Properties

Label 5200.2.a.cb.1.3
Level $5200$
Weight $2$
Character 5200.1
Self dual yes
Analytic conductor $41.522$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5200,2,Mod(1,5200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-4,0,0,0,-2,0,3,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 5200.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.481194 q^{3} -0.806063 q^{7} -2.76845 q^{9} +3.67513 q^{11} -1.00000 q^{13} -1.35026 q^{17} +1.67513 q^{19} -0.387873 q^{21} -6.48119 q^{23} -2.77575 q^{27} +2.41819 q^{29} +5.28726 q^{31} +1.76845 q^{33} +3.76845 q^{37} -0.481194 q^{39} -8.31265 q^{41} +6.79384 q^{43} -3.19394 q^{47} -6.35026 q^{49} -0.649738 q^{51} +5.73813 q^{53} +0.806063 q^{57} -5.98778 q^{59} -1.76845 q^{61} +2.23155 q^{63} -9.89446 q^{67} -3.11871 q^{69} -8.56230 q^{71} -11.7685 q^{73} -2.96239 q^{77} +2.26187 q^{79} +6.96968 q^{81} -3.84367 q^{83} +1.16362 q^{87} +2.77575 q^{89} +0.806063 q^{91} +2.54420 q^{93} -1.87399 q^{97} -10.1744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{3} - 2 q^{7} + 3 q^{9} + 6 q^{11} - 3 q^{13} + 6 q^{17} - 2 q^{21} - 14 q^{23} - 10 q^{27} + 6 q^{29} + 10 q^{31} - 6 q^{33} + 4 q^{39} - 4 q^{41} - 6 q^{43} - 10 q^{47} - 9 q^{49} - 12 q^{51}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.481194 0.277818 0.138909 0.990305i \(-0.455641\pi\)
0.138909 + 0.990305i \(0.455641\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.806063 −0.304663 −0.152332 0.988329i \(-0.548678\pi\)
−0.152332 + 0.988329i \(0.548678\pi\)
\(8\) 0 0
\(9\) −2.76845 −0.922817
\(10\) 0 0
\(11\) 3.67513 1.10809 0.554047 0.832486i \(-0.313083\pi\)
0.554047 + 0.832486i \(0.313083\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.35026 −0.327487 −0.163743 0.986503i \(-0.552357\pi\)
−0.163743 + 0.986503i \(0.552357\pi\)
\(18\) 0 0
\(19\) 1.67513 0.384301 0.192151 0.981365i \(-0.438454\pi\)
0.192151 + 0.981365i \(0.438454\pi\)
\(20\) 0 0
\(21\) −0.387873 −0.0846409
\(22\) 0 0
\(23\) −6.48119 −1.35142 −0.675711 0.737166i \(-0.736163\pi\)
−0.675711 + 0.737166i \(0.736163\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −2.77575 −0.534193
\(28\) 0 0
\(29\) 2.41819 0.449047 0.224523 0.974469i \(-0.427917\pi\)
0.224523 + 0.974469i \(0.427917\pi\)
\(30\) 0 0
\(31\) 5.28726 0.949620 0.474810 0.880088i \(-0.342517\pi\)
0.474810 + 0.880088i \(0.342517\pi\)
\(32\) 0 0
\(33\) 1.76845 0.307848
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.76845 0.619530 0.309765 0.950813i \(-0.399750\pi\)
0.309765 + 0.950813i \(0.399750\pi\)
\(38\) 0 0
\(39\) −0.481194 −0.0770528
\(40\) 0 0
\(41\) −8.31265 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(42\) 0 0
\(43\) 6.79384 1.03605 0.518026 0.855365i \(-0.326667\pi\)
0.518026 + 0.855365i \(0.326667\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.19394 −0.465884 −0.232942 0.972491i \(-0.574835\pi\)
−0.232942 + 0.972491i \(0.574835\pi\)
\(48\) 0 0
\(49\) −6.35026 −0.907180
\(50\) 0 0
\(51\) −0.649738 −0.0909816
\(52\) 0 0
\(53\) 5.73813 0.788193 0.394097 0.919069i \(-0.371057\pi\)
0.394097 + 0.919069i \(0.371057\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.806063 0.106766
\(58\) 0 0
\(59\) −5.98778 −0.779543 −0.389771 0.920912i \(-0.627446\pi\)
−0.389771 + 0.920912i \(0.627446\pi\)
\(60\) 0 0
\(61\) −1.76845 −0.226427 −0.113214 0.993571i \(-0.536114\pi\)
−0.113214 + 0.993571i \(0.536114\pi\)
\(62\) 0 0
\(63\) 2.23155 0.281149
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.89446 −1.20880 −0.604400 0.796681i \(-0.706587\pi\)
−0.604400 + 0.796681i \(0.706587\pi\)
\(68\) 0 0
\(69\) −3.11871 −0.375449
\(70\) 0 0
\(71\) −8.56230 −1.01616 −0.508079 0.861311i \(-0.669644\pi\)
−0.508079 + 0.861311i \(0.669644\pi\)
\(72\) 0 0
\(73\) −11.7685 −1.37739 −0.688697 0.725050i \(-0.741817\pi\)
−0.688697 + 0.725050i \(0.741817\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.96239 −0.337596
\(78\) 0 0
\(79\) 2.26187 0.254480 0.127240 0.991872i \(-0.459388\pi\)
0.127240 + 0.991872i \(0.459388\pi\)
\(80\) 0 0
\(81\) 6.96968 0.774409
\(82\) 0 0
\(83\) −3.84367 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.16362 0.124753
\(88\) 0 0
\(89\) 2.77575 0.294229 0.147114 0.989120i \(-0.453001\pi\)
0.147114 + 0.989120i \(0.453001\pi\)
\(90\) 0 0
\(91\) 0.806063 0.0844984
\(92\) 0 0
\(93\) 2.54420 0.263821
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.87399 −0.190275 −0.0951375 0.995464i \(-0.530329\pi\)
−0.0951375 + 0.995464i \(0.530329\pi\)
\(98\) 0 0
\(99\) −10.1744 −1.02257
\(100\) 0 0
\(101\) 10.4993 1.04472 0.522359 0.852725i \(-0.325052\pi\)
0.522359 + 0.852725i \(0.325052\pi\)
\(102\) 0 0
\(103\) −15.3684 −1.51429 −0.757145 0.653247i \(-0.773406\pi\)
−0.757145 + 0.653247i \(0.773406\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.1309 −1.07607 −0.538034 0.842923i \(-0.680833\pi\)
−0.538034 + 0.842923i \(0.680833\pi\)
\(108\) 0 0
\(109\) 9.58769 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(110\) 0 0
\(111\) 1.81336 0.172116
\(112\) 0 0
\(113\) 0.574515 0.0540459 0.0270229 0.999635i \(-0.491397\pi\)
0.0270229 + 0.999635i \(0.491397\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.76845 0.255943
\(118\) 0 0
\(119\) 1.08840 0.0997732
\(120\) 0 0
\(121\) 2.50659 0.227872
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.29455 0.381080 0.190540 0.981679i \(-0.438976\pi\)
0.190540 + 0.981679i \(0.438976\pi\)
\(128\) 0 0
\(129\) 3.26916 0.287833
\(130\) 0 0
\(131\) 0.836381 0.0730749 0.0365375 0.999332i \(-0.488367\pi\)
0.0365375 + 0.999332i \(0.488367\pi\)
\(132\) 0 0
\(133\) −1.35026 −0.117083
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.9380 −1.27624 −0.638118 0.769939i \(-0.720287\pi\)
−0.638118 + 0.769939i \(0.720287\pi\)
\(138\) 0 0
\(139\) 8.43866 0.715758 0.357879 0.933768i \(-0.383500\pi\)
0.357879 + 0.933768i \(0.383500\pi\)
\(140\) 0 0
\(141\) −1.53690 −0.129431
\(142\) 0 0
\(143\) −3.67513 −0.307330
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.05571 −0.252031
\(148\) 0 0
\(149\) −11.3503 −0.929850 −0.464925 0.885350i \(-0.653919\pi\)
−0.464925 + 0.885350i \(0.653919\pi\)
\(150\) 0 0
\(151\) −13.9878 −1.13831 −0.569155 0.822230i \(-0.692729\pi\)
−0.569155 + 0.822230i \(0.692729\pi\)
\(152\) 0 0
\(153\) 3.73813 0.302210
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.77575 0.221529 0.110764 0.993847i \(-0.464670\pi\)
0.110764 + 0.993847i \(0.464670\pi\)
\(158\) 0 0
\(159\) 2.76116 0.218974
\(160\) 0 0
\(161\) 5.22425 0.411729
\(162\) 0 0
\(163\) −2.23155 −0.174788 −0.0873942 0.996174i \(-0.527854\pi\)
−0.0873942 + 0.996174i \(0.527854\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.6932 1.21438 0.607189 0.794557i \(-0.292297\pi\)
0.607189 + 0.794557i \(0.292297\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −4.63752 −0.354640
\(172\) 0 0
\(173\) −25.5877 −1.94540 −0.972698 0.232075i \(-0.925449\pi\)
−0.972698 + 0.232075i \(0.925449\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.88129 −0.216571
\(178\) 0 0
\(179\) −12.1260 −0.906340 −0.453170 0.891424i \(-0.649707\pi\)
−0.453170 + 0.891424i \(0.649707\pi\)
\(180\) 0 0
\(181\) −2.73084 −0.202982 −0.101491 0.994836i \(-0.532361\pi\)
−0.101491 + 0.994836i \(0.532361\pi\)
\(182\) 0 0
\(183\) −0.850969 −0.0629054
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.96239 −0.362886
\(188\) 0 0
\(189\) 2.23743 0.162749
\(190\) 0 0
\(191\) −20.6253 −1.49239 −0.746197 0.665725i \(-0.768122\pi\)
−0.746197 + 0.665725i \(0.768122\pi\)
\(192\) 0 0
\(193\) −21.7889 −1.56840 −0.784200 0.620508i \(-0.786927\pi\)
−0.784200 + 0.620508i \(0.786927\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 16.7513 1.18747 0.593734 0.804661i \(-0.297653\pi\)
0.593734 + 0.804661i \(0.297653\pi\)
\(200\) 0 0
\(201\) −4.76116 −0.335826
\(202\) 0 0
\(203\) −1.94921 −0.136808
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 17.9429 1.24712
\(208\) 0 0
\(209\) 6.15633 0.425842
\(210\) 0 0
\(211\) 4.90175 0.337451 0.168725 0.985663i \(-0.446035\pi\)
0.168725 + 0.985663i \(0.446035\pi\)
\(212\) 0 0
\(213\) −4.12013 −0.282307
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −4.26187 −0.289314
\(218\) 0 0
\(219\) −5.66291 −0.382664
\(220\) 0 0
\(221\) 1.35026 0.0908284
\(222\) 0 0
\(223\) −24.9076 −1.66794 −0.833969 0.551811i \(-0.813937\pi\)
−0.833969 + 0.551811i \(0.813937\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.95509 −0.660743 −0.330371 0.943851i \(-0.607174\pi\)
−0.330371 + 0.943851i \(0.607174\pi\)
\(228\) 0 0
\(229\) 5.35026 0.353555 0.176778 0.984251i \(-0.443433\pi\)
0.176778 + 0.984251i \(0.443433\pi\)
\(230\) 0 0
\(231\) −1.42548 −0.0937900
\(232\) 0 0
\(233\) −10.7612 −0.704987 −0.352493 0.935814i \(-0.614666\pi\)
−0.352493 + 0.935814i \(0.614666\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.08840 0.0706990
\(238\) 0 0
\(239\) 11.8618 0.767274 0.383637 0.923484i \(-0.374671\pi\)
0.383637 + 0.923484i \(0.374671\pi\)
\(240\) 0 0
\(241\) −28.6253 −1.84392 −0.921959 0.387288i \(-0.873412\pi\)
−0.921959 + 0.387288i \(0.873412\pi\)
\(242\) 0 0
\(243\) 11.6810 0.749337
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.67513 −0.106586
\(248\) 0 0
\(249\) −1.84955 −0.117211
\(250\) 0 0
\(251\) 19.3865 1.22366 0.611831 0.790988i \(-0.290433\pi\)
0.611831 + 0.790988i \(0.290433\pi\)
\(252\) 0 0
\(253\) −23.8192 −1.49750
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.8627 1.42614 0.713069 0.701094i \(-0.247305\pi\)
0.713069 + 0.701094i \(0.247305\pi\)
\(258\) 0 0
\(259\) −3.03761 −0.188748
\(260\) 0 0
\(261\) −6.69464 −0.414388
\(262\) 0 0
\(263\) −21.8822 −1.34932 −0.674658 0.738130i \(-0.735709\pi\)
−0.674658 + 0.738130i \(0.735709\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.33567 0.0817419
\(268\) 0 0
\(269\) 22.7513 1.38717 0.693586 0.720374i \(-0.256030\pi\)
0.693586 + 0.720374i \(0.256030\pi\)
\(270\) 0 0
\(271\) −0.123638 −0.00751049 −0.00375525 0.999993i \(-0.501195\pi\)
−0.00375525 + 0.999993i \(0.501195\pi\)
\(272\) 0 0
\(273\) 0.387873 0.0234751
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.3503 −0.922308 −0.461154 0.887320i \(-0.652564\pi\)
−0.461154 + 0.887320i \(0.652564\pi\)
\(278\) 0 0
\(279\) −14.6375 −0.876325
\(280\) 0 0
\(281\) 13.9248 0.830683 0.415341 0.909666i \(-0.363662\pi\)
0.415341 + 0.909666i \(0.363662\pi\)
\(282\) 0 0
\(283\) −20.3815 −1.21156 −0.605778 0.795634i \(-0.707138\pi\)
−0.605778 + 0.795634i \(0.707138\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.70052 0.395519
\(288\) 0 0
\(289\) −15.1768 −0.892753
\(290\) 0 0
\(291\) −0.901754 −0.0528618
\(292\) 0 0
\(293\) 5.38058 0.314337 0.157168 0.987572i \(-0.449763\pi\)
0.157168 + 0.987572i \(0.449763\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −10.2012 −0.591935
\(298\) 0 0
\(299\) 6.48119 0.374817
\(300\) 0 0
\(301\) −5.47627 −0.315647
\(302\) 0 0
\(303\) 5.05220 0.290241
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.1695 1.09406 0.547031 0.837113i \(-0.315758\pi\)
0.547031 + 0.837113i \(0.315758\pi\)
\(308\) 0 0
\(309\) −7.39517 −0.420696
\(310\) 0 0
\(311\) 25.2506 1.43183 0.715915 0.698187i \(-0.246010\pi\)
0.715915 + 0.698187i \(0.246010\pi\)
\(312\) 0 0
\(313\) 2.81194 0.158940 0.0794702 0.996837i \(-0.474677\pi\)
0.0794702 + 0.996837i \(0.474677\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.7685 −1.33497 −0.667485 0.744624i \(-0.732629\pi\)
−0.667485 + 0.744624i \(0.732629\pi\)
\(318\) 0 0
\(319\) 8.88717 0.497586
\(320\) 0 0
\(321\) −5.35614 −0.298951
\(322\) 0 0
\(323\) −2.26187 −0.125854
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.61354 0.255129
\(328\) 0 0
\(329\) 2.57452 0.141938
\(330\) 0 0
\(331\) 11.8011 0.648649 0.324325 0.945946i \(-0.394863\pi\)
0.324325 + 0.945946i \(0.394863\pi\)
\(332\) 0 0
\(333\) −10.4328 −0.571713
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.1114 0.877645 0.438822 0.898574i \(-0.355396\pi\)
0.438822 + 0.898574i \(0.355396\pi\)
\(338\) 0 0
\(339\) 0.276454 0.0150149
\(340\) 0 0
\(341\) 19.4314 1.05227
\(342\) 0 0
\(343\) 10.7612 0.581048
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −27.4944 −1.47598 −0.737988 0.674814i \(-0.764224\pi\)
−0.737988 + 0.674814i \(0.764224\pi\)
\(348\) 0 0
\(349\) −17.6023 −0.942228 −0.471114 0.882072i \(-0.656148\pi\)
−0.471114 + 0.882072i \(0.656148\pi\)
\(350\) 0 0
\(351\) 2.77575 0.148158
\(352\) 0 0
\(353\) 15.7685 0.839270 0.419635 0.907693i \(-0.362158\pi\)
0.419635 + 0.907693i \(0.362158\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.523730 0.0277187
\(358\) 0 0
\(359\) 14.8242 0.782389 0.391195 0.920308i \(-0.372062\pi\)
0.391195 + 0.920308i \(0.372062\pi\)
\(360\) 0 0
\(361\) −16.1939 −0.852312
\(362\) 0 0
\(363\) 1.20616 0.0633067
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.0313 1.41102 0.705510 0.708700i \(-0.250718\pi\)
0.705510 + 0.708700i \(0.250718\pi\)
\(368\) 0 0
\(369\) 23.0132 1.19802
\(370\) 0 0
\(371\) −4.62530 −0.240134
\(372\) 0 0
\(373\) 12.9525 0.670657 0.335329 0.942101i \(-0.391153\pi\)
0.335329 + 0.942101i \(0.391153\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.41819 −0.124543
\(378\) 0 0
\(379\) 30.2858 1.55568 0.777840 0.628463i \(-0.216316\pi\)
0.777840 + 0.628463i \(0.216316\pi\)
\(380\) 0 0
\(381\) 2.06651 0.105871
\(382\) 0 0
\(383\) 21.0943 1.07787 0.538934 0.842348i \(-0.318827\pi\)
0.538934 + 0.842348i \(0.318827\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −18.8084 −0.956086
\(388\) 0 0
\(389\) −6.77575 −0.343544 −0.171772 0.985137i \(-0.554949\pi\)
−0.171772 + 0.985137i \(0.554949\pi\)
\(390\) 0 0
\(391\) 8.75131 0.442573
\(392\) 0 0
\(393\) 0.402462 0.0203015
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10.4690 0.525423 0.262711 0.964874i \(-0.415383\pi\)
0.262711 + 0.964874i \(0.415383\pi\)
\(398\) 0 0
\(399\) −0.649738 −0.0325276
\(400\) 0 0
\(401\) 5.01317 0.250346 0.125173 0.992135i \(-0.460051\pi\)
0.125173 + 0.992135i \(0.460051\pi\)
\(402\) 0 0
\(403\) −5.28726 −0.263377
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.8496 0.686497
\(408\) 0 0
\(409\) −14.3879 −0.711435 −0.355717 0.934594i \(-0.615763\pi\)
−0.355717 + 0.934594i \(0.615763\pi\)
\(410\) 0 0
\(411\) −7.18806 −0.354561
\(412\) 0 0
\(413\) 4.82653 0.237498
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.06063 0.198850
\(418\) 0 0
\(419\) −17.4617 −0.853059 −0.426529 0.904474i \(-0.640264\pi\)
−0.426529 + 0.904474i \(0.640264\pi\)
\(420\) 0 0
\(421\) 2.88717 0.140712 0.0703559 0.997522i \(-0.477586\pi\)
0.0703559 + 0.997522i \(0.477586\pi\)
\(422\) 0 0
\(423\) 8.84226 0.429925
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.42548 0.0689840
\(428\) 0 0
\(429\) −1.76845 −0.0853817
\(430\) 0 0
\(431\) −0.889535 −0.0428474 −0.0214237 0.999770i \(-0.506820\pi\)
−0.0214237 + 0.999770i \(0.506820\pi\)
\(432\) 0 0
\(433\) −25.2506 −1.21347 −0.606733 0.794906i \(-0.707520\pi\)
−0.606733 + 0.794906i \(0.707520\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.8568 −0.519354
\(438\) 0 0
\(439\) −28.8119 −1.37512 −0.687560 0.726128i \(-0.741318\pi\)
−0.687560 + 0.726128i \(0.741318\pi\)
\(440\) 0 0
\(441\) 17.5804 0.837162
\(442\) 0 0
\(443\) −36.9805 −1.75700 −0.878498 0.477746i \(-0.841454\pi\)
−0.878498 + 0.477746i \(0.841454\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5.46168 −0.258329
\(448\) 0 0
\(449\) −12.6859 −0.598686 −0.299343 0.954146i \(-0.596768\pi\)
−0.299343 + 0.954146i \(0.596768\pi\)
\(450\) 0 0
\(451\) −30.5501 −1.43855
\(452\) 0 0
\(453\) −6.73084 −0.316242
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.0494 −1.17176 −0.585880 0.810398i \(-0.699251\pi\)
−0.585880 + 0.810398i \(0.699251\pi\)
\(458\) 0 0
\(459\) 3.74798 0.174941
\(460\) 0 0
\(461\) −36.8872 −1.71801 −0.859003 0.511970i \(-0.828916\pi\)
−0.859003 + 0.511970i \(0.828916\pi\)
\(462\) 0 0
\(463\) 39.0191 1.81337 0.906685 0.421809i \(-0.138605\pi\)
0.906685 + 0.421809i \(0.138605\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.7694 −1.51639 −0.758194 0.652029i \(-0.773918\pi\)
−0.758194 + 0.652029i \(0.773918\pi\)
\(468\) 0 0
\(469\) 7.97556 0.368277
\(470\) 0 0
\(471\) 1.33567 0.0615446
\(472\) 0 0
\(473\) 24.9683 1.14804
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.8858 −0.727359
\(478\) 0 0
\(479\) −16.8749 −0.771036 −0.385518 0.922700i \(-0.625977\pi\)
−0.385518 + 0.922700i \(0.625977\pi\)
\(480\) 0 0
\(481\) −3.76845 −0.171827
\(482\) 0 0
\(483\) 2.51388 0.114386
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.24472 0.418918 0.209459 0.977817i \(-0.432830\pi\)
0.209459 + 0.977817i \(0.432830\pi\)
\(488\) 0 0
\(489\) −1.07381 −0.0485593
\(490\) 0 0
\(491\) 25.7499 1.16208 0.581038 0.813876i \(-0.302647\pi\)
0.581038 + 0.813876i \(0.302647\pi\)
\(492\) 0 0
\(493\) −3.26519 −0.147057
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.90175 0.309586
\(498\) 0 0
\(499\) 27.7015 1.24009 0.620044 0.784567i \(-0.287115\pi\)
0.620044 + 0.784567i \(0.287115\pi\)
\(500\) 0 0
\(501\) 7.55149 0.337376
\(502\) 0 0
\(503\) −2.35519 −0.105013 −0.0525063 0.998621i \(-0.516721\pi\)
−0.0525063 + 0.998621i \(0.516721\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.481194 0.0213706
\(508\) 0 0
\(509\) 21.5125 0.953523 0.476762 0.879033i \(-0.341810\pi\)
0.476762 + 0.879033i \(0.341810\pi\)
\(510\) 0 0
\(511\) 9.48612 0.419641
\(512\) 0 0
\(513\) −4.64974 −0.205291
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −11.7381 −0.516243
\(518\) 0 0
\(519\) −12.3127 −0.540465
\(520\) 0 0
\(521\) 37.7440 1.65360 0.826798 0.562499i \(-0.190160\pi\)
0.826798 + 0.562499i \(0.190160\pi\)
\(522\) 0 0
\(523\) −23.7416 −1.03815 −0.519075 0.854729i \(-0.673723\pi\)
−0.519075 + 0.854729i \(0.673723\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.13918 −0.310988
\(528\) 0 0
\(529\) 19.0059 0.826343
\(530\) 0 0
\(531\) 16.5769 0.719376
\(532\) 0 0
\(533\) 8.31265 0.360061
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5.83497 −0.251797
\(538\) 0 0
\(539\) −23.3380 −1.00524
\(540\) 0 0
\(541\) 13.0376 0.560531 0.280265 0.959923i \(-0.409578\pi\)
0.280265 + 0.959923i \(0.409578\pi\)
\(542\) 0 0
\(543\) −1.31406 −0.0563919
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −8.43041 −0.360458 −0.180229 0.983625i \(-0.557684\pi\)
−0.180229 + 0.983625i \(0.557684\pi\)
\(548\) 0 0
\(549\) 4.89587 0.208951
\(550\) 0 0
\(551\) 4.05079 0.172569
\(552\) 0 0
\(553\) −1.82321 −0.0775306
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.6932 0.580201 0.290100 0.956996i \(-0.406311\pi\)
0.290100 + 0.956996i \(0.406311\pi\)
\(558\) 0 0
\(559\) −6.79384 −0.287349
\(560\) 0 0
\(561\) −2.38787 −0.100816
\(562\) 0 0
\(563\) 8.86907 0.373787 0.186893 0.982380i \(-0.440158\pi\)
0.186893 + 0.982380i \(0.440158\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.61801 −0.235934
\(568\) 0 0
\(569\) −32.7816 −1.37428 −0.687139 0.726526i \(-0.741134\pi\)
−0.687139 + 0.726526i \(0.741134\pi\)
\(570\) 0 0
\(571\) −40.2882 −1.68601 −0.843005 0.537906i \(-0.819215\pi\)
−0.843005 + 0.537906i \(0.819215\pi\)
\(572\) 0 0
\(573\) −9.92478 −0.414614
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 28.8568 1.20133 0.600663 0.799502i \(-0.294903\pi\)
0.600663 + 0.799502i \(0.294903\pi\)
\(578\) 0 0
\(579\) −10.4847 −0.435729
\(580\) 0 0
\(581\) 3.09825 0.128537
\(582\) 0 0
\(583\) 21.0884 0.873392
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −41.6786 −1.72026 −0.860131 0.510074i \(-0.829618\pi\)
−0.860131 + 0.510074i \(0.829618\pi\)
\(588\) 0 0
\(589\) 8.85685 0.364940
\(590\) 0 0
\(591\) 0.962389 0.0395874
\(592\) 0 0
\(593\) 22.4993 0.923935 0.461968 0.886897i \(-0.347144\pi\)
0.461968 + 0.886897i \(0.347144\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.06063 0.329900
\(598\) 0 0
\(599\) −4.15045 −0.169583 −0.0847913 0.996399i \(-0.527022\pi\)
−0.0847913 + 0.996399i \(0.527022\pi\)
\(600\) 0 0
\(601\) 27.9248 1.13908 0.569538 0.821965i \(-0.307122\pi\)
0.569538 + 0.821965i \(0.307122\pi\)
\(602\) 0 0
\(603\) 27.3923 1.11550
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8.19489 −0.332620 −0.166310 0.986073i \(-0.553185\pi\)
−0.166310 + 0.986073i \(0.553185\pi\)
\(608\) 0 0
\(609\) −0.937951 −0.0380077
\(610\) 0 0
\(611\) 3.19394 0.129213
\(612\) 0 0
\(613\) 33.1392 1.33848 0.669239 0.743047i \(-0.266620\pi\)
0.669239 + 0.743047i \(0.266620\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29.0132 −1.16803 −0.584013 0.811744i \(-0.698518\pi\)
−0.584013 + 0.811744i \(0.698518\pi\)
\(618\) 0 0
\(619\) −12.2134 −0.490900 −0.245450 0.969409i \(-0.578936\pi\)
−0.245450 + 0.969409i \(0.578936\pi\)
\(620\) 0 0
\(621\) 17.9902 0.721920
\(622\) 0 0
\(623\) −2.23743 −0.0896406
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.96239 0.118306
\(628\) 0 0
\(629\) −5.08840 −0.202888
\(630\) 0 0
\(631\) 1.22188 0.0486424 0.0243212 0.999704i \(-0.492258\pi\)
0.0243212 + 0.999704i \(0.492258\pi\)
\(632\) 0 0
\(633\) 2.35870 0.0937498
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.35026 0.251607
\(638\) 0 0
\(639\) 23.7043 0.937728
\(640\) 0 0
\(641\) −22.1016 −0.872960 −0.436480 0.899714i \(-0.643775\pi\)
−0.436480 + 0.899714i \(0.643775\pi\)
\(642\) 0 0
\(643\) −11.6688 −0.460172 −0.230086 0.973170i \(-0.573901\pi\)
−0.230086 + 0.973170i \(0.573901\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.9575 −0.470096 −0.235048 0.971984i \(-0.575525\pi\)
−0.235048 + 0.971984i \(0.575525\pi\)
\(648\) 0 0
\(649\) −22.0059 −0.863806
\(650\) 0 0
\(651\) −2.05079 −0.0803766
\(652\) 0 0
\(653\) −10.9986 −0.430408 −0.215204 0.976569i \(-0.569042\pi\)
−0.215204 + 0.976569i \(0.569042\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32.5804 1.27108
\(658\) 0 0
\(659\) 2.63989 0.102835 0.0514177 0.998677i \(-0.483626\pi\)
0.0514177 + 0.998677i \(0.483626\pi\)
\(660\) 0 0
\(661\) 18.3028 0.711896 0.355948 0.934506i \(-0.384158\pi\)
0.355948 + 0.934506i \(0.384158\pi\)
\(662\) 0 0
\(663\) 0.649738 0.0252337
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15.6728 −0.606852
\(668\) 0 0
\(669\) −11.9854 −0.463383
\(670\) 0 0
\(671\) −6.49929 −0.250902
\(672\) 0 0
\(673\) 6.71037 0.258666 0.129333 0.991601i \(-0.458716\pi\)
0.129333 + 0.991601i \(0.458716\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.57593 −0.0605679 −0.0302840 0.999541i \(-0.509641\pi\)
−0.0302840 + 0.999541i \(0.509641\pi\)
\(678\) 0 0
\(679\) 1.51056 0.0579698
\(680\) 0 0
\(681\) −4.79033 −0.183566
\(682\) 0 0
\(683\) −15.1939 −0.581380 −0.290690 0.956817i \(-0.593885\pi\)
−0.290690 + 0.956817i \(0.593885\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.57452 0.0982239
\(688\) 0 0
\(689\) −5.73813 −0.218606
\(690\) 0 0
\(691\) 18.7127 0.711866 0.355933 0.934511i \(-0.384163\pi\)
0.355933 + 0.934511i \(0.384163\pi\)
\(692\) 0 0
\(693\) 8.20123 0.311539
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.2243 0.425149
\(698\) 0 0
\(699\) −5.17821 −0.195858
\(700\) 0 0
\(701\) 24.3028 0.917904 0.458952 0.888461i \(-0.348225\pi\)
0.458952 + 0.888461i \(0.348225\pi\)
\(702\) 0 0
\(703\) 6.31265 0.238086
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.46310 −0.318287
\(708\) 0 0
\(709\) −9.66291 −0.362898 −0.181449 0.983400i \(-0.558079\pi\)
−0.181449 + 0.983400i \(0.558079\pi\)
\(710\) 0 0
\(711\) −6.26187 −0.234838
\(712\) 0 0
\(713\) −34.2677 −1.28334
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.70782 0.213162
\(718\) 0 0
\(719\) −28.4142 −1.05967 −0.529836 0.848100i \(-0.677746\pi\)
−0.529836 + 0.848100i \(0.677746\pi\)
\(720\) 0 0
\(721\) 12.3879 0.461349
\(722\) 0 0
\(723\) −13.7743 −0.512273
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 34.8545 1.29268 0.646341 0.763049i \(-0.276299\pi\)
0.646341 + 0.763049i \(0.276299\pi\)
\(728\) 0 0
\(729\) −15.2882 −0.566230
\(730\) 0 0
\(731\) −9.17347 −0.339293
\(732\) 0 0
\(733\) 6.25202 0.230923 0.115462 0.993312i \(-0.463165\pi\)
0.115462 + 0.993312i \(0.463165\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.3634 −1.33946
\(738\) 0 0
\(739\) 32.0846 1.18025 0.590126 0.807311i \(-0.299078\pi\)
0.590126 + 0.807311i \(0.299078\pi\)
\(740\) 0 0
\(741\) −0.806063 −0.0296115
\(742\) 0 0
\(743\) 30.5442 1.12056 0.560279 0.828304i \(-0.310694\pi\)
0.560279 + 0.828304i \(0.310694\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 10.6410 0.389335
\(748\) 0 0
\(749\) 8.97224 0.327838
\(750\) 0 0
\(751\) −28.1622 −1.02765 −0.513827 0.857894i \(-0.671773\pi\)
−0.513827 + 0.857894i \(0.671773\pi\)
\(752\) 0 0
\(753\) 9.32865 0.339955
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 35.4109 1.28703 0.643515 0.765433i \(-0.277475\pi\)
0.643515 + 0.765433i \(0.277475\pi\)
\(758\) 0 0
\(759\) −11.4617 −0.416033
\(760\) 0 0
\(761\) −19.2388 −0.697407 −0.348704 0.937233i \(-0.613378\pi\)
−0.348704 + 0.937233i \(0.613378\pi\)
\(762\) 0 0
\(763\) −7.72829 −0.279783
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.98778 0.216206
\(768\) 0 0
\(769\) 48.9643 1.76570 0.882849 0.469657i \(-0.155622\pi\)
0.882849 + 0.469657i \(0.155622\pi\)
\(770\) 0 0
\(771\) 11.0014 0.396206
\(772\) 0 0
\(773\) 46.1681 1.66055 0.830275 0.557354i \(-0.188183\pi\)
0.830275 + 0.557354i \(0.188183\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.46168 −0.0524375
\(778\) 0 0
\(779\) −13.9248 −0.498907
\(780\) 0 0
\(781\) −31.4676 −1.12600
\(782\) 0 0
\(783\) −6.71228 −0.239877
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 22.6458 0.807234 0.403617 0.914928i \(-0.367753\pi\)
0.403617 + 0.914928i \(0.367753\pi\)
\(788\) 0 0
\(789\) −10.5296 −0.374864
\(790\) 0 0
\(791\) −0.463096 −0.0164658
\(792\) 0 0
\(793\) 1.76845 0.0627996
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.23743 0.291785 0.145892 0.989300i \(-0.453395\pi\)
0.145892 + 0.989300i \(0.453395\pi\)
\(798\) 0 0
\(799\) 4.31265 0.152571
\(800\) 0 0
\(801\) −7.68452 −0.271519
\(802\) 0 0
\(803\) −43.2506 −1.52628
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.9478 0.385381
\(808\) 0 0
\(809\) 44.1319 1.55159 0.775797 0.630982i \(-0.217348\pi\)
0.775797 + 0.630982i \(0.217348\pi\)
\(810\) 0 0
\(811\) −22.6883 −0.796694 −0.398347 0.917235i \(-0.630416\pi\)
−0.398347 + 0.917235i \(0.630416\pi\)
\(812\) 0 0
\(813\) −0.0594941 −0.00208655
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 11.3806 0.398156
\(818\) 0 0
\(819\) −2.23155 −0.0779766
\(820\) 0 0
\(821\) −50.2736 −1.75456 −0.877281 0.479978i \(-0.840645\pi\)
−0.877281 + 0.479978i \(0.840645\pi\)
\(822\) 0 0
\(823\) −5.13093 −0.178853 −0.0894265 0.995993i \(-0.528503\pi\)
−0.0894265 + 0.995993i \(0.528503\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.6946 −0.650076 −0.325038 0.945701i \(-0.605377\pi\)
−0.325038 + 0.945701i \(0.605377\pi\)
\(828\) 0 0
\(829\) −3.44121 −0.119518 −0.0597591 0.998213i \(-0.519033\pi\)
−0.0597591 + 0.998213i \(0.519033\pi\)
\(830\) 0 0
\(831\) −7.38646 −0.256233
\(832\) 0 0
\(833\) 8.57452 0.297089
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −14.6761 −0.507280
\(838\) 0 0
\(839\) 52.6248 1.81681 0.908406 0.418090i \(-0.137300\pi\)
0.908406 + 0.418090i \(0.137300\pi\)
\(840\) 0 0
\(841\) −23.1524 −0.798357
\(842\) 0 0
\(843\) 6.70052 0.230778
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.02047 −0.0694241
\(848\) 0 0
\(849\) −9.80748 −0.336592
\(850\) 0 0
\(851\) −24.4241 −0.837246
\(852\) 0 0
\(853\) −6.31853 −0.216342 −0.108171 0.994132i \(-0.534499\pi\)
−0.108171 + 0.994132i \(0.534499\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.775746 −0.0264990 −0.0132495 0.999912i \(-0.504218\pi\)
−0.0132495 + 0.999912i \(0.504218\pi\)
\(858\) 0 0
\(859\) −3.24869 −0.110844 −0.0554220 0.998463i \(-0.517650\pi\)
−0.0554220 + 0.998463i \(0.517650\pi\)
\(860\) 0 0
\(861\) 3.22425 0.109882
\(862\) 0 0
\(863\) 19.9208 0.678112 0.339056 0.940766i \(-0.389892\pi\)
0.339056 + 0.940766i \(0.389892\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −7.30299 −0.248022
\(868\) 0 0
\(869\) 8.31265 0.281987
\(870\) 0 0
\(871\) 9.89446 0.335261
\(872\) 0 0
\(873\) 5.18806 0.175589
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.1378 0.747539 0.373770 0.927522i \(-0.378065\pi\)
0.373770 + 0.927522i \(0.378065\pi\)
\(878\) 0 0
\(879\) 2.58910 0.0873283
\(880\) 0 0
\(881\) 2.23155 0.0751828 0.0375914 0.999293i \(-0.488031\pi\)
0.0375914 + 0.999293i \(0.488031\pi\)
\(882\) 0 0
\(883\) 4.30440 0.144855 0.0724273 0.997374i \(-0.476925\pi\)
0.0724273 + 0.997374i \(0.476925\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.9330 −0.534979 −0.267489 0.963561i \(-0.586194\pi\)
−0.267489 + 0.963561i \(0.586194\pi\)
\(888\) 0 0
\(889\) −3.46168 −0.116101
\(890\) 0 0
\(891\) 25.6145 0.858118
\(892\) 0 0
\(893\) −5.35026 −0.179040
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.11871 0.104131
\(898\) 0 0
\(899\) 12.7856 0.426423
\(900\) 0 0
\(901\) −7.74798 −0.258123
\(902\) 0 0
\(903\) −2.63515 −0.0876923
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 51.9086 1.72360 0.861798 0.507251i \(-0.169338\pi\)
0.861798 + 0.507251i \(0.169338\pi\)
\(908\) 0 0
\(909\) −29.0668 −0.964085
\(910\) 0 0
\(911\) 9.67750 0.320630 0.160315 0.987066i \(-0.448749\pi\)
0.160315 + 0.987066i \(0.448749\pi\)
\(912\) 0 0
\(913\) −14.1260 −0.467503
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.674176 −0.0222632
\(918\) 0 0
\(919\) −13.5515 −0.447022 −0.223511 0.974701i \(-0.571752\pi\)
−0.223511 + 0.974701i \(0.571752\pi\)
\(920\) 0 0
\(921\) 9.22425 0.303949
\(922\) 0 0
\(923\) 8.56230 0.281831
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 42.5466 1.39741
\(928\) 0 0
\(929\) −9.44992 −0.310042 −0.155021 0.987911i \(-0.549545\pi\)
−0.155021 + 0.987911i \(0.549545\pi\)
\(930\) 0 0
\(931\) −10.6375 −0.348631
\(932\) 0 0
\(933\) 12.1504 0.397788
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.0409 0.524035 0.262017 0.965063i \(-0.415612\pi\)
0.262017 + 0.965063i \(0.415612\pi\)
\(938\) 0 0
\(939\) 1.35309 0.0441565
\(940\) 0 0
\(941\) −21.6747 −0.706574 −0.353287 0.935515i \(-0.614936\pi\)
−0.353287 + 0.935515i \(0.614936\pi\)
\(942\) 0 0
\(943\) 53.8759 1.75444
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.63118 0.150493 0.0752466 0.997165i \(-0.476026\pi\)
0.0752466 + 0.997165i \(0.476026\pi\)
\(948\) 0 0
\(949\) 11.7685 0.382020
\(950\) 0 0
\(951\) −11.4372 −0.370878
\(952\) 0 0
\(953\) 26.2981 0.851878 0.425939 0.904752i \(-0.359944\pi\)
0.425939 + 0.904752i \(0.359944\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.27645 0.138238
\(958\) 0 0
\(959\) 12.0409 0.388822
\(960\) 0 0
\(961\) −3.04491 −0.0982228
\(962\) 0 0
\(963\) 30.8155 0.993014
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 11.9405 0.383981 0.191990 0.981397i \(-0.438506\pi\)
0.191990 + 0.981397i \(0.438506\pi\)
\(968\) 0 0
\(969\) −1.08840 −0.0349643
\(970\) 0 0
\(971\) −30.1524 −0.967635 −0.483818 0.875169i \(-0.660750\pi\)
−0.483818 + 0.875169i \(0.660750\pi\)
\(972\) 0 0
\(973\) −6.80209 −0.218065
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26.9321 0.861633 0.430817 0.902439i \(-0.358226\pi\)
0.430817 + 0.902439i \(0.358226\pi\)
\(978\) 0 0
\(979\) 10.2012 0.326033
\(980\) 0 0
\(981\) −26.5431 −0.847455
\(982\) 0 0
\(983\) 20.5902 0.656727 0.328363 0.944551i \(-0.393503\pi\)
0.328363 + 0.944551i \(0.393503\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.23884 0.0394328
\(988\) 0 0
\(989\) −44.0322 −1.40014
\(990\) 0 0
\(991\) 48.1378 1.52915 0.764573 0.644537i \(-0.222950\pi\)
0.764573 + 0.644537i \(0.222950\pi\)
\(992\) 0 0
\(993\) 5.67864 0.180206
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 33.4255 1.05860 0.529298 0.848436i \(-0.322455\pi\)
0.529298 + 0.848436i \(0.322455\pi\)
\(998\) 0 0
\(999\) −10.4603 −0.330948
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5200.2.a.cb.1.3 3
4.3 odd 2 325.2.a.k.1.3 3
5.2 odd 4 1040.2.d.c.209.3 6
5.3 odd 4 1040.2.d.c.209.4 6
5.4 even 2 5200.2.a.cj.1.1 3
12.11 even 2 2925.2.a.bf.1.1 3
20.3 even 4 65.2.b.a.14.1 6
20.7 even 4 65.2.b.a.14.6 yes 6
20.19 odd 2 325.2.a.j.1.1 3
52.51 odd 2 4225.2.a.ba.1.1 3
60.23 odd 4 585.2.c.b.469.6 6
60.47 odd 4 585.2.c.b.469.1 6
60.59 even 2 2925.2.a.bj.1.3 3
260.3 even 12 845.2.n.f.529.6 12
260.7 odd 12 845.2.l.e.699.6 12
260.23 even 12 845.2.n.g.529.1 12
260.43 even 12 845.2.n.g.484.6 12
260.47 odd 4 845.2.d.a.844.2 6
260.63 odd 12 845.2.l.d.654.2 12
260.67 odd 12 845.2.l.d.654.1 12
260.83 odd 4 845.2.d.a.844.1 6
260.87 even 12 845.2.n.f.484.6 12
260.103 even 4 845.2.b.c.339.6 6
260.107 even 12 845.2.n.f.529.1 12
260.123 odd 12 845.2.l.e.699.5 12
260.127 even 12 845.2.n.g.529.6 12
260.147 even 12 845.2.n.g.484.1 12
260.163 odd 12 845.2.l.d.699.1 12
260.167 odd 12 845.2.l.e.654.5 12
260.187 odd 4 845.2.d.b.844.6 6
260.203 odd 4 845.2.d.b.844.5 6
260.207 even 4 845.2.b.c.339.1 6
260.223 odd 12 845.2.l.e.654.6 12
260.227 odd 12 845.2.l.d.699.2 12
260.243 even 12 845.2.n.f.484.1 12
260.259 odd 2 4225.2.a.bh.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.1 6 20.3 even 4
65.2.b.a.14.6 yes 6 20.7 even 4
325.2.a.j.1.1 3 20.19 odd 2
325.2.a.k.1.3 3 4.3 odd 2
585.2.c.b.469.1 6 60.47 odd 4
585.2.c.b.469.6 6 60.23 odd 4
845.2.b.c.339.1 6 260.207 even 4
845.2.b.c.339.6 6 260.103 even 4
845.2.d.a.844.1 6 260.83 odd 4
845.2.d.a.844.2 6 260.47 odd 4
845.2.d.b.844.5 6 260.203 odd 4
845.2.d.b.844.6 6 260.187 odd 4
845.2.l.d.654.1 12 260.67 odd 12
845.2.l.d.654.2 12 260.63 odd 12
845.2.l.d.699.1 12 260.163 odd 12
845.2.l.d.699.2 12 260.227 odd 12
845.2.l.e.654.5 12 260.167 odd 12
845.2.l.e.654.6 12 260.223 odd 12
845.2.l.e.699.5 12 260.123 odd 12
845.2.l.e.699.6 12 260.7 odd 12
845.2.n.f.484.1 12 260.243 even 12
845.2.n.f.484.6 12 260.87 even 12
845.2.n.f.529.1 12 260.107 even 12
845.2.n.f.529.6 12 260.3 even 12
845.2.n.g.484.1 12 260.147 even 12
845.2.n.g.484.6 12 260.43 even 12
845.2.n.g.529.1 12 260.23 even 12
845.2.n.g.529.6 12 260.127 even 12
1040.2.d.c.209.3 6 5.2 odd 4
1040.2.d.c.209.4 6 5.3 odd 4
2925.2.a.bf.1.1 3 12.11 even 2
2925.2.a.bj.1.3 3 60.59 even 2
4225.2.a.ba.1.1 3 52.51 odd 2
4225.2.a.bh.1.3 3 260.259 odd 2
5200.2.a.cb.1.3 3 1.1 even 1 trivial
5200.2.a.cj.1.1 3 5.4 even 2