Properties

Label 531.2
Level 531
Weight 2
Dimension 8004
Nonzero newspaces 8
Newform subspaces 20
Sturm bound 41760
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 20 \)
Sturm bound: \(41760\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(531))\).

Total New Old
Modular forms 10904 8516 2388
Cusp forms 9977 8004 1973
Eisenstein series 927 512 415

Trace form

\( 8004 q - 87 q^{2} - 116 q^{3} - 87 q^{4} - 87 q^{5} - 116 q^{6} - 87 q^{7} - 87 q^{8} - 116 q^{9} - 261 q^{10} - 87 q^{11} - 116 q^{12} - 87 q^{13} - 87 q^{14} - 116 q^{15} - 87 q^{16} - 87 q^{17} - 116 q^{18}+ \cdots - 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(531))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
531.2.a \(\chi_{531}(1, \cdot)\) 531.2.a.a 2 1
531.2.a.b 2
531.2.a.c 2
531.2.a.d 3
531.2.a.e 5
531.2.a.f 5
531.2.a.g 5
531.2.d \(\chi_{531}(530, \cdot)\) 531.2.d.a 20 1
531.2.e \(\chi_{531}(178, \cdot)\) 531.2.e.a 4 2
531.2.e.b 42
531.2.e.c 70
531.2.f \(\chi_{531}(176, \cdot)\) 531.2.f.a 12 2
531.2.f.b 104
531.2.i \(\chi_{531}(19, \cdot)\) 531.2.i.a 112 28
531.2.i.b 140
531.2.i.c 140
531.2.i.d 280
531.2.j \(\chi_{531}(8, \cdot)\) 531.2.j.a 560 28
531.2.m \(\chi_{531}(4, \cdot)\) 531.2.m.a 3248 56
531.2.p \(\chi_{531}(2, \cdot)\) 531.2.p.a 3248 56

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(531))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(531)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(59))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(177))\)\(^{\oplus 2}\)