + 446816288964819739093039755*T2^44 + 626755650780343592347139536*T2^43 + 3888241582097085844054169013*T2^42 + 1995421036531772140580452170*T2^41 - 1658094550787559999157857130*T2^40 - 1449363278414029412092471564*T2^39 + 1471448907445999475740585945*T2^38 - 120466861496730110636136995*T2^37 - 2101381351746986833313069889*T2^36 - 779707379950880504124760548*T2^35 + 1169111602703650818884416798*T2^34 + 261986204273852780014338655*T2^33 - 458040764179370929400721307*T2^32 - 76845147190685195005365214*T2^31 + 382720307244335583236479071*T2^30 - 37350490152896649750952279*T2^29 - 94771511176040805054160175*T2^28 + 37038417293328018042086362*T2^27 + 54612437101350153434568137*T2^26 - 42004014412539824447585342*T2^25 + 249557743787796473838846*T2^24 + 13775122698843754406179047*T2^23 - 1385879742659858753897177*T2^22 - 10540574738410504681433755*T2^21 + 12125724172286650812340201*T2^20 - 7786527562581458020240444*T2^19 + 3464729837945737240512250*T2^18 - 1130073863885632866915228*T2^17 + 275252902002561964339379*T2^16 - 51357054134501195078706*T2^15 + 8495917553091939099392*T2^14 - 1775983357204768309419*T2^13 + 489200132630607258920*T2^12 - 125672201792433744429*T2^11 + 26496729852689464119*T2^10 - 4578146846934990766*T2^9 + 631354102214514217*T2^8 - 76635997311947475*T2^7 + 9147698089674176*T2^6 - 900958657717665*T2^5 + 80899311236760*T2^4 - 5450446399072*T2^3 + 302475667716*T2^2 - 14275010109*T2 + 335952241
acting on \(S_{2}^{\mathrm{new}}(531, [\chi])\).