Properties

Label 531.2.i.b.307.3
Level $531$
Weight $2$
Character 531.307
Analytic conductor $4.240$
Analytic rank $0$
Dimension $140$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(19,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(58)) chi = DirichletCharacter(H, H._module([0, 38])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.i (of order \(29\), degree \(28\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [140,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(140\)
Relative dimension: \(5\) over \(\Q(\zeta_{29})\)
Twist minimal: no (minimal twist has level 177)
Sato-Tate group: $\mathrm{SU}(2)[C_{29}]$

Embedding invariants

Embedding label 307.3
Character \(\chi\) \(=\) 531.307
Dual form 531.2.i.b.64.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.815839 + 0.274888i) q^{2} +(-1.00216 + 0.761819i) q^{4} +(-1.45570 - 3.65354i) q^{5} +(0.847760 + 0.392216i) q^{7} +(1.57444 - 2.32213i) q^{8} +(2.19193 + 2.58054i) q^{10} +(1.30482 + 4.69955i) q^{11} +(-1.78293 - 3.36297i) q^{13} +(-0.799452 - 0.0869456i) q^{14} +(0.0273873 - 0.0986401i) q^{16} +(-4.49242 + 2.07842i) q^{17} +(-1.47865 - 0.325475i) q^{19} +(4.24218 + 2.55243i) q^{20} +(-2.35638 - 3.47539i) q^{22} +(0.497085 + 3.03208i) q^{23} +(-7.59929 + 7.19843i) q^{25} +(2.37903 + 2.25353i) q^{26} +(-1.14839 + 0.252779i) q^{28} +(-8.77673 - 2.95723i) q^{29} +(-7.13289 + 1.57007i) q^{31} +(0.308551 + 5.69088i) q^{32} +(3.09376 - 2.93057i) q^{34} +(0.198888 - 3.66827i) q^{35} +(2.45943 + 3.62739i) q^{37} +(1.29581 - 0.140928i) q^{38} +(-10.7759 - 2.37195i) q^{40} +(1.69060 - 10.3122i) q^{41} +(-0.416141 + 1.49880i) q^{43} +(-4.88784 - 3.71564i) q^{44} +(-1.23903 - 2.33705i) q^{46} +(-2.56001 + 6.42514i) q^{47} +(-3.96684 - 4.67012i) q^{49} +(4.22103 - 7.96172i) q^{50} +(4.34875 + 2.01195i) q^{52} +(0.552469 - 0.650416i) q^{53} +(15.2705 - 11.6084i) q^{55} +(2.24552 - 1.35109i) q^{56} +7.97331 q^{58} +(4.84647 + 5.95917i) q^{59} +(-2.47741 + 0.834738i) q^{61} +(5.38770 - 3.24167i) q^{62} +(-1.74030 - 4.36782i) q^{64} +(-9.69131 + 11.4095i) q^{65} +(-4.60495 + 6.79179i) q^{67} +(2.91873 - 5.50531i) q^{68} +(0.846105 + 3.04739i) q^{70} +(-0.745934 + 1.87215i) q^{71} +(-10.4550 - 1.13705i) q^{73} +(-3.00363 - 2.28330i) q^{74} +(1.72979 - 0.800286i) q^{76} +(-0.737059 + 4.49586i) q^{77} +(3.21106 + 1.93203i) q^{79} +(-0.400253 + 0.0435301i) q^{80} +(1.45545 + 8.87783i) q^{82} +(0.128318 - 2.36669i) q^{83} +(14.1332 + 13.3877i) q^{85} +(-0.0724995 - 1.33718i) q^{86} +(12.9673 + 4.36919i) q^{88} +(-4.43874 - 1.49559i) q^{89} +(-0.192491 - 3.55028i) q^{91} +(-2.80806 - 2.65993i) q^{92} +(0.322361 - 5.94559i) q^{94} +(0.963337 + 5.87610i) q^{95} +(-7.49293 + 0.814905i) q^{97} +(4.52007 + 2.71963i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 140 q - q^{2} - q^{4} - 2 q^{5} - 2 q^{7} + 3 q^{8} - 116 q^{10} - 2 q^{11} + 4 q^{13} + 43 q^{14} + 7 q^{16} - 2 q^{19} - 4 q^{20} + 6 q^{22} - 6 q^{23} - 57 q^{25} - 12 q^{26} - 10 q^{28} + 4 q^{29}+ \cdots + 143 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(1\) \(e\left(\frac{26}{29}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.815839 + 0.274888i −0.576885 + 0.194375i −0.592594 0.805501i \(-0.701896\pi\)
0.0157086 + 0.999877i \(0.495000\pi\)
\(3\) 0 0
\(4\) −1.00216 + 0.761819i −0.501078 + 0.380910i
\(5\) −1.45570 3.65354i −0.651010 1.63391i −0.767750 0.640749i \(-0.778624\pi\)
0.116740 0.993162i \(-0.462755\pi\)
\(6\) 0 0
\(7\) 0.847760 + 0.392216i 0.320423 + 0.148244i 0.573507 0.819201i \(-0.305583\pi\)
−0.253083 + 0.967444i \(0.581445\pi\)
\(8\) 1.57444 2.32213i 0.556649 0.820995i
\(9\) 0 0
\(10\) 2.19193 + 2.58054i 0.693150 + 0.816040i
\(11\) 1.30482 + 4.69955i 0.393419 + 1.41697i 0.849764 + 0.527164i \(0.176745\pi\)
−0.456345 + 0.889803i \(0.650842\pi\)
\(12\) 0 0
\(13\) −1.78293 3.36297i −0.494496 0.932719i −0.997650 0.0685218i \(-0.978172\pi\)
0.503153 0.864197i \(-0.332173\pi\)
\(14\) −0.799452 0.0869456i −0.213662 0.0232372i
\(15\) 0 0
\(16\) 0.0273873 0.0986401i 0.00684682 0.0246600i
\(17\) −4.49242 + 2.07842i −1.08957 + 0.504090i −0.880614 0.473834i \(-0.842870\pi\)
−0.208959 + 0.977924i \(0.567007\pi\)
\(18\) 0 0
\(19\) −1.47865 0.325475i −0.339225 0.0746691i 0.0420909 0.999114i \(-0.486598\pi\)
−0.381316 + 0.924445i \(0.624529\pi\)
\(20\) 4.24218 + 2.55243i 0.948580 + 0.570741i
\(21\) 0 0
\(22\) −2.35638 3.47539i −0.502381 0.740957i
\(23\) 0.497085 + 3.03208i 0.103649 + 0.632233i 0.986649 + 0.162860i \(0.0520718\pi\)
−0.883000 + 0.469373i \(0.844480\pi\)
\(24\) 0 0
\(25\) −7.59929 + 7.19843i −1.51986 + 1.43969i
\(26\) 2.37903 + 2.25353i 0.466565 + 0.441954i
\(27\) 0 0
\(28\) −1.14839 + 0.252779i −0.217025 + 0.0477707i
\(29\) −8.77673 2.95723i −1.62980 0.549143i −0.651914 0.758293i \(-0.726034\pi\)
−0.977884 + 0.209150i \(0.932930\pi\)
\(30\) 0 0
\(31\) −7.13289 + 1.57007i −1.28110 + 0.281992i −0.802825 0.596215i \(-0.796670\pi\)
−0.478280 + 0.878208i \(0.658739\pi\)
\(32\) 0.308551 + 5.69088i 0.0545446 + 1.00602i
\(33\) 0 0
\(34\) 3.09376 2.93057i 0.530576 0.502588i
\(35\) 0.198888 3.66827i 0.0336182 0.620051i
\(36\) 0 0
\(37\) 2.45943 + 3.62739i 0.404328 + 0.596339i 0.974281 0.225338i \(-0.0723488\pi\)
−0.569953 + 0.821678i \(0.693038\pi\)
\(38\) 1.29581 0.140928i 0.210208 0.0228615i
\(39\) 0 0
\(40\) −10.7759 2.37195i −1.70382 0.375039i
\(41\) 1.69060 10.3122i 0.264027 1.61050i −0.438427 0.898767i \(-0.644464\pi\)
0.702454 0.711729i \(-0.252088\pi\)
\(42\) 0 0
\(43\) −0.416141 + 1.49880i −0.0634609 + 0.228565i −0.988479 0.151357i \(-0.951636\pi\)
0.925018 + 0.379923i \(0.124049\pi\)
\(44\) −4.88784 3.71564i −0.736870 0.560154i
\(45\) 0 0
\(46\) −1.23903 2.33705i −0.182684 0.344579i
\(47\) −2.56001 + 6.42514i −0.373416 + 0.937202i 0.615421 + 0.788199i \(0.288986\pi\)
−0.988837 + 0.149004i \(0.952393\pi\)
\(48\) 0 0
\(49\) −3.96684 4.67012i −0.566691 0.667161i
\(50\) 4.22103 7.96172i 0.596944 1.12596i
\(51\) 0 0
\(52\) 4.34875 + 2.01195i 0.603063 + 0.279007i
\(53\) 0.552469 0.650416i 0.0758874 0.0893416i −0.722908 0.690944i \(-0.757195\pi\)
0.798796 + 0.601603i \(0.205471\pi\)
\(54\) 0 0
\(55\) 15.2705 11.6084i 2.05908 1.56527i
\(56\) 2.24552 1.35109i 0.300071 0.180546i
\(57\) 0 0
\(58\) 7.97331 1.04695
\(59\) 4.84647 + 5.95917i 0.630956 + 0.775818i
\(60\) 0 0
\(61\) −2.47741 + 0.834738i −0.317200 + 0.106877i −0.473398 0.880849i \(-0.656973\pi\)
0.156198 + 0.987726i \(0.450076\pi\)
\(62\) 5.38770 3.24167i 0.684238 0.411692i
\(63\) 0 0
\(64\) −1.74030 4.36782i −0.217538 0.545978i
\(65\) −9.69131 + 11.4095i −1.20206 + 1.41517i
\(66\) 0 0
\(67\) −4.60495 + 6.79179i −0.562584 + 0.829749i −0.997496 0.0707238i \(-0.977469\pi\)
0.434912 + 0.900473i \(0.356779\pi\)
\(68\) 2.91873 5.50531i 0.353948 0.667617i
\(69\) 0 0
\(70\) 0.846105 + 3.04739i 0.101129 + 0.364233i
\(71\) −0.745934 + 1.87215i −0.0885261 + 0.222184i −0.966573 0.256390i \(-0.917467\pi\)
0.878047 + 0.478574i \(0.158846\pi\)
\(72\) 0 0
\(73\) −10.4550 1.13705i −1.22367 0.133082i −0.526617 0.850102i \(-0.676540\pi\)
−0.697052 + 0.717020i \(0.745505\pi\)
\(74\) −3.00363 2.28330i −0.349165 0.265428i
\(75\) 0 0
\(76\) 1.72979 0.800286i 0.198421 0.0917991i
\(77\) −0.737059 + 4.49586i −0.0839957 + 0.512351i
\(78\) 0 0
\(79\) 3.21106 + 1.93203i 0.361273 + 0.217371i 0.684604 0.728915i \(-0.259975\pi\)
−0.323331 + 0.946286i \(0.604803\pi\)
\(80\) −0.400253 + 0.0435301i −0.0447497 + 0.00486682i
\(81\) 0 0
\(82\) 1.45545 + 8.87783i 0.160727 + 0.980392i
\(83\) 0.128318 2.36669i 0.0140848 0.259778i −0.983007 0.183568i \(-0.941235\pi\)
0.997092 0.0762102i \(-0.0242820\pi\)
\(84\) 0 0
\(85\) 14.1332 + 13.3877i 1.53296 + 1.45210i
\(86\) −0.0724995 1.33718i −0.00781783 0.144191i
\(87\) 0 0
\(88\) 12.9673 + 4.36919i 1.38232 + 0.465758i
\(89\) −4.43874 1.49559i −0.470506 0.158532i 0.0740534 0.997254i \(-0.476406\pi\)
−0.544559 + 0.838722i \(0.683303\pi\)
\(90\) 0 0
\(91\) −0.192491 3.55028i −0.0201785 0.372171i
\(92\) −2.80806 2.65993i −0.292760 0.277317i
\(93\) 0 0
\(94\) 0.322361 5.94559i 0.0332490 0.613241i
\(95\) 0.963337 + 5.87610i 0.0988363 + 0.602875i
\(96\) 0 0
\(97\) −7.49293 + 0.814905i −0.760791 + 0.0827411i −0.480287 0.877112i \(-0.659467\pi\)
−0.280505 + 0.959853i \(0.590502\pi\)
\(98\) 4.52007 + 2.71963i 0.456596 + 0.274724i
\(99\) 0 0
\(100\) 2.13177 13.0032i 0.213177 1.30032i
\(101\) 7.05094 3.26211i 0.701595 0.324592i −0.0364579 0.999335i \(-0.511607\pi\)
0.738053 + 0.674743i \(0.235745\pi\)
\(102\) 0 0
\(103\) 14.5612 + 11.0691i 1.43475 + 1.09067i 0.979760 + 0.200177i \(0.0641516\pi\)
0.454994 + 0.890495i \(0.349641\pi\)
\(104\) −10.6163 1.15460i −1.04102 0.113218i
\(105\) 0 0
\(106\) −0.271934 + 0.682502i −0.0264125 + 0.0662905i
\(107\) −3.74902 13.5028i −0.362432 1.30536i −0.890043 0.455876i \(-0.849326\pi\)
0.527611 0.849486i \(-0.323088\pi\)
\(108\) 0 0
\(109\) 3.08301 5.81517i 0.295299 0.556992i −0.690822 0.723025i \(-0.742751\pi\)
0.986120 + 0.166033i \(0.0530958\pi\)
\(110\) −9.26730 + 13.6682i −0.883603 + 1.30322i
\(111\) 0 0
\(112\) 0.0619061 0.0728815i 0.00584957 0.00688665i
\(113\) 2.77017 + 6.95259i 0.260595 + 0.654045i 0.999811 0.0194234i \(-0.00618306\pi\)
−0.739216 + 0.673468i \(0.764804\pi\)
\(114\) 0 0
\(115\) 10.3542 6.22993i 0.965536 0.580944i
\(116\) 11.0485 3.72268i 1.02583 0.345642i
\(117\) 0 0
\(118\) −5.59204 3.52949i −0.514789 0.324916i
\(119\) −4.62369 −0.423853
\(120\) 0 0
\(121\) −10.9578 + 6.59306i −0.996159 + 0.599369i
\(122\) 1.79171 1.36202i 0.162214 0.123312i
\(123\) 0 0
\(124\) 5.95216 7.00742i 0.534520 0.629285i
\(125\) 19.5152 + 9.02869i 1.74549 + 0.807551i
\(126\) 0 0
\(127\) 4.38785 8.27636i 0.389359 0.734408i −0.608909 0.793240i \(-0.708393\pi\)
0.998268 + 0.0588315i \(0.0187375\pi\)
\(128\) −4.75875 5.60243i −0.420618 0.495190i
\(129\) 0 0
\(130\) 4.77021 11.9723i 0.418375 1.05004i
\(131\) −0.450959 0.850600i −0.0394005 0.0743172i 0.863030 0.505153i \(-0.168564\pi\)
−0.902431 + 0.430835i \(0.858219\pi\)
\(132\) 0 0
\(133\) −1.12588 0.855874i −0.0976265 0.0742137i
\(134\) 1.88991 6.80685i 0.163264 0.588023i
\(135\) 0 0
\(136\) −2.24671 + 13.7043i −0.192654 + 1.17514i
\(137\) −5.56507 1.22496i −0.475456 0.104656i −0.0292236 0.999573i \(-0.509303\pi\)
−0.446232 + 0.894917i \(0.647235\pi\)
\(138\) 0 0
\(139\) 2.38178 0.259034i 0.202020 0.0219710i −0.00654964 0.999979i \(-0.502085\pi\)
0.208569 + 0.978008i \(0.433119\pi\)
\(140\) 2.59525 + 3.82770i 0.219338 + 0.323500i
\(141\) 0 0
\(142\) 0.0939293 1.73242i 0.00788237 0.145382i
\(143\) 13.4780 12.7670i 1.12709 1.06763i
\(144\) 0 0
\(145\) 1.97198 + 36.3710i 0.163764 + 3.02044i
\(146\) 8.84219 1.94631i 0.731785 0.161078i
\(147\) 0 0
\(148\) −5.22815 1.76157i −0.429751 0.144800i
\(149\) 10.2903 2.26506i 0.843012 0.185561i 0.227589 0.973757i \(-0.426916\pi\)
0.615424 + 0.788196i \(0.288985\pi\)
\(150\) 0 0
\(151\) −9.90209 9.37975i −0.805820 0.763313i 0.169164 0.985588i \(-0.445893\pi\)
−0.974984 + 0.222274i \(0.928652\pi\)
\(152\) −3.08384 + 2.92117i −0.250132 + 0.236938i
\(153\) 0 0
\(154\) −0.634538 3.87051i −0.0511325 0.311895i
\(155\) 16.1197 + 23.7747i 1.29476 + 1.90963i
\(156\) 0 0
\(157\) 1.32846 + 0.799306i 0.106022 + 0.0637915i 0.567577 0.823320i \(-0.307881\pi\)
−0.461555 + 0.887112i \(0.652708\pi\)
\(158\) −3.15080 0.693544i −0.250664 0.0551754i
\(159\) 0 0
\(160\) 20.3427 9.41153i 1.60823 0.744047i
\(161\) −0.767822 + 2.76544i −0.0605128 + 0.217948i
\(162\) 0 0
\(163\) −14.8014 1.60975i −1.15933 0.126085i −0.491829 0.870692i \(-0.663672\pi\)
−0.667504 + 0.744607i \(0.732637\pi\)
\(164\) 6.16179 + 11.6224i 0.481155 + 0.907555i
\(165\) 0 0
\(166\) 0.545889 + 1.96611i 0.0423692 + 0.152600i
\(167\) −7.82764 9.21542i −0.605721 0.713110i 0.370756 0.928730i \(-0.379099\pi\)
−0.976477 + 0.215620i \(0.930823\pi\)
\(168\) 0 0
\(169\) −0.835263 + 1.23192i −0.0642510 + 0.0947632i
\(170\) −15.2105 7.03715i −1.16660 0.539724i
\(171\) 0 0
\(172\) −0.724780 1.81906i −0.0552639 0.138702i
\(173\) 17.3150 13.1625i 1.31644 1.00073i 0.317818 0.948152i \(-0.397050\pi\)
0.998617 0.0525764i \(-0.0167433\pi\)
\(174\) 0 0
\(175\) −9.26572 + 3.12198i −0.700422 + 0.236000i
\(176\) 0.499299 0.0376361
\(177\) 0 0
\(178\) 4.03242 0.302243
\(179\) −4.45704 + 1.50175i −0.333135 + 0.112246i −0.480898 0.876777i \(-0.659689\pi\)
0.147763 + 0.989023i \(0.452793\pi\)
\(180\) 0 0
\(181\) 19.5700 14.8767i 1.45462 1.10578i 0.481242 0.876588i \(-0.340186\pi\)
0.973382 0.229189i \(-0.0736073\pi\)
\(182\) 1.13297 + 2.84355i 0.0839815 + 0.210778i
\(183\) 0 0
\(184\) 7.82351 + 3.61954i 0.576757 + 0.266836i
\(185\) 9.67261 14.2660i 0.711144 1.04886i
\(186\) 0 0
\(187\) −15.6294 18.4004i −1.14294 1.34557i
\(188\) −2.32926 8.38925i −0.169879 0.611849i
\(189\) 0 0
\(190\) −2.40120 4.52914i −0.174201 0.328578i
\(191\) −18.0506 1.96313i −1.30610 0.142047i −0.571530 0.820581i \(-0.693650\pi\)
−0.734568 + 0.678535i \(0.762615\pi\)
\(192\) 0 0
\(193\) 3.19213 11.4970i 0.229775 0.827573i −0.755290 0.655390i \(-0.772504\pi\)
0.985065 0.172183i \(-0.0550820\pi\)
\(194\) 5.88901 2.72455i 0.422807 0.195611i
\(195\) 0 0
\(196\) 7.53318 + 1.65818i 0.538085 + 0.118441i
\(197\) 0.372221 + 0.223958i 0.0265196 + 0.0159563i 0.528752 0.848776i \(-0.322660\pi\)
−0.502232 + 0.864733i \(0.667488\pi\)
\(198\) 0 0
\(199\) 1.20428 + 1.77618i 0.0853692 + 0.125910i 0.867976 0.496606i \(-0.165421\pi\)
−0.782607 + 0.622516i \(0.786110\pi\)
\(200\) 4.75103 + 28.9800i 0.335949 + 2.04920i
\(201\) 0 0
\(202\) −4.85572 + 4.59958i −0.341647 + 0.323625i
\(203\) −6.28070 5.94939i −0.440818 0.417565i
\(204\) 0 0
\(205\) −40.1370 + 8.83483i −2.80329 + 0.617051i
\(206\) −14.9223 5.02792i −1.03969 0.350312i
\(207\) 0 0
\(208\) −0.380553 + 0.0837660i −0.0263866 + 0.00580813i
\(209\) −0.399789 7.37367i −0.0276540 0.510047i
\(210\) 0 0
\(211\) −2.89916 + 2.74623i −0.199586 + 0.189058i −0.780965 0.624575i \(-0.785272\pi\)
0.581379 + 0.813633i \(0.302514\pi\)
\(212\) −0.0581601 + 1.07270i −0.00399445 + 0.0736733i
\(213\) 0 0
\(214\) 6.77035 + 9.98552i 0.462812 + 0.682596i
\(215\) 6.08171 0.661426i 0.414769 0.0451089i
\(216\) 0 0
\(217\) −6.66278 1.46659i −0.452299 0.0995586i
\(218\) −0.916717 + 5.59173i −0.0620879 + 0.378720i
\(219\) 0 0
\(220\) −6.45999 + 23.2668i −0.435532 + 1.56865i
\(221\) 14.9993 + 11.4022i 1.00896 + 0.766995i
\(222\) 0 0
\(223\) −8.22210 15.5085i −0.550593 1.03853i −0.990110 0.140294i \(-0.955195\pi\)
0.439517 0.898234i \(-0.355150\pi\)
\(224\) −1.97048 + 4.94552i −0.131658 + 0.330437i
\(225\) 0 0
\(226\) −4.17120 4.91071i −0.277464 0.326656i
\(227\) −5.24199 + 9.88745i −0.347923 + 0.656253i −0.994283 0.106780i \(-0.965946\pi\)
0.646359 + 0.763033i \(0.276291\pi\)
\(228\) 0 0
\(229\) 14.8892 + 6.88847i 0.983905 + 0.455203i 0.844804 0.535075i \(-0.179717\pi\)
0.139101 + 0.990278i \(0.455579\pi\)
\(230\) −6.73485 + 7.92887i −0.444083 + 0.522814i
\(231\) 0 0
\(232\) −20.6855 + 15.7247i −1.35807 + 1.03238i
\(233\) 6.33096 3.80921i 0.414755 0.249550i −0.292850 0.956159i \(-0.594603\pi\)
0.707604 + 0.706609i \(0.249776\pi\)
\(234\) 0 0
\(235\) 27.2011 1.77440
\(236\) −9.39673 2.27989i −0.611675 0.148408i
\(237\) 0 0
\(238\) 3.77219 1.27100i 0.244514 0.0823865i
\(239\) −11.5251 + 6.93444i −0.745499 + 0.448552i −0.836965 0.547257i \(-0.815672\pi\)
0.0914663 + 0.995808i \(0.470845\pi\)
\(240\) 0 0
\(241\) 1.99880 + 5.01661i 0.128754 + 0.323149i 0.979195 0.202922i \(-0.0650439\pi\)
−0.850441 + 0.526071i \(0.823665\pi\)
\(242\) 7.12741 8.39104i 0.458167 0.539396i
\(243\) 0 0
\(244\) 1.84684 2.72388i 0.118232 0.174378i
\(245\) −11.2879 + 21.2913i −0.721160 + 1.36025i
\(246\) 0 0
\(247\) 1.54177 + 5.55295i 0.0981004 + 0.353326i
\(248\) −7.58441 + 19.0354i −0.481611 + 1.20875i
\(249\) 0 0
\(250\) −18.4031 2.00146i −1.16392 0.126584i
\(251\) −7.01937 5.33599i −0.443059 0.336805i 0.359742 0.933052i \(-0.382865\pi\)
−0.802801 + 0.596247i \(0.796658\pi\)
\(252\) 0 0
\(253\) −13.6008 + 6.29240i −0.855076 + 0.395600i
\(254\) −1.30471 + 7.95835i −0.0818645 + 0.499351i
\(255\) 0 0
\(256\) 13.4799 + 8.11058i 0.842493 + 0.506911i
\(257\) −30.3073 + 3.29612i −1.89052 + 0.205606i −0.978744 0.205088i \(-0.934252\pi\)
−0.911773 + 0.410694i \(0.865287\pi\)
\(258\) 0 0
\(259\) 0.662289 + 4.03979i 0.0411527 + 0.251020i
\(260\) 1.02023 18.8171i 0.0632722 1.16699i
\(261\) 0 0
\(262\) 0.601730 + 0.569989i 0.0371750 + 0.0352140i
\(263\) 0.504510 + 9.30515i 0.0311094 + 0.573780i 0.971987 + 0.235034i \(0.0755201\pi\)
−0.940878 + 0.338746i \(0.889997\pi\)
\(264\) 0 0
\(265\) −3.18055 1.07165i −0.195380 0.0658311i
\(266\) 1.15381 + 0.388764i 0.0707446 + 0.0238366i
\(267\) 0 0
\(268\) −0.559240 10.3146i −0.0341610 0.630063i
\(269\) −12.5579 11.8955i −0.765672 0.725283i 0.201477 0.979493i \(-0.435426\pi\)
−0.967149 + 0.254210i \(0.918184\pi\)
\(270\) 0 0
\(271\) 1.01650 18.7482i 0.0617479 1.13887i −0.789376 0.613909i \(-0.789596\pi\)
0.851124 0.524964i \(-0.175921\pi\)
\(272\) 0.0819799 + 0.500055i 0.00497076 + 0.0303203i
\(273\) 0 0
\(274\) 4.87693 0.530398i 0.294626 0.0320425i
\(275\) −43.7451 26.3205i −2.63793 1.58719i
\(276\) 0 0
\(277\) −4.00805 + 24.4480i −0.240820 + 1.46894i 0.538666 + 0.842519i \(0.318929\pi\)
−0.779486 + 0.626419i \(0.784520\pi\)
\(278\) −1.87194 + 0.866052i −0.112272 + 0.0519424i
\(279\) 0 0
\(280\) −8.20506 6.23732i −0.490346 0.372751i
\(281\) −14.4013 1.56624i −0.859109 0.0934337i −0.332049 0.943262i \(-0.607740\pi\)
−0.527060 + 0.849828i \(0.676706\pi\)
\(282\) 0 0
\(283\) −9.83311 + 24.6792i −0.584518 + 1.46703i 0.277789 + 0.960642i \(0.410398\pi\)
−0.862306 + 0.506387i \(0.830981\pi\)
\(284\) −0.678700 2.44446i −0.0402734 0.145052i
\(285\) 0 0
\(286\) −7.48638 + 14.1208i −0.442679 + 0.834981i
\(287\) 5.47783 8.07920i 0.323346 0.476900i
\(288\) 0 0
\(289\) 4.85649 5.71750i 0.285676 0.336324i
\(290\) −11.6068 29.1308i −0.681573 1.71062i
\(291\) 0 0
\(292\) 11.3438 6.82534i 0.663846 0.399423i
\(293\) 22.9583 7.73554i 1.34124 0.451915i 0.445015 0.895523i \(-0.353198\pi\)
0.896221 + 0.443608i \(0.146302\pi\)
\(294\) 0 0
\(295\) 14.7171 26.3815i 0.856860 1.53599i
\(296\) 12.2955 0.714661
\(297\) 0 0
\(298\) −7.77257 + 4.67660i −0.450253 + 0.270908i
\(299\) 9.31052 7.07768i 0.538441 0.409313i
\(300\) 0 0
\(301\) −0.940642 + 1.10741i −0.0542177 + 0.0638300i
\(302\) 10.6569 + 4.93040i 0.613235 + 0.283713i
\(303\) 0 0
\(304\) −0.0726011 + 0.136940i −0.00416396 + 0.00785406i
\(305\) 6.65612 + 7.83619i 0.381128 + 0.448699i
\(306\) 0 0
\(307\) −6.18243 + 15.5167i −0.352850 + 0.885586i 0.640234 + 0.768180i \(0.278837\pi\)
−0.993084 + 0.117406i \(0.962542\pi\)
\(308\) −2.68639 5.06706i −0.153071 0.288723i
\(309\) 0 0
\(310\) −19.6864 14.9652i −1.11811 0.849969i
\(311\) 7.12289 25.6543i 0.403902 1.45472i −0.430009 0.902825i \(-0.641490\pi\)
0.833911 0.551899i \(-0.186097\pi\)
\(312\) 0 0
\(313\) 0.351118 2.14173i 0.0198464 0.121058i −0.975045 0.222006i \(-0.928739\pi\)
0.994892 + 0.100949i \(0.0321878\pi\)
\(314\) −1.30353 0.286928i −0.0735622 0.0161923i
\(315\) 0 0
\(316\) −4.68984 + 0.510051i −0.263824 + 0.0286926i
\(317\) 2.31476 + 3.41401i 0.130010 + 0.191750i 0.887122 0.461535i \(-0.152701\pi\)
−0.757113 + 0.653284i \(0.773391\pi\)
\(318\) 0 0
\(319\) 2.44554 45.1053i 0.136924 2.52541i
\(320\) −13.4247 + 12.7165i −0.750461 + 0.710874i
\(321\) 0 0
\(322\) −0.133769 2.46722i −0.00745465 0.137493i
\(323\) 7.31919 1.61108i 0.407251 0.0896427i
\(324\) 0 0
\(325\) 37.7571 + 12.7218i 2.09439 + 0.705681i
\(326\) 12.5180 2.75543i 0.693310 0.152609i
\(327\) 0 0
\(328\) −21.2845 20.1617i −1.17524 1.11325i
\(329\) −4.69031 + 4.44290i −0.258585 + 0.244945i
\(330\) 0 0
\(331\) −3.32944 20.3087i −0.183003 1.11627i −0.905328 0.424714i \(-0.860375\pi\)
0.722325 0.691554i \(-0.243074\pi\)
\(332\) 1.67440 + 2.46955i 0.0918945 + 0.135534i
\(333\) 0 0
\(334\) 8.91931 + 5.36657i 0.488043 + 0.293646i
\(335\) 31.5175 + 6.93752i 1.72198 + 0.379037i
\(336\) 0 0
\(337\) −8.30529 + 3.84244i −0.452418 + 0.209311i −0.632847 0.774277i \(-0.718114\pi\)
0.180428 + 0.983588i \(0.442252\pi\)
\(338\) 0.342800 1.23465i 0.0186459 0.0671563i
\(339\) 0 0
\(340\) −24.3627 2.64960i −1.32125 0.143695i
\(341\) −16.6858 31.4727i −0.903584 1.70434i
\(342\) 0 0
\(343\) −3.28051 11.8153i −0.177131 0.637968i
\(344\) 2.82522 + 3.32611i 0.152326 + 0.179332i
\(345\) 0 0
\(346\) −10.5080 + 15.4982i −0.564915 + 0.833188i
\(347\) −9.71905 4.49651i −0.521746 0.241385i 0.141296 0.989967i \(-0.454873\pi\)
−0.663042 + 0.748582i \(0.730735\pi\)
\(348\) 0 0
\(349\) 4.14086 + 10.3928i 0.221655 + 0.556312i 0.997184 0.0750004i \(-0.0238958\pi\)
−0.775528 + 0.631313i \(0.782516\pi\)
\(350\) 6.70114 5.09407i 0.358191 0.272290i
\(351\) 0 0
\(352\) −26.3420 + 8.87564i −1.40403 + 0.473073i
\(353\) −12.7467 −0.678437 −0.339219 0.940708i \(-0.610163\pi\)
−0.339219 + 0.940708i \(0.610163\pi\)
\(354\) 0 0
\(355\) 7.92584 0.420660
\(356\) 5.58768 1.88271i 0.296146 0.0997834i
\(357\) 0 0
\(358\) 3.22341 2.45037i 0.170363 0.129506i
\(359\) 10.5960 + 26.5940i 0.559237 + 1.40358i 0.888297 + 0.459270i \(0.151889\pi\)
−0.329060 + 0.944309i \(0.606732\pi\)
\(360\) 0 0
\(361\) −15.1635 7.01537i −0.798077 0.369230i
\(362\) −11.8765 + 17.5165i −0.624216 + 0.920649i
\(363\) 0 0
\(364\) 2.89758 + 3.41130i 0.151874 + 0.178800i
\(365\) 11.0652 + 39.8531i 0.579177 + 2.08601i
\(366\) 0 0
\(367\) −0.514026 0.969555i −0.0268319 0.0506104i 0.869734 0.493521i \(-0.164291\pi\)
−0.896566 + 0.442911i \(0.853946\pi\)
\(368\) 0.312699 + 0.0340080i 0.0163006 + 0.00177279i
\(369\) 0 0
\(370\) −3.96973 + 14.2977i −0.206376 + 0.743300i
\(371\) 0.723465 0.334710i 0.0375604 0.0173773i
\(372\) 0 0
\(373\) 10.0189 + 2.20532i 0.518758 + 0.114187i 0.466629 0.884453i \(-0.345468\pi\)
0.0521288 + 0.998640i \(0.483399\pi\)
\(374\) 17.8092 + 10.7154i 0.920890 + 0.554081i
\(375\) 0 0
\(376\) 10.8894 + 16.0607i 0.561578 + 0.828265i
\(377\) 5.70327 + 34.7884i 0.293733 + 1.79169i
\(378\) 0 0
\(379\) −7.91161 + 7.49428i −0.406392 + 0.384955i −0.863410 0.504502i \(-0.831676\pi\)
0.457018 + 0.889457i \(0.348917\pi\)
\(380\) −5.44194 5.15488i −0.279165 0.264440i
\(381\) 0 0
\(382\) 15.2661 3.36031i 0.781079 0.171929i
\(383\) 19.4082 + 6.53938i 0.991712 + 0.334147i 0.767959 0.640499i \(-0.221273\pi\)
0.223753 + 0.974646i \(0.428169\pi\)
\(384\) 0 0
\(385\) 17.4987 3.85176i 0.891818 0.196304i
\(386\) 0.556129 + 10.2572i 0.0283062 + 0.522077i
\(387\) 0 0
\(388\) 6.88827 6.52492i 0.349699 0.331253i
\(389\) −1.29459 + 23.8773i −0.0656382 + 1.21063i 0.761326 + 0.648370i \(0.224549\pi\)
−0.826964 + 0.562255i \(0.809934\pi\)
\(390\) 0 0
\(391\) −8.53505 12.5883i −0.431636 0.636615i
\(392\) −17.0902 + 1.85867i −0.863184 + 0.0938769i
\(393\) 0 0
\(394\) −0.365236 0.0803944i −0.0184003 0.00405021i
\(395\) 2.38440 14.5442i 0.119972 0.731798i
\(396\) 0 0
\(397\) −9.22544 + 33.2270i −0.463011 + 1.66762i 0.251395 + 0.967885i \(0.419111\pi\)
−0.714406 + 0.699731i \(0.753303\pi\)
\(398\) −1.47075 1.11804i −0.0737220 0.0560420i
\(399\) 0 0
\(400\) 0.501930 + 0.946740i 0.0250965 + 0.0473370i
\(401\) 5.69657 14.2973i 0.284473 0.713974i −0.715410 0.698705i \(-0.753760\pi\)
0.999883 0.0152691i \(-0.00486050\pi\)
\(402\) 0 0
\(403\) 17.9975 + 21.1883i 0.896521 + 1.05547i
\(404\) −4.58101 + 8.64069i −0.227914 + 0.429891i
\(405\) 0 0
\(406\) 6.75945 + 3.12726i 0.335466 + 0.155203i
\(407\) −13.8380 + 16.2913i −0.685923 + 0.807531i
\(408\) 0 0
\(409\) 24.6708 18.7542i 1.21989 0.927336i 0.221039 0.975265i \(-0.429055\pi\)
0.998851 + 0.0479285i \(0.0152620\pi\)
\(410\) 30.3168 18.2410i 1.49724 0.900859i
\(411\) 0 0
\(412\) −23.0252 −1.13437
\(413\) 1.77136 + 6.95281i 0.0871630 + 0.342126i
\(414\) 0 0
\(415\) −8.83359 + 2.97638i −0.433624 + 0.146105i
\(416\) 18.5881 11.1841i 0.911357 0.548345i
\(417\) 0 0
\(418\) 2.35310 + 5.90583i 0.115094 + 0.288864i
\(419\) 18.0466 21.2461i 0.881636 1.03794i −0.117358 0.993090i \(-0.537442\pi\)
0.998994 0.0448523i \(-0.0142817\pi\)
\(420\) 0 0
\(421\) 19.5363 28.8138i 0.952139 1.40430i 0.0378290 0.999284i \(-0.487956\pi\)
0.914310 0.405016i \(-0.132734\pi\)
\(422\) 1.61034 3.03742i 0.0783901 0.147859i
\(423\) 0 0
\(424\) −0.640520 2.30694i −0.0311064 0.112035i
\(425\) 19.1779 48.1329i 0.930265 2.33479i
\(426\) 0 0
\(427\) −2.42765 0.264023i −0.117482 0.0127770i
\(428\) 14.0438 + 10.6758i 0.678832 + 0.516034i
\(429\) 0 0
\(430\) −4.77988 + 2.21141i −0.230506 + 0.106644i
\(431\) −5.97149 + 36.4245i −0.287637 + 1.75451i 0.308126 + 0.951345i \(0.400298\pi\)
−0.595763 + 0.803160i \(0.703150\pi\)
\(432\) 0 0
\(433\) −19.1067 11.4961i −0.918210 0.552469i −0.0238002 0.999717i \(-0.507577\pi\)
−0.894410 + 0.447248i \(0.852404\pi\)
\(434\) 5.83891 0.635020i 0.280277 0.0304819i
\(435\) 0 0
\(436\) 1.34045 + 8.17641i 0.0641961 + 0.391579i
\(437\) 0.251854 4.64518i 0.0120478 0.222209i
\(438\) 0 0
\(439\) 17.8204 + 16.8804i 0.850523 + 0.805658i 0.982630 0.185577i \(-0.0594155\pi\)
−0.132107 + 0.991236i \(0.542174\pi\)
\(440\) −2.91352 53.7368i −0.138897 2.56180i
\(441\) 0 0
\(442\) −15.3714 5.17922i −0.731142 0.246350i
\(443\) −7.49796 2.52636i −0.356239 0.120031i 0.135491 0.990779i \(-0.456739\pi\)
−0.491730 + 0.870748i \(0.663635\pi\)
\(444\) 0 0
\(445\) 0.997307 + 18.3942i 0.0472769 + 0.871971i
\(446\) 10.9710 + 10.3923i 0.519493 + 0.492090i
\(447\) 0 0
\(448\) 0.237772 4.38544i 0.0112337 0.207193i
\(449\) 0.717636 + 4.37739i 0.0338674 + 0.206582i 0.998340 0.0576025i \(-0.0183456\pi\)
−0.964472 + 0.264184i \(0.914897\pi\)
\(450\) 0 0
\(451\) 50.6686 5.51055i 2.38589 0.259481i
\(452\) −8.07276 4.85722i −0.379711 0.228464i
\(453\) 0 0
\(454\) 1.55868 9.50753i 0.0731525 0.446210i
\(455\) −12.6909 + 5.87143i −0.594958 + 0.275257i
\(456\) 0 0
\(457\) 21.9627 + 16.6956i 1.02737 + 0.780986i 0.976017 0.217694i \(-0.0698536\pi\)
0.0513529 + 0.998681i \(0.483647\pi\)
\(458\) −14.0407 1.52702i −0.656081 0.0713531i
\(459\) 0 0
\(460\) −5.63047 + 14.1314i −0.262522 + 0.658880i
\(461\) 8.27878 + 29.8175i 0.385581 + 1.38874i 0.860833 + 0.508888i \(0.169943\pi\)
−0.475252 + 0.879850i \(0.657643\pi\)
\(462\) 0 0
\(463\) −3.53517 + 6.66804i −0.164293 + 0.309890i −0.951966 0.306204i \(-0.900941\pi\)
0.787673 + 0.616094i \(0.211286\pi\)
\(464\) −0.532072 + 0.784747i −0.0247008 + 0.0364310i
\(465\) 0 0
\(466\) −4.11794 + 4.84801i −0.190760 + 0.224580i
\(467\) 1.84084 + 4.62016i 0.0851838 + 0.213795i 0.965398 0.260782i \(-0.0839803\pi\)
−0.880214 + 0.474577i \(0.842601\pi\)
\(468\) 0 0
\(469\) −6.56774 + 3.95168i −0.303270 + 0.182472i
\(470\) −22.1917 + 7.47726i −1.02363 + 0.344900i
\(471\) 0 0
\(472\) 21.4684 1.87174i 0.988164 0.0861539i
\(473\) −7.58669 −0.348836
\(474\) 0 0
\(475\) 13.5796 8.17057i 0.623075 0.374891i
\(476\) 4.63366 3.52241i 0.212383 0.161450i
\(477\) 0 0
\(478\) 7.49646 8.82551i 0.342880 0.403669i
\(479\) −24.7085 11.4313i −1.12896 0.522312i −0.235687 0.971829i \(-0.575734\pi\)
−0.893272 + 0.449517i \(0.851596\pi\)
\(480\) 0 0
\(481\) 7.81379 14.7384i 0.356278 0.672012i
\(482\) −3.00971 3.54330i −0.137088 0.161393i
\(483\) 0 0
\(484\) 5.95866 14.9551i 0.270848 0.679778i
\(485\) 13.8848 + 26.1894i 0.630474 + 1.18920i
\(486\) 0 0
\(487\) −18.6787 14.1992i −0.846412 0.643426i 0.0893724 0.995998i \(-0.471514\pi\)
−0.935784 + 0.352573i \(0.885307\pi\)
\(488\) −1.96217 + 7.06711i −0.0888234 + 0.319913i
\(489\) 0 0
\(490\) 3.35641 20.4732i 0.151627 0.924885i
\(491\) 1.44042 + 0.317060i 0.0650052 + 0.0143087i 0.247354 0.968925i \(-0.420439\pi\)
−0.182349 + 0.983234i \(0.558370\pi\)
\(492\) 0 0
\(493\) 45.5751 4.95660i 2.05260 0.223234i
\(494\) −2.78427 4.10650i −0.125270 0.184760i
\(495\) 0 0
\(496\) −0.0404789 + 0.746589i −0.00181755 + 0.0335228i
\(497\) −1.36666 + 1.29457i −0.0613031 + 0.0580694i
\(498\) 0 0
\(499\) −1.39473 25.7242i −0.0624366 1.15158i −0.847023 0.531556i \(-0.821608\pi\)
0.784587 0.620019i \(-0.212875\pi\)
\(500\) −26.4355 + 5.81889i −1.18223 + 0.260229i
\(501\) 0 0
\(502\) 7.19348 + 2.42376i 0.321061 + 0.108178i
\(503\) −7.66561 + 1.68733i −0.341792 + 0.0752342i −0.382550 0.923935i \(-0.624954\pi\)
0.0407574 + 0.999169i \(0.487023\pi\)
\(504\) 0 0
\(505\) −22.1823 21.0122i −0.987101 0.935032i
\(506\) 9.36636 8.87229i 0.416386 0.394421i
\(507\) 0 0
\(508\) 1.90778 + 11.6370i 0.0846442 + 0.516306i
\(509\) −17.2146 25.3896i −0.763024 1.12538i −0.988514 0.151130i \(-0.951709\pi\)
0.225490 0.974245i \(-0.427602\pi\)
\(510\) 0 0
\(511\) −8.41740 5.06458i −0.372364 0.224044i
\(512\) 1.13079 + 0.248905i 0.0499742 + 0.0110002i
\(513\) 0 0
\(514\) 23.8198 11.0202i 1.05065 0.486081i
\(515\) 19.2447 69.3131i 0.848022 3.05430i
\(516\) 0 0
\(517\) −33.5356 3.64722i −1.47489 0.160404i
\(518\) −1.65081 3.11376i −0.0725325 0.136811i
\(519\) 0 0
\(520\) 11.2359 + 40.4680i 0.492726 + 1.77464i
\(521\) 7.98919 + 9.40560i 0.350013 + 0.412067i 0.908792 0.417250i \(-0.137006\pi\)
−0.558779 + 0.829317i \(0.688730\pi\)
\(522\) 0 0
\(523\) −10.5802 + 15.6047i −0.462641 + 0.682345i −0.985423 0.170122i \(-0.945584\pi\)
0.522782 + 0.852467i \(0.324894\pi\)
\(524\) 1.09993 + 0.508884i 0.0480509 + 0.0222307i
\(525\) 0 0
\(526\) −2.96947 7.45282i −0.129475 0.324958i
\(527\) 28.7807 21.8785i 1.25371 0.953043i
\(528\) 0 0
\(529\) 12.8496 4.32953i 0.558678 0.188240i
\(530\) 2.88940 0.125508
\(531\) 0 0
\(532\) 1.78033 0.0771872
\(533\) −37.6938 + 12.7005i −1.63270 + 0.550121i
\(534\) 0 0
\(535\) −43.8754 + 33.3532i −1.89690 + 1.44199i
\(536\) 8.52117 + 21.3865i 0.368059 + 0.923758i
\(537\) 0 0
\(538\) 13.5152 + 6.25280i 0.582682 + 0.269577i
\(539\) 16.7714 24.7360i 0.722397 1.06546i
\(540\) 0 0
\(541\) −4.27027 5.02736i −0.183593 0.216143i 0.662664 0.748916i \(-0.269426\pi\)
−0.846258 + 0.532774i \(0.821150\pi\)
\(542\) 4.32437 + 15.5750i 0.185747 + 0.669002i
\(543\) 0 0
\(544\) −13.2142 24.9246i −0.566553 1.06863i
\(545\) −25.7339 2.79873i −1.10232 0.119884i
\(546\) 0 0
\(547\) −7.19485 + 25.9135i −0.307629 + 1.10798i 0.634553 + 0.772880i \(0.281184\pi\)
−0.942182 + 0.335102i \(0.891229\pi\)
\(548\) 6.51027 3.01197i 0.278105 0.128665i
\(549\) 0 0
\(550\) 42.9242 + 9.44832i 1.83029 + 0.402878i
\(551\) 12.0152 + 7.22931i 0.511865 + 0.307979i
\(552\) 0 0
\(553\) 1.96444 + 2.89733i 0.0835364 + 0.123207i
\(554\) −3.45055 21.0474i −0.146600 0.894219i
\(555\) 0 0
\(556\) −2.18958 + 2.07408i −0.0928587 + 0.0879604i
\(557\) 10.7301 + 10.1641i 0.454647 + 0.430665i 0.880441 0.474155i \(-0.157246\pi\)
−0.425794 + 0.904820i \(0.640005\pi\)
\(558\) 0 0
\(559\) 5.78238 1.27280i 0.244569 0.0538336i
\(560\) −0.356392 0.120082i −0.0150603 0.00507441i
\(561\) 0 0
\(562\) 12.1797 2.68095i 0.513769 0.113089i
\(563\) −1.35680 25.0247i −0.0571823 1.05467i −0.876523 0.481360i \(-0.840143\pi\)
0.819341 0.573307i \(-0.194340\pi\)
\(564\) 0 0
\(565\) 21.3690 20.2418i 0.899002 0.851580i
\(566\) 1.23820 22.8373i 0.0520455 0.959923i
\(567\) 0 0
\(568\) 3.17295 + 4.67975i 0.133134 + 0.196358i
\(569\) 2.50413 0.272340i 0.104979 0.0114171i −0.0554789 0.998460i \(-0.517669\pi\)
0.160457 + 0.987043i \(0.448703\pi\)
\(570\) 0 0
\(571\) 18.9840 + 4.17870i 0.794456 + 0.174873i 0.593613 0.804750i \(-0.297701\pi\)
0.200843 + 0.979623i \(0.435632\pi\)
\(572\) −3.78089 + 23.0624i −0.158087 + 0.964287i
\(573\) 0 0
\(574\) −2.24815 + 8.09712i −0.0938361 + 0.337967i
\(575\) −25.6037 19.4634i −1.06775 0.811682i
\(576\) 0 0
\(577\) −9.20921 17.3704i −0.383384 0.723139i 0.614447 0.788958i \(-0.289379\pi\)
−0.997832 + 0.0658184i \(0.979034\pi\)
\(578\) −2.39044 + 5.99956i −0.0994293 + 0.249549i
\(579\) 0 0
\(580\) −29.6843 34.9471i −1.23257 1.45110i
\(581\) 1.03704 1.95606i 0.0430236 0.0811510i
\(582\) 0 0
\(583\) 3.77754 + 1.74767i 0.156450 + 0.0723813i
\(584\) −19.1012 + 22.4877i −0.790414 + 0.930547i
\(585\) 0 0
\(586\) −16.6038 + 12.6219i −0.685899 + 0.521407i
\(587\) 2.57509 1.54938i 0.106285 0.0639497i −0.461419 0.887182i \(-0.652659\pi\)
0.567704 + 0.823233i \(0.307832\pi\)
\(588\) 0 0
\(589\) 11.0581 0.455639
\(590\) −4.75477 + 25.5686i −0.195751 + 1.05264i
\(591\) 0 0
\(592\) 0.425163 0.143254i 0.0174741 0.00588771i
\(593\) 13.3789 8.04984i 0.549407 0.330567i −0.213637 0.976913i \(-0.568531\pi\)
0.763045 + 0.646346i \(0.223704\pi\)
\(594\) 0 0
\(595\) 6.73071 + 16.8928i 0.275932 + 0.692538i
\(596\) −8.58690 + 10.1093i −0.351733 + 0.414092i
\(597\) 0 0
\(598\) −5.65032 + 8.33360i −0.231059 + 0.340786i
\(599\) 2.30439 4.34655i 0.0941550 0.177595i −0.831961 0.554834i \(-0.812782\pi\)
0.926116 + 0.377239i \(0.123127\pi\)
\(600\) 0 0
\(601\) −5.26560 18.9650i −0.214788 0.773598i −0.989899 0.141773i \(-0.954720\pi\)
0.775111 0.631825i \(-0.217694\pi\)
\(602\) 0.462999 1.16204i 0.0188704 0.0473612i
\(603\) 0 0
\(604\) 17.0691 + 1.85638i 0.694532 + 0.0755349i
\(605\) 40.0392 + 30.4370i 1.62783 + 1.23744i
\(606\) 0 0
\(607\) 11.3634 5.25726i 0.461225 0.213386i −0.175495 0.984480i \(-0.556153\pi\)
0.636720 + 0.771095i \(0.280291\pi\)
\(608\) 1.39600 8.51524i 0.0566154 0.345339i
\(609\) 0 0
\(610\) −7.58440 4.56338i −0.307083 0.184766i
\(611\) 26.1718 2.84636i 1.05880 0.115151i
\(612\) 0 0
\(613\) −1.16504 7.10644i −0.0470556 0.287026i 0.952807 0.303575i \(-0.0981804\pi\)
−0.999863 + 0.0165488i \(0.994732\pi\)
\(614\) 0.778502 14.3586i 0.0314178 0.579467i
\(615\) 0 0
\(616\) 9.27950 + 8.79001i 0.373882 + 0.354160i
\(617\) 1.65703 + 30.5622i 0.0667097 + 1.23039i 0.819870 + 0.572550i \(0.194046\pi\)
−0.753160 + 0.657838i \(0.771471\pi\)
\(618\) 0 0
\(619\) −19.9157 6.71040i −0.800481 0.269714i −0.110815 0.993841i \(-0.535346\pi\)
−0.689666 + 0.724127i \(0.742243\pi\)
\(620\) −34.2665 11.5457i −1.37617 0.463687i
\(621\) 0 0
\(622\) 1.24094 + 22.8878i 0.0497572 + 0.917717i
\(623\) −3.17640 3.00884i −0.127260 0.120547i
\(624\) 0 0
\(625\) 1.74487 32.1823i 0.0697950 1.28729i
\(626\) 0.302279 + 1.84382i 0.0120815 + 0.0736940i
\(627\) 0 0
\(628\) −1.94025 + 0.211015i −0.0774243 + 0.00842040i
\(629\) −18.5880 11.1841i −0.741154 0.445937i
\(630\) 0 0
\(631\) −4.66776 + 28.4721i −0.185821 + 1.13346i 0.714955 + 0.699171i \(0.246447\pi\)
−0.900775 + 0.434285i \(0.857001\pi\)
\(632\) 9.54205 4.41462i 0.379562 0.175604i
\(633\) 0 0
\(634\) −2.82694 2.14898i −0.112272 0.0853470i
\(635\) −36.6254 3.98325i −1.45344 0.158071i
\(636\) 0 0
\(637\) −8.63287 + 21.6669i −0.342047 + 0.858472i
\(638\) 10.4038 + 37.4709i 0.411889 + 1.48349i
\(639\) 0 0
\(640\) −13.5414 + 25.5417i −0.535270 + 1.00963i
\(641\) −20.0454 + 29.5647i −0.791744 + 1.16774i 0.190786 + 0.981632i \(0.438896\pi\)
−0.982530 + 0.186104i \(0.940414\pi\)
\(642\) 0 0
\(643\) 15.0536 17.7225i 0.593658 0.698908i −0.380499 0.924781i \(-0.624248\pi\)
0.974157 + 0.225873i \(0.0725236\pi\)
\(644\) −1.33729 3.35635i −0.0526967 0.132259i
\(645\) 0 0
\(646\) −5.52842 + 3.32634i −0.217513 + 0.130873i
\(647\) 24.9343 8.40133i 0.980267 0.330290i 0.216856 0.976204i \(-0.430420\pi\)
0.763411 + 0.645913i \(0.223523\pi\)
\(648\) 0 0
\(649\) −21.6816 + 30.5519i −0.851079 + 1.19927i
\(650\) −34.3008 −1.34539
\(651\) 0 0
\(652\) 16.0596 9.66275i 0.628943 0.378423i
\(653\) −14.8329 + 11.2757i −0.580456 + 0.441251i −0.853753 0.520679i \(-0.825679\pi\)
0.273297 + 0.961930i \(0.411886\pi\)
\(654\) 0 0
\(655\) −2.45123 + 2.88582i −0.0957777 + 0.112758i
\(656\) −0.970896 0.449184i −0.0379071 0.0175377i
\(657\) 0 0
\(658\) 2.60524 4.91400i 0.101563 0.191568i
\(659\) 11.4312 + 13.4578i 0.445296 + 0.524243i 0.938318 0.345774i \(-0.112384\pi\)
−0.493022 + 0.870017i \(0.664108\pi\)
\(660\) 0 0
\(661\) 6.54181 16.4187i 0.254447 0.638614i −0.745153 0.666893i \(-0.767624\pi\)
0.999600 + 0.0282798i \(0.00900293\pi\)
\(662\) 8.29892 + 15.6534i 0.322547 + 0.608387i
\(663\) 0 0
\(664\) −5.29373 4.02419i −0.205436 0.156169i
\(665\) −1.48802 + 5.35936i −0.0577029 + 0.207827i
\(666\) 0 0
\(667\) 4.60377 28.0818i 0.178259 1.08733i
\(668\) 14.8650 + 3.27203i 0.575144 + 0.126599i
\(669\) 0 0
\(670\) −27.6202 + 3.00388i −1.06706 + 0.116050i
\(671\) −7.15547 10.5535i −0.276234 0.407415i
\(672\) 0 0
\(673\) 0.0532889 0.982856i 0.00205414 0.0378863i −0.997327 0.0730723i \(-0.976720\pi\)
0.999381 + 0.0351860i \(0.0112024\pi\)
\(674\) 5.71954 5.41784i 0.220309 0.208687i
\(675\) 0 0
\(676\) −0.101437 1.87090i −0.00390143 0.0719576i
\(677\) 9.53187 2.09812i 0.366339 0.0806374i −0.0279859 0.999608i \(-0.508909\pi\)
0.394325 + 0.918971i \(0.370978\pi\)
\(678\) 0 0
\(679\) −6.67183 2.24800i −0.256041 0.0862703i
\(680\) 53.3398 11.7410i 2.04549 0.450246i
\(681\) 0 0
\(682\) 22.2644 + 21.0899i 0.852547 + 0.807575i
\(683\) −17.0339 + 16.1353i −0.651783 + 0.617402i −0.940411 0.340040i \(-0.889560\pi\)
0.288628 + 0.957441i \(0.406801\pi\)
\(684\) 0 0
\(685\) 3.62563 + 22.1154i 0.138528 + 0.844985i
\(686\) 5.92426 + 8.73763i 0.226189 + 0.333604i
\(687\) 0 0
\(688\) 0.136445 + 0.0820964i 0.00520193 + 0.00312989i
\(689\) −3.17234 0.698285i −0.120857 0.0266026i
\(690\) 0 0
\(691\) 13.1217 6.07073i 0.499172 0.230941i −0.154114 0.988053i \(-0.549252\pi\)
0.653286 + 0.757112i \(0.273390\pi\)
\(692\) −7.32487 + 26.3818i −0.278450 + 1.00289i
\(693\) 0 0
\(694\) 9.16522 + 0.996777i 0.347907 + 0.0378372i
\(695\) −4.41355 8.32483i −0.167415 0.315779i
\(696\) 0 0
\(697\) 13.8382 + 49.8406i 0.524158 + 1.88785i
\(698\) −6.23512 7.34056i −0.236003 0.277844i
\(699\) 0 0
\(700\) 6.90731 10.1875i 0.261072 0.385052i
\(701\) −13.9571 6.45725i −0.527153 0.243887i 0.138215 0.990402i \(-0.455863\pi\)
−0.665368 + 0.746515i \(0.731725\pi\)
\(702\) 0 0
\(703\) −2.45601 6.16412i −0.0926302 0.232484i
\(704\) 18.2560 13.8779i 0.688049 0.523042i
\(705\) 0 0
\(706\) 10.3992 3.50391i 0.391381 0.131871i
\(707\) 7.25696 0.272926
\(708\) 0 0
\(709\) −23.0178 −0.864452 −0.432226 0.901765i \(-0.642272\pi\)
−0.432226 + 0.901765i \(0.642272\pi\)
\(710\) −6.46621 + 2.17872i −0.242673 + 0.0817659i
\(711\) 0 0
\(712\) −10.4615 + 7.95261i −0.392060 + 0.298037i
\(713\) −8.30622 20.8470i −0.311070 0.780728i
\(714\) 0 0
\(715\) −66.2649 30.6574i −2.47817 1.14652i
\(716\) 3.32258 4.90044i 0.124171 0.183138i
\(717\) 0 0
\(718\) −15.9550 18.7837i −0.595437 0.701002i
\(719\) 6.42442 + 23.1387i 0.239590 + 0.862927i 0.981345 + 0.192255i \(0.0615801\pi\)
−0.741755 + 0.670671i \(0.766006\pi\)
\(720\) 0 0
\(721\) 8.00290 + 15.0951i 0.298043 + 0.562170i
\(722\) 14.2994 + 1.55515i 0.532168 + 0.0578768i
\(723\) 0 0
\(724\) −8.27880 + 29.8176i −0.307679 + 1.10816i
\(725\) 87.9843 40.7059i 3.26766 1.51178i
\(726\) 0 0
\(727\) −48.1883 10.6071i −1.78721 0.393394i −0.806870 0.590729i \(-0.798840\pi\)
−0.980336 + 0.197335i \(0.936771\pi\)
\(728\) −8.54727 5.14272i −0.316783 0.190602i
\(729\) 0 0
\(730\) −19.9825 29.4720i −0.739587 1.09081i
\(731\) −1.24566 7.59818i −0.0460723 0.281029i
\(732\) 0 0
\(733\) 8.55482 8.10355i 0.315979 0.299312i −0.513228 0.858252i \(-0.671551\pi\)
0.829208 + 0.558941i \(0.188792\pi\)
\(734\) 0.685882 + 0.649701i 0.0253163 + 0.0239809i
\(735\) 0 0
\(736\) −17.1018 + 3.76440i −0.630382 + 0.138758i
\(737\) −37.9270 12.7791i −1.39706 0.470724i
\(738\) 0 0
\(739\) −38.0617 + 8.37800i −1.40012 + 0.308190i −0.849950 0.526863i \(-0.823368\pi\)
−0.550170 + 0.835052i \(0.685437\pi\)
\(740\) 1.17467 + 21.6656i 0.0431818 + 0.796442i
\(741\) 0 0
\(742\) −0.498223 + 0.471942i −0.0182903 + 0.0173255i
\(743\) −0.845612 + 15.5964i −0.0310225 + 0.572176i 0.941161 + 0.337958i \(0.109736\pi\)
−0.972184 + 0.234219i \(0.924747\pi\)
\(744\) 0 0
\(745\) −23.2551 34.2987i −0.852000 1.25661i
\(746\) −8.78001 + 0.954884i −0.321459 + 0.0349608i
\(747\) 0 0
\(748\) 29.6809 + 6.53326i 1.08524 + 0.238880i
\(749\) 2.11772 12.9175i 0.0773799 0.471997i
\(750\) 0 0
\(751\) −7.49205 + 26.9839i −0.273389 + 0.984658i 0.691581 + 0.722299i \(0.256914\pi\)
−0.964970 + 0.262359i \(0.915499\pi\)
\(752\) 0.563664 + 0.428487i 0.0205547 + 0.0156253i
\(753\) 0 0
\(754\) −14.2159 26.8140i −0.517711 0.976507i
\(755\) −19.8548 + 49.8318i −0.722590 + 1.81356i
\(756\) 0 0
\(757\) 10.9511 + 12.8927i 0.398026 + 0.468592i 0.924269 0.381742i \(-0.124676\pi\)
−0.526243 + 0.850334i \(0.676400\pi\)
\(758\) 4.39451 8.28893i 0.159616 0.301068i
\(759\) 0 0
\(760\) 15.1617 + 7.01457i 0.549974 + 0.254445i
\(761\) 1.68160 1.97973i 0.0609578 0.0717650i −0.730838 0.682551i \(-0.760871\pi\)
0.791796 + 0.610786i \(0.209146\pi\)
\(762\) 0 0
\(763\) 4.89446 3.72067i 0.177191 0.134697i
\(764\) 19.5851 11.7840i 0.708564 0.426329i
\(765\) 0 0
\(766\) −17.6316 −0.637054
\(767\) 11.3996 26.9233i 0.411615 0.972144i
\(768\) 0 0
\(769\) −15.3230 + 5.16292i −0.552561 + 0.186180i −0.581711 0.813395i \(-0.697617\pi\)
0.0291497 + 0.999575i \(0.490720\pi\)
\(770\) −13.2174 + 7.95262i −0.476320 + 0.286592i
\(771\) 0 0
\(772\) 5.55963 + 13.9536i 0.200096 + 0.502202i
\(773\) −6.44197 + 7.58408i −0.231702 + 0.272780i −0.865710 0.500546i \(-0.833133\pi\)
0.634008 + 0.773326i \(0.281408\pi\)
\(774\) 0 0
\(775\) 42.9029 63.2770i 1.54112 2.27298i
\(776\) −9.90485 + 18.6825i −0.355564 + 0.670664i
\(777\) 0 0
\(778\) −5.50740 19.8359i −0.197450 0.711150i
\(779\) −5.85617 + 14.6979i −0.209819 + 0.526606i
\(780\) 0 0
\(781\) −9.77158 1.06272i −0.349655 0.0380272i
\(782\) 10.4236 + 7.92381i 0.372747 + 0.283355i
\(783\) 0 0
\(784\) −0.569303 + 0.263387i −0.0203322 + 0.00940669i
\(785\) 0.986456 6.01712i 0.0352081 0.214760i
\(786\) 0 0
\(787\) 17.5190 + 10.5408i 0.624484 + 0.375740i 0.792347 0.610071i \(-0.208859\pi\)
−0.167863 + 0.985810i \(0.553687\pi\)
\(788\) −0.543639 + 0.0591243i −0.0193663 + 0.00210621i
\(789\) 0 0
\(790\) 2.05274 + 12.5212i 0.0730333 + 0.445483i
\(791\) −0.378479 + 6.98064i −0.0134572 + 0.248203i
\(792\) 0 0
\(793\) 7.22425 + 6.84318i 0.256541 + 0.243008i
\(794\) −1.60724 29.6439i −0.0570389 1.05202i
\(795\) 0 0
\(796\) −2.56001 0.862566i −0.0907370 0.0305729i
\(797\) −27.7248 9.34158i −0.982064 0.330896i −0.217938 0.975963i \(-0.569933\pi\)
−0.764126 + 0.645067i \(0.776830\pi\)
\(798\) 0 0
\(799\) −1.85347 34.1852i −0.0655710 1.20939i
\(800\) −43.3102 41.0256i −1.53125 1.45047i
\(801\) 0 0
\(802\) −0.717322 + 13.2302i −0.0253295 + 0.467176i
\(803\) −8.29833 50.6176i −0.292842 1.78626i
\(804\) 0 0
\(805\) 11.2214 1.22040i 0.395502 0.0430134i
\(806\) −20.5075 12.3390i −0.722346 0.434621i
\(807\) 0 0
\(808\) 3.52625 21.5092i 0.124053 0.756690i
\(809\) 6.29495 2.91235i 0.221319 0.102393i −0.306097 0.952000i \(-0.599023\pi\)
0.527416 + 0.849607i \(0.323161\pi\)
\(810\) 0 0
\(811\) 2.57537 + 1.95774i 0.0904334 + 0.0687457i 0.649414 0.760435i \(-0.275014\pi\)
−0.558981 + 0.829181i \(0.688807\pi\)
\(812\) 10.8266 + 1.17746i 0.379939 + 0.0413209i
\(813\) 0 0
\(814\) 6.81127 17.0950i 0.238735 0.599179i
\(815\) 15.6651 + 56.4207i 0.548725 + 1.97633i
\(816\) 0 0
\(817\) 1.10315 2.08076i 0.0385943 0.0727966i
\(818\) −14.9721 + 22.0821i −0.523485 + 0.772083i
\(819\) 0 0
\(820\) 33.4930 39.4310i 1.16963 1.37699i
\(821\) −17.3314 43.4986i −0.604871 1.51811i −0.838002 0.545667i \(-0.816276\pi\)
0.233131 0.972445i \(-0.425103\pi\)
\(822\) 0 0
\(823\) −17.8352 + 10.7311i −0.621695 + 0.374061i −0.791280 0.611454i \(-0.790585\pi\)
0.169585 + 0.985516i \(0.445757\pi\)
\(824\) 48.6295 16.3852i 1.69409 0.570805i
\(825\) 0 0
\(826\) −3.35639 5.18545i −0.116784 0.180425i
\(827\) 32.9263 1.14496 0.572479 0.819919i \(-0.305982\pi\)
0.572479 + 0.819919i \(0.305982\pi\)
\(828\) 0 0
\(829\) −18.7064 + 11.2553i −0.649701 + 0.390912i −0.801917 0.597435i \(-0.796187\pi\)
0.152216 + 0.988347i \(0.451359\pi\)
\(830\) 6.38862 4.85650i 0.221752 0.168572i
\(831\) 0 0
\(832\) −11.5860 + 13.6401i −0.401673 + 0.472886i
\(833\) 27.5272 + 12.7354i 0.953761 + 0.441257i
\(834\) 0 0
\(835\) −22.2741 + 42.0135i −0.770829 + 1.45394i
\(836\) 6.01805 + 7.08500i 0.208139 + 0.245040i
\(837\) 0 0
\(838\) −8.88284 + 22.2942i −0.306853 + 0.770142i
\(839\) −1.14401 2.15783i −0.0394956 0.0744966i 0.862979 0.505240i \(-0.168596\pi\)
−0.902474 + 0.430744i \(0.858251\pi\)
\(840\) 0 0
\(841\) 45.1991 + 34.3595i 1.55859 + 1.18481i
\(842\) −8.01786 + 28.8777i −0.276314 + 0.995192i
\(843\) 0 0
\(844\) 0.813279 4.96078i 0.0279942 0.170757i
\(845\) 5.71677 + 1.25836i 0.196663 + 0.0432887i
\(846\) 0 0
\(847\) −11.8755 + 1.29153i −0.408045 + 0.0443776i
\(848\) −0.0490265 0.0723087i −0.00168358 0.00248309i
\(849\) 0 0
\(850\) −2.41491 + 44.5405i −0.0828309 + 1.52773i
\(851\) −9.77600 + 9.26032i −0.335117 + 0.317440i
\(852\) 0 0
\(853\) 2.73173 + 50.3838i 0.0935327 + 1.72511i 0.549825 + 0.835280i \(0.314694\pi\)
−0.456292 + 0.889830i \(0.650823\pi\)
\(854\) 2.05315 0.451932i 0.0702573 0.0154648i
\(855\) 0 0
\(856\) −37.2577 12.5536i −1.27344 0.429073i
\(857\) −42.8693 + 9.43625i −1.46439 + 0.322336i −0.874451 0.485114i \(-0.838778\pi\)
−0.589936 + 0.807450i \(0.700847\pi\)
\(858\) 0 0
\(859\) 40.5723 + 38.4322i 1.38431 + 1.31129i 0.899667 + 0.436577i \(0.143809\pi\)
0.484643 + 0.874712i \(0.338949\pi\)
\(860\) −5.59094 + 5.29602i −0.190649 + 0.180593i
\(861\) 0 0
\(862\) −5.14089 31.3580i −0.175099 1.06806i
\(863\) −4.51714 6.66228i −0.153765 0.226787i 0.743002 0.669289i \(-0.233401\pi\)
−0.896767 + 0.442502i \(0.854091\pi\)
\(864\) 0 0
\(865\) −73.2953 44.1003i −2.49211 1.49946i
\(866\) 18.7482 + 4.12678i 0.637088 + 0.140234i
\(867\) 0 0
\(868\) 7.79443 3.60609i 0.264560 0.122399i
\(869\) −4.88981 + 17.6115i −0.165875 + 0.597429i
\(870\) 0 0
\(871\) 31.0509 + 3.37698i 1.05212 + 0.114425i
\(872\) −8.64955 16.3148i −0.292911 0.552488i
\(873\) 0 0
\(874\) 1.07143 + 3.85895i 0.0362417 + 0.130531i
\(875\) 13.0030 + 15.3083i 0.439582 + 0.517516i
\(876\) 0 0
\(877\) 13.0290 19.2163i 0.439958 0.648889i −0.541470 0.840720i \(-0.682132\pi\)
0.981428 + 0.191831i \(0.0614425\pi\)
\(878\) −19.1788 8.87307i −0.647254 0.299452i
\(879\) 0 0
\(880\) −0.726831 1.82421i −0.0245015 0.0614941i
\(881\) −14.5397 + 11.0528i −0.489856 + 0.372379i −0.820749 0.571290i \(-0.806443\pi\)
0.330893 + 0.943668i \(0.392650\pi\)
\(882\) 0 0
\(883\) −21.5958 + 7.27646i −0.726755 + 0.244872i −0.658272 0.752780i \(-0.728712\pi\)
−0.0684829 + 0.997652i \(0.521816\pi\)
\(884\) −23.7181 −0.797725
\(885\) 0 0
\(886\) 6.81159 0.228840
\(887\) −22.3149 + 7.51876i −0.749261 + 0.252455i −0.667922 0.744231i \(-0.732816\pi\)
−0.0813386 + 0.996687i \(0.525920\pi\)
\(888\) 0 0
\(889\) 6.96597 5.29539i 0.233631 0.177602i
\(890\) −5.87000 14.7326i −0.196763 0.493838i
\(891\) 0 0
\(892\) 20.0545 + 9.27822i 0.671475 + 0.310658i
\(893\) 5.87658 8.66730i 0.196652 0.290040i
\(894\) 0 0
\(895\) 11.9748 + 14.0978i 0.400274 + 0.471239i
\(896\) −1.83692 6.61598i −0.0613671 0.221024i
\(897\) 0 0
\(898\) −1.78877 3.37397i −0.0596920 0.112591i
\(899\) 67.2465 + 7.31349i 2.24280 + 0.243919i
\(900\) 0 0
\(901\) −1.13009 + 4.07021i −0.0376487 + 0.135598i
\(902\) −39.8227 + 18.4239i −1.32595 + 0.613450i
\(903\) 0 0
\(904\) 20.5063 + 4.51377i 0.682028 + 0.150126i
\(905\) −82.8406 49.8436i −2.75372 1.65686i
\(906\) 0 0
\(907\) 19.2342 + 28.3683i 0.638661 + 0.941954i 0.999955 + 0.00950243i \(0.00302476\pi\)
−0.361294 + 0.932452i \(0.617665\pi\)
\(908\) −2.27915 13.9022i −0.0756363 0.461361i
\(909\) 0 0
\(910\) 8.73973 8.27872i 0.289719 0.274437i
\(911\) −6.41888 6.08028i −0.212667 0.201449i 0.573950 0.818891i \(-0.305410\pi\)
−0.786617 + 0.617442i \(0.788169\pi\)
\(912\) 0 0
\(913\) 11.2898 2.48508i 0.373638 0.0822440i
\(914\) −22.5074 7.58363i −0.744479 0.250844i
\(915\) 0 0
\(916\) −20.1691 + 4.43955i −0.666405 + 0.146687i
\(917\) −0.0486870 0.897978i −0.00160778 0.0296538i
\(918\) 0 0
\(919\) 15.9256 15.0855i 0.525338 0.497626i −0.378442 0.925625i \(-0.623540\pi\)
0.903779 + 0.427999i \(0.140781\pi\)
\(920\) 1.83543 33.8525i 0.0605122 1.11608i
\(921\) 0 0
\(922\) −14.9506 22.0505i −0.492372 0.726195i
\(923\) 7.62594 0.829371i 0.251011 0.0272991i
\(924\) 0 0
\(925\) −44.8014 9.86154i −1.47306 0.324246i
\(926\) 1.05116 6.41182i 0.0345434 0.210706i
\(927\) 0 0
\(928\) 14.1211 50.8598i 0.463549 1.66955i
\(929\) 23.4765 + 17.8463i 0.770238 + 0.585520i 0.914767 0.403981i \(-0.132374\pi\)
−0.144530 + 0.989500i \(0.546167\pi\)
\(930\) 0 0
\(931\) 4.34555 + 8.19658i 0.142420 + 0.268632i
\(932\) −3.44268 + 8.64047i −0.112769 + 0.283028i
\(933\) 0 0
\(934\) −2.77185 3.26328i −0.0906978 0.106778i
\(935\) −44.4747 + 83.8882i −1.45448 + 2.74344i
\(936\) 0 0
\(937\) −25.9720 12.0159i −0.848469 0.392544i −0.0530418 0.998592i \(-0.516892\pi\)
−0.795428 + 0.606049i \(0.792754\pi\)
\(938\) 4.27195 5.02933i 0.139484 0.164213i
\(939\) 0 0
\(940\) −27.2597 + 20.7223i −0.889115 + 0.675887i
\(941\) 27.7117 16.6736i 0.903376 0.543543i 0.0135832 0.999908i \(-0.495676\pi\)
0.889793 + 0.456364i \(0.150849\pi\)
\(942\) 0 0
\(943\) 32.1078 1.04557
\(944\) 0.720545 0.314850i 0.0234517 0.0102475i
\(945\) 0 0
\(946\) 6.18952 2.08549i 0.201239 0.0678052i
\(947\) 52.1193 31.3591i 1.69365 1.01903i 0.768161 0.640257i \(-0.221172\pi\)
0.925488 0.378778i \(-0.123655\pi\)
\(948\) 0 0
\(949\) 14.8167 + 37.1872i 0.480972 + 1.20715i
\(950\) −8.83277 + 10.3987i −0.286573 + 0.337380i
\(951\) 0 0
\(952\) −7.27972 + 10.7368i −0.235937 + 0.347981i
\(953\) −3.64723 + 6.87940i −0.118145 + 0.222846i −0.935531 0.353246i \(-0.885078\pi\)
0.817385 + 0.576091i \(0.195423\pi\)
\(954\) 0 0
\(955\) 19.1040 + 68.8064i 0.618191 + 2.22652i
\(956\) 6.26719 15.7295i 0.202695 0.508727i
\(957\) 0 0
\(958\) 23.3005 + 2.53408i 0.752804 + 0.0818724i
\(959\) −4.23740 3.22118i −0.136833 0.104017i
\(960\) 0 0
\(961\) 20.2781 9.38166i 0.654133 0.302634i
\(962\) −2.32339 + 14.1721i −0.0749092 + 0.456926i
\(963\) 0 0
\(964\) −5.82486 3.50470i −0.187606 0.112879i
\(965\) −46.6516 + 5.07366i −1.50177 + 0.163327i
\(966\) 0 0
\(967\) 4.36544 + 26.6280i 0.140383 + 0.856300i 0.959300 + 0.282388i \(0.0911265\pi\)
−0.818917 + 0.573912i \(0.805425\pi\)
\(968\) −1.94241 + 35.8257i −0.0624315 + 1.15148i
\(969\) 0 0
\(970\) −18.5269 17.5496i −0.594863 0.563484i
\(971\) 2.11244 + 38.9616i 0.0677913 + 1.25034i 0.812505 + 0.582954i \(0.198103\pi\)
−0.744714 + 0.667384i \(0.767414\pi\)
\(972\) 0 0
\(973\) 2.12077 + 0.714572i 0.0679889 + 0.0229081i
\(974\) 19.1420 + 6.44969i 0.613349 + 0.206661i
\(975\) 0 0
\(976\) 0.0144890 + 0.267233i 0.000463781 + 0.00855393i
\(977\) 10.2053 + 9.66694i 0.326495 + 0.309273i 0.833336 0.552767i \(-0.186428\pi\)
−0.506841 + 0.862040i \(0.669187\pi\)
\(978\) 0 0
\(979\) 1.23681 22.8116i 0.0395285 0.729061i
\(980\) −4.90785 29.9366i −0.156776 0.956289i
\(981\) 0 0
\(982\) −1.26231 + 0.137284i −0.0402818 + 0.00438091i
\(983\) −12.6688 7.62255i −0.404071 0.243122i 0.298982 0.954259i \(-0.403353\pi\)
−0.703053 + 0.711137i \(0.748180\pi\)
\(984\) 0 0
\(985\) 0.276396 1.68594i 0.00880669 0.0537185i
\(986\) −35.8195 + 16.5719i −1.14072 + 0.527755i
\(987\) 0 0
\(988\) −5.77543 4.39037i −0.183741 0.139676i
\(989\) −4.75136 0.516741i −0.151084 0.0164314i
\(990\) 0 0
\(991\) 20.7725 52.1351i 0.659860 1.65612i −0.0911522 0.995837i \(-0.529055\pi\)
0.751013 0.660288i \(-0.229566\pi\)
\(992\) −11.1359 40.1080i −0.353566 1.27343i
\(993\) 0 0
\(994\) 0.759114 1.43184i 0.0240776 0.0454152i
\(995\) 4.73627 6.98547i 0.150150 0.221454i
\(996\) 0 0
\(997\) −21.7319 + 25.5848i −0.688256 + 0.810278i −0.989693 0.143209i \(-0.954258\pi\)
0.301436 + 0.953486i \(0.402534\pi\)
\(998\) 8.20916 + 20.6034i 0.259857 + 0.652191i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.i.b.307.3 140
3.2 odd 2 177.2.e.b.130.3 yes 140
59.5 even 29 inner 531.2.i.b.64.3 140
177.5 odd 58 177.2.e.b.64.3 140
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
177.2.e.b.64.3 140 177.5 odd 58
177.2.e.b.130.3 yes 140 3.2 odd 2
531.2.i.b.64.3 140 59.5 even 29 inner
531.2.i.b.307.3 140 1.1 even 1 trivial