Defining parameters
Level: | \( N \) | \(=\) | \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5200.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 66 \) | ||
Sturm bound: | \(1680\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5200))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 876 | 114 | 762 |
Cusp forms | 805 | 114 | 691 |
Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(105\) | \(12\) | \(93\) | \(97\) | \(12\) | \(85\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(111\) | \(15\) | \(96\) | \(102\) | \(15\) | \(87\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(113\) | \(16\) | \(97\) | \(104\) | \(16\) | \(88\) | \(9\) | \(0\) | \(9\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(107\) | \(14\) | \(93\) | \(98\) | \(14\) | \(84\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(114\) | \(15\) | \(99\) | \(105\) | \(15\) | \(90\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(108\) | \(12\) | \(96\) | \(99\) | \(12\) | \(87\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(106\) | \(14\) | \(92\) | \(97\) | \(14\) | \(83\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(112\) | \(16\) | \(96\) | \(103\) | \(16\) | \(87\) | \(9\) | \(0\) | \(9\) | |||
Plus space | \(+\) | \(426\) | \(52\) | \(374\) | \(391\) | \(52\) | \(339\) | \(35\) | \(0\) | \(35\) | |||||
Minus space | \(-\) | \(450\) | \(62\) | \(388\) | \(414\) | \(62\) | \(352\) | \(36\) | \(0\) | \(36\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5200))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5200))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5200)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(650))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1040))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1300))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2600))\)\(^{\oplus 2}\)