Properties

Label 525.4.a.m
Level $525$
Weight $4$
Character orbit 525.a
Self dual yes
Analytic conductor $30.976$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,4,Mod(1,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3,-6,-3,0,-9,-14,-3,18,0,-31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} - 3 q^{3} + (3 \beta - 3) q^{4} + ( - 3 \beta - 3) q^{6} - 7 q^{7} + ( - 5 \beta + 1) q^{8} + 9 q^{9} + (5 \beta - 18) q^{11} + ( - 9 \beta + 9) q^{12} + (17 \beta + 11) q^{13} + ( - 7 \beta - 7) q^{14}+ \cdots + (45 \beta - 162) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 6 q^{3} - 3 q^{4} - 9 q^{6} - 14 q^{7} - 3 q^{8} + 18 q^{9} - 31 q^{11} + 9 q^{12} + 39 q^{13} - 21 q^{14} - 23 q^{16} - 79 q^{17} + 27 q^{18} - 56 q^{19} + 42 q^{21} - 4 q^{22} + 254 q^{23}+ \cdots - 279 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−0.561553 −3.00000 −7.68466 0 1.68466 −7.00000 8.80776 9.00000 0
1.2 3.56155 −3.00000 4.68466 0 −10.6847 −7.00000 −11.8078 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.a.m yes 2
3.b odd 2 1 1575.4.a.o 2
5.b even 2 1 525.4.a.j 2
5.c odd 4 2 525.4.d.m 4
15.d odd 2 1 1575.4.a.x 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.4.a.j 2 5.b even 2 1
525.4.a.m yes 2 1.a even 1 1 trivial
525.4.d.m 4 5.c odd 4 2
1575.4.a.o 2 3.b odd 2 1
1575.4.a.x 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(525))\):

\( T_{2}^{2} - 3T_{2} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} + 31T_{11} + 134 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 31T + 134 \) Copy content Toggle raw display
$13$ \( T^{2} - 39T - 848 \) Copy content Toggle raw display
$17$ \( T^{2} + 79T - 1538 \) Copy content Toggle raw display
$19$ \( T^{2} + 56T - 12544 \) Copy content Toggle raw display
$23$ \( T^{2} - 254T + 13681 \) Copy content Toggle raw display
$29$ \( T^{2} + 62T - 29027 \) Copy content Toggle raw display
$31$ \( T^{2} + 135T + 3838 \) Copy content Toggle raw display
$37$ \( T^{2} - 113T + 1658 \) Copy content Toggle raw display
$41$ \( T^{2} - 235T + 5200 \) Copy content Toggle raw display
$43$ \( T^{2} - 804T + 147307 \) Copy content Toggle raw display
$47$ \( T^{2} - 152T - 27136 \) Copy content Toggle raw display
$53$ \( T^{2} - 149T - 28114 \) Copy content Toggle raw display
$59$ \( T^{2} + 441T - 137024 \) Copy content Toggle raw display
$61$ \( T^{2} + 223T - 304316 \) Copy content Toggle raw display
$67$ \( T^{2} - 1157 T + 270364 \) Copy content Toggle raw display
$71$ \( T^{2} - 619T - 138916 \) Copy content Toggle raw display
$73$ \( T^{2} - 268T - 14956 \) Copy content Toggle raw display
$79$ \( T^{2} + 427T + 494 \) Copy content Toggle raw display
$83$ \( T^{2} - 1211 T - 422854 \) Copy content Toggle raw display
$89$ \( T^{2} - 466 T - 1103768 \) Copy content Toggle raw display
$97$ \( T^{2} - 172 T - 2098972 \) Copy content Toggle raw display
show more
show less