Properties

Label 845.2.b.c.339.1
Level $845$
Weight $2$
Character 845.339
Analytic conductor $6.747$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(339,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-10,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.1
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 845.339
Dual form 845.2.b.c.339.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.67513i q^{2} +0.481194i q^{3} -5.15633 q^{4} +(-1.67513 + 1.48119i) q^{5} +1.28726 q^{6} -0.806063i q^{7} +8.44358i q^{8} +2.76845 q^{9} +(3.96239 + 4.48119i) q^{10} +3.67513 q^{11} -2.48119i q^{12} -2.15633 q^{14} +(-0.712742 - 0.806063i) q^{15} +12.2750 q^{16} -1.35026i q^{17} -7.40597i q^{18} -1.67513 q^{19} +(8.63752 - 7.63752i) q^{20} +0.387873 q^{21} -9.83146i q^{22} -6.48119i q^{23} -4.06300 q^{24} +(0.612127 - 4.96239i) q^{25} +2.77575i q^{27} +4.15633i q^{28} -2.41819 q^{29} +(-2.15633 + 1.90668i) q^{30} +5.28726 q^{31} -15.9502i q^{32} +1.76845i q^{33} -3.61213 q^{34} +(1.19394 + 1.35026i) q^{35} -14.2750 q^{36} -3.76845i q^{37} +4.48119i q^{38} +(-12.5066 - 14.1441i) q^{40} +8.31265 q^{41} -1.03761i q^{42} +6.79384i q^{43} -18.9502 q^{44} +(-4.63752 + 4.10062i) q^{45} -17.3380 q^{46} -3.19394i q^{47} +5.90668i q^{48} +6.35026 q^{49} +(-13.2750 - 1.63752i) q^{50} +0.649738 q^{51} -5.73813i q^{53} +7.42548 q^{54} +(-6.15633 + 5.44358i) q^{55} +6.80606 q^{56} -0.806063i q^{57} +6.46898i q^{58} +5.98778 q^{59} +(3.67513 + 4.15633i) q^{60} -1.76845 q^{61} -14.1441i q^{62} -2.23155i q^{63} -18.1187 q^{64} +4.73084 q^{66} -9.89446i q^{67} +6.96239i q^{68} +3.11871 q^{69} +(3.61213 - 3.19394i) q^{70} -8.56230 q^{71} +23.3757i q^{72} -11.7685i q^{73} -10.0811 q^{74} +(2.38787 + 0.294552i) q^{75} +8.63752 q^{76} -2.96239i q^{77} +2.26187 q^{79} +(-20.5623 + 18.1817i) q^{80} +6.96968 q^{81} -22.2374i q^{82} +3.84367i q^{83} -2.00000 q^{84} +(2.00000 + 2.26187i) q^{85} +18.1744 q^{86} -1.16362i q^{87} +31.0313i q^{88} +2.77575 q^{89} +(10.9697 + 12.4060i) q^{90} +33.4191i q^{92} +2.54420i q^{93} -8.54420 q^{94} +(2.80606 - 2.48119i) q^{95} +7.67513 q^{96} +1.87399i q^{97} -16.9878i q^{98} +10.1744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} - 4 q^{6} - 6 q^{9} + 2 q^{10} + 12 q^{11} + 8 q^{14} - 16 q^{15} + 10 q^{16} + 20 q^{20} + 4 q^{21} - 16 q^{24} + 2 q^{25} - 12 q^{29} + 8 q^{30} + 20 q^{31} - 20 q^{34} + 8 q^{35} - 22 q^{36}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.67513i 1.89160i −0.324745 0.945802i \(-0.605279\pi\)
0.324745 0.945802i \(-0.394721\pi\)
\(3\) 0.481194i 0.277818i 0.990305 + 0.138909i \(0.0443595\pi\)
−0.990305 + 0.138909i \(0.955641\pi\)
\(4\) −5.15633 −2.57816
\(5\) −1.67513 + 1.48119i −0.749141 + 0.662410i
\(6\) 1.28726 0.525521
\(7\) 0.806063i 0.304663i −0.988329 0.152332i \(-0.951322\pi\)
0.988329 0.152332i \(-0.0486782\pi\)
\(8\) 8.44358i 2.98526i
\(9\) 2.76845 0.922817
\(10\) 3.96239 + 4.48119i 1.25302 + 1.41708i
\(11\) 3.67513 1.10809 0.554047 0.832486i \(-0.313083\pi\)
0.554047 + 0.832486i \(0.313083\pi\)
\(12\) 2.48119i 0.716259i
\(13\) 0 0
\(14\) −2.15633 −0.576302
\(15\) −0.712742 0.806063i −0.184029 0.208125i
\(16\) 12.2750 3.06876
\(17\) 1.35026i 0.327487i −0.986503 0.163743i \(-0.947643\pi\)
0.986503 0.163743i \(-0.0523569\pi\)
\(18\) 7.40597i 1.74560i
\(19\) −1.67513 −0.384301 −0.192151 0.981365i \(-0.561546\pi\)
−0.192151 + 0.981365i \(0.561546\pi\)
\(20\) 8.63752 7.63752i 1.93141 1.70780i
\(21\) 0.387873 0.0846409
\(22\) 9.83146i 2.09607i
\(23\) 6.48119i 1.35142i −0.737166 0.675711i \(-0.763837\pi\)
0.737166 0.675711i \(-0.236163\pi\)
\(24\) −4.06300 −0.829357
\(25\) 0.612127 4.96239i 0.122425 0.992478i
\(26\) 0 0
\(27\) 2.77575i 0.534193i
\(28\) 4.15633i 0.785472i
\(29\) −2.41819 −0.449047 −0.224523 0.974469i \(-0.572083\pi\)
−0.224523 + 0.974469i \(0.572083\pi\)
\(30\) −2.15633 + 1.90668i −0.393689 + 0.348110i
\(31\) 5.28726 0.949620 0.474810 0.880088i \(-0.342517\pi\)
0.474810 + 0.880088i \(0.342517\pi\)
\(32\) 15.9502i 2.81962i
\(33\) 1.76845i 0.307848i
\(34\) −3.61213 −0.619475
\(35\) 1.19394 + 1.35026i 0.201812 + 0.228236i
\(36\) −14.2750 −2.37917
\(37\) 3.76845i 0.619530i −0.950813 0.309765i \(-0.899750\pi\)
0.950813 0.309765i \(-0.100250\pi\)
\(38\) 4.48119i 0.726946i
\(39\) 0 0
\(40\) −12.5066 14.1441i −1.97747 2.23638i
\(41\) 8.31265 1.29822 0.649109 0.760695i \(-0.275142\pi\)
0.649109 + 0.760695i \(0.275142\pi\)
\(42\) 1.03761i 0.160107i
\(43\) 6.79384i 1.03605i 0.855365 + 0.518026i \(0.173333\pi\)
−0.855365 + 0.518026i \(0.826667\pi\)
\(44\) −18.9502 −2.85685
\(45\) −4.63752 + 4.10062i −0.691321 + 0.611284i
\(46\) −17.3380 −2.55635
\(47\) 3.19394i 0.465884i −0.972491 0.232942i \(-0.925165\pi\)
0.972491 0.232942i \(-0.0748352\pi\)
\(48\) 5.90668i 0.852556i
\(49\) 6.35026 0.907180
\(50\) −13.2750 1.63752i −1.87737 0.231580i
\(51\) 0.649738 0.0909816
\(52\) 0 0
\(53\) 5.73813i 0.788193i −0.919069 0.394097i \(-0.871057\pi\)
0.919069 0.394097i \(-0.128943\pi\)
\(54\) 7.42548 1.01048
\(55\) −6.15633 + 5.44358i −0.830119 + 0.734013i
\(56\) 6.80606 0.909498
\(57\) 0.806063i 0.106766i
\(58\) 6.46898i 0.849418i
\(59\) 5.98778 0.779543 0.389771 0.920912i \(-0.372554\pi\)
0.389771 + 0.920912i \(0.372554\pi\)
\(60\) 3.67513 + 4.15633i 0.474457 + 0.536579i
\(61\) −1.76845 −0.226427 −0.113214 0.993571i \(-0.536114\pi\)
−0.113214 + 0.993571i \(0.536114\pi\)
\(62\) 14.1441i 1.79630i
\(63\) 2.23155i 0.281149i
\(64\) −18.1187 −2.26484
\(65\) 0 0
\(66\) 4.73084 0.582326
\(67\) 9.89446i 1.20880i −0.796681 0.604400i \(-0.793413\pi\)
0.796681 0.604400i \(-0.206587\pi\)
\(68\) 6.96239i 0.844314i
\(69\) 3.11871 0.375449
\(70\) 3.61213 3.19394i 0.431732 0.381748i
\(71\) −8.56230 −1.01616 −0.508079 0.861311i \(-0.669644\pi\)
−0.508079 + 0.861311i \(0.669644\pi\)
\(72\) 23.3757i 2.75485i
\(73\) 11.7685i 1.37739i −0.725050 0.688697i \(-0.758183\pi\)
0.725050 0.688697i \(-0.241817\pi\)
\(74\) −10.0811 −1.17190
\(75\) 2.38787 + 0.294552i 0.275728 + 0.0340119i
\(76\) 8.63752 0.990791
\(77\) 2.96239i 0.337596i
\(78\) 0 0
\(79\) 2.26187 0.254480 0.127240 0.991872i \(-0.459388\pi\)
0.127240 + 0.991872i \(0.459388\pi\)
\(80\) −20.5623 + 18.1817i −2.29893 + 2.03278i
\(81\) 6.96968 0.774409
\(82\) 22.2374i 2.45571i
\(83\) 3.84367i 0.421898i 0.977497 + 0.210949i \(0.0676554\pi\)
−0.977497 + 0.210949i \(0.932345\pi\)
\(84\) −2.00000 −0.218218
\(85\) 2.00000 + 2.26187i 0.216930 + 0.245334i
\(86\) 18.1744 1.95980
\(87\) 1.16362i 0.124753i
\(88\) 31.0313i 3.30794i
\(89\) 2.77575 0.294229 0.147114 0.989120i \(-0.453001\pi\)
0.147114 + 0.989120i \(0.453001\pi\)
\(90\) 10.9697 + 12.4060i 1.15631 + 1.30770i
\(91\) 0 0
\(92\) 33.4191i 3.48419i
\(93\) 2.54420i 0.263821i
\(94\) −8.54420 −0.881267
\(95\) 2.80606 2.48119i 0.287896 0.254565i
\(96\) 7.67513 0.783340
\(97\) 1.87399i 0.190275i 0.995464 + 0.0951375i \(0.0303291\pi\)
−0.995464 + 0.0951375i \(0.969671\pi\)
\(98\) 16.9878i 1.71603i
\(99\) 10.1744 1.02257
\(100\) −3.15633 + 25.5877i −0.315633 + 2.55877i
\(101\) 10.4993 1.04472 0.522359 0.852725i \(-0.325052\pi\)
0.522359 + 0.852725i \(0.325052\pi\)
\(102\) 1.73813i 0.172101i
\(103\) 15.3684i 1.51429i −0.653247 0.757145i \(-0.726594\pi\)
0.653247 0.757145i \(-0.273406\pi\)
\(104\) 0 0
\(105\) −0.649738 + 0.574515i −0.0634080 + 0.0560670i
\(106\) −15.3503 −1.49095
\(107\) 11.1309i 1.07607i 0.842923 + 0.538034i \(0.180833\pi\)
−0.842923 + 0.538034i \(0.819167\pi\)
\(108\) 14.3127i 1.37724i
\(109\) 9.58769 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(110\) 14.5623 + 16.4690i 1.38846 + 1.57026i
\(111\) 1.81336 0.172116
\(112\) 9.89446i 0.934939i
\(113\) 0.574515i 0.0540459i −0.999635 0.0270229i \(-0.991397\pi\)
0.999635 0.0270229i \(-0.00860271\pi\)
\(114\) −2.15633 −0.201958
\(115\) 9.59991 + 10.8568i 0.895196 + 1.01241i
\(116\) 12.4690 1.15772
\(117\) 0 0
\(118\) 16.0181i 1.47459i
\(119\) −1.08840 −0.0997732
\(120\) 6.80606 6.01810i 0.621306 0.549375i
\(121\) 2.50659 0.227872
\(122\) 4.73084i 0.428310i
\(123\) 4.00000i 0.360668i
\(124\) −27.2628 −2.44827
\(125\) 6.32487 + 9.21933i 0.565713 + 0.824602i
\(126\) −5.96968 −0.531822
\(127\) 4.29455i 0.381080i −0.981679 0.190540i \(-0.938976\pi\)
0.981679 0.190540i \(-0.0610239\pi\)
\(128\) 16.5696i 1.46456i
\(129\) −3.26916 −0.287833
\(130\) 0 0
\(131\) −0.836381 −0.0730749 −0.0365375 0.999332i \(-0.511633\pi\)
−0.0365375 + 0.999332i \(0.511633\pi\)
\(132\) 9.11871i 0.793682i
\(133\) 1.35026i 0.117083i
\(134\) −26.4690 −2.28657
\(135\) −4.11142 4.64974i −0.353855 0.400186i
\(136\) 11.4010 0.977632
\(137\) 14.9380i 1.27624i 0.769939 + 0.638118i \(0.220287\pi\)
−0.769939 + 0.638118i \(0.779713\pi\)
\(138\) 8.34297i 0.710201i
\(139\) 8.43866 0.715758 0.357879 0.933768i \(-0.383500\pi\)
0.357879 + 0.933768i \(0.383500\pi\)
\(140\) −6.15633 6.96239i −0.520304 0.588429i
\(141\) 1.53690 0.129431
\(142\) 22.9053i 1.92217i
\(143\) 0 0
\(144\) 33.9829 2.83190
\(145\) 4.05079 3.58181i 0.336399 0.297453i
\(146\) −31.4821 −2.60548
\(147\) 3.05571i 0.252031i
\(148\) 19.4314i 1.59725i
\(149\) −11.3503 −0.929850 −0.464925 0.885350i \(-0.653919\pi\)
−0.464925 + 0.885350i \(0.653919\pi\)
\(150\) 0.787965 6.38787i 0.0643371 0.521568i
\(151\) −13.9878 −1.13831 −0.569155 0.822230i \(-0.692729\pi\)
−0.569155 + 0.822230i \(0.692729\pi\)
\(152\) 14.1441i 1.14724i
\(153\) 3.73813i 0.302210i
\(154\) −7.92478 −0.638597
\(155\) −8.85685 + 7.83146i −0.711399 + 0.629038i
\(156\) 0 0
\(157\) 2.77575i 0.221529i 0.993847 + 0.110764i \(0.0353299\pi\)
−0.993847 + 0.110764i \(0.964670\pi\)
\(158\) 6.05079i 0.481375i
\(159\) 2.76116 0.218974
\(160\) 23.6253 + 26.7186i 1.86774 + 2.11229i
\(161\) −5.22425 −0.411729
\(162\) 18.6448i 1.46487i
\(163\) 2.23155i 0.174788i 0.996174 + 0.0873942i \(0.0278540\pi\)
−0.996174 + 0.0873942i \(0.972146\pi\)
\(164\) −42.8627 −3.34702
\(165\) −2.61942 2.96239i −0.203922 0.230622i
\(166\) 10.2823 0.798064
\(167\) 15.6932i 1.21438i 0.794557 + 0.607189i \(0.207703\pi\)
−0.794557 + 0.607189i \(0.792297\pi\)
\(168\) 3.27504i 0.252675i
\(169\) 0 0
\(170\) 6.05079 5.35026i 0.464074 0.410346i
\(171\) −4.63752 −0.354640
\(172\) 35.0313i 2.67111i
\(173\) 25.5877i 1.94540i 0.232075 + 0.972698i \(0.425449\pi\)
−0.232075 + 0.972698i \(0.574551\pi\)
\(174\) −3.11283 −0.235983
\(175\) −4.00000 0.493413i −0.302372 0.0372985i
\(176\) 45.1124 3.40047
\(177\) 2.88129i 0.216571i
\(178\) 7.42548i 0.556564i
\(179\) −12.1260 −0.906340 −0.453170 0.891424i \(-0.649707\pi\)
−0.453170 + 0.891424i \(0.649707\pi\)
\(180\) 23.9126 21.1441i 1.78234 1.57599i
\(181\) −2.73084 −0.202982 −0.101491 0.994836i \(-0.532361\pi\)
−0.101491 + 0.994836i \(0.532361\pi\)
\(182\) 0 0
\(183\) 0.850969i 0.0629054i
\(184\) 54.7245 4.03434
\(185\) 5.58181 + 6.31265i 0.410383 + 0.464115i
\(186\) 6.80606 0.499045
\(187\) 4.96239i 0.362886i
\(188\) 16.4690i 1.20112i
\(189\) 2.23743 0.162749
\(190\) −6.63752 7.50659i −0.481536 0.544585i
\(191\) 20.6253 1.49239 0.746197 0.665725i \(-0.231878\pi\)
0.746197 + 0.665725i \(0.231878\pi\)
\(192\) 8.71862i 0.629212i
\(193\) 21.7889i 1.56840i −0.620508 0.784200i \(-0.713073\pi\)
0.620508 0.784200i \(-0.286927\pi\)
\(194\) 5.01317 0.359925
\(195\) 0 0
\(196\) −32.7440 −2.33886
\(197\) 2.00000i 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 27.2179i 1.93429i
\(199\) 16.7513 1.18747 0.593734 0.804661i \(-0.297653\pi\)
0.593734 + 0.804661i \(0.297653\pi\)
\(200\) 41.9003 + 5.16854i 2.96280 + 0.365471i
\(201\) 4.76116 0.335826
\(202\) 28.0870i 1.97619i
\(203\) 1.94921i 0.136808i
\(204\) −3.35026 −0.234565
\(205\) −13.9248 + 12.3127i −0.972549 + 0.859953i
\(206\) −41.1124 −2.86443
\(207\) 17.9429i 1.24712i
\(208\) 0 0
\(209\) −6.15633 −0.425842
\(210\) 1.53690 + 1.73813i 0.106056 + 0.119943i
\(211\) −4.90175 −0.337451 −0.168725 0.985663i \(-0.553965\pi\)
−0.168725 + 0.985663i \(0.553965\pi\)
\(212\) 29.5877i 2.03209i
\(213\) 4.12013i 0.282307i
\(214\) 29.7767 2.03549
\(215\) −10.0630 11.3806i −0.686291 0.776149i
\(216\) −23.4372 −1.59470
\(217\) 4.26187i 0.289314i
\(218\) 25.6483i 1.73712i
\(219\) 5.66291 0.382664
\(220\) 31.7440 28.0689i 2.14018 1.89240i
\(221\) 0 0
\(222\) 4.85097i 0.325576i
\(223\) 24.9076i 1.66794i 0.551811 + 0.833969i \(0.313937\pi\)
−0.551811 + 0.833969i \(0.686063\pi\)
\(224\) −12.8568 −0.859034
\(225\) 1.69464 13.7381i 0.112976 0.915876i
\(226\) −1.53690 −0.102233
\(227\) 9.95509i 0.660743i −0.943851 0.330371i \(-0.892826\pi\)
0.943851 0.330371i \(-0.107174\pi\)
\(228\) 4.15633i 0.275259i
\(229\) 5.35026 0.353555 0.176778 0.984251i \(-0.443433\pi\)
0.176778 + 0.984251i \(0.443433\pi\)
\(230\) 29.0435 25.6810i 1.91507 1.69336i
\(231\) 1.42548 0.0937900
\(232\) 20.4182i 1.34052i
\(233\) 10.7612i 0.704987i 0.935814 + 0.352493i \(0.114666\pi\)
−0.935814 + 0.352493i \(0.885334\pi\)
\(234\) 0 0
\(235\) 4.73084 + 5.35026i 0.308606 + 0.349013i
\(236\) −30.8749 −2.00979
\(237\) 1.08840i 0.0706990i
\(238\) 2.91160i 0.188731i
\(239\) −11.8618 −0.767274 −0.383637 0.923484i \(-0.625329\pi\)
−0.383637 + 0.923484i \(0.625329\pi\)
\(240\) −8.74894 9.89446i −0.564742 0.638685i
\(241\) 28.6253 1.84392 0.921959 0.387288i \(-0.126588\pi\)
0.921959 + 0.387288i \(0.126588\pi\)
\(242\) 6.70545i 0.431043i
\(243\) 11.6810i 0.749337i
\(244\) 9.11871 0.583766
\(245\) −10.6375 + 9.40597i −0.679606 + 0.600925i
\(246\) 10.7005 0.682240
\(247\) 0 0
\(248\) 44.6434i 2.83486i
\(249\) −1.84955 −0.117211
\(250\) 24.6629 16.9199i 1.55982 1.07011i
\(251\) −19.3865 −1.22366 −0.611831 0.790988i \(-0.709567\pi\)
−0.611831 + 0.790988i \(0.709567\pi\)
\(252\) 11.5066i 0.724847i
\(253\) 23.8192i 1.49750i
\(254\) −11.4885 −0.720852
\(255\) −1.08840 + 0.962389i −0.0681580 + 0.0602671i
\(256\) 8.08840 0.505525
\(257\) 22.8627i 1.42614i 0.701094 + 0.713069i \(0.252695\pi\)
−0.701094 + 0.713069i \(0.747305\pi\)
\(258\) 8.74543i 0.544467i
\(259\) −3.03761 −0.188748
\(260\) 0 0
\(261\) −6.69464 −0.414388
\(262\) 2.23743i 0.138229i
\(263\) 21.8822i 1.34932i −0.738130 0.674658i \(-0.764291\pi\)
0.738130 0.674658i \(-0.235709\pi\)
\(264\) −14.9321 −0.919005
\(265\) 8.49929 + 9.61213i 0.522107 + 0.590468i
\(266\) 3.61213 0.221474
\(267\) 1.33567i 0.0817419i
\(268\) 51.0191i 3.11648i
\(269\) −22.7513 −1.38717 −0.693586 0.720374i \(-0.743970\pi\)
−0.693586 + 0.720374i \(0.743970\pi\)
\(270\) −12.4387 + 10.9986i −0.756993 + 0.669353i
\(271\) −0.123638 −0.00751049 −0.00375525 0.999993i \(-0.501195\pi\)
−0.00375525 + 0.999993i \(0.501195\pi\)
\(272\) 16.5745i 1.00498i
\(273\) 0 0
\(274\) 39.9610 2.41413
\(275\) 2.24965 18.2374i 0.135659 1.09976i
\(276\) −16.0811 −0.967969
\(277\) 15.3503i 0.922308i −0.887320 0.461154i \(-0.847436\pi\)
0.887320 0.461154i \(-0.152564\pi\)
\(278\) 22.5745i 1.35393i
\(279\) 14.6375 0.876325
\(280\) −11.4010 + 10.0811i −0.681343 + 0.602461i
\(281\) −13.9248 −0.830683 −0.415341 0.909666i \(-0.636338\pi\)
−0.415341 + 0.909666i \(0.636338\pi\)
\(282\) 4.11142i 0.244831i
\(283\) 20.3815i 1.21156i −0.795634 0.605778i \(-0.792862\pi\)
0.795634 0.605778i \(-0.207138\pi\)
\(284\) 44.1500 2.61982
\(285\) 1.19394 + 1.35026i 0.0707227 + 0.0799826i
\(286\) 0 0
\(287\) 6.70052i 0.395519i
\(288\) 44.1573i 2.60199i
\(289\) 15.1768 0.892753
\(290\) −9.58181 10.8364i −0.562663 0.636334i
\(291\) −0.901754 −0.0528618
\(292\) 60.6820i 3.55114i
\(293\) 5.38058i 0.314337i 0.987572 + 0.157168i \(0.0502365\pi\)
−0.987572 + 0.157168i \(0.949763\pi\)
\(294\) 8.17442 0.476742
\(295\) −10.0303 + 8.86907i −0.583988 + 0.516377i
\(296\) 31.8192 1.84946
\(297\) 10.2012i 0.591935i
\(298\) 30.3634i 1.75891i
\(299\) 0 0
\(300\) −12.3127 1.51881i −0.710871 0.0876883i
\(301\) 5.47627 0.315647
\(302\) 37.4191i 2.15323i
\(303\) 5.05220i 0.290241i
\(304\) −20.5623 −1.17933
\(305\) 2.96239 2.61942i 0.169626 0.149988i
\(306\) −10.0000 −0.571662
\(307\) 19.1695i 1.09406i 0.837113 + 0.547031i \(0.184242\pi\)
−0.837113 + 0.547031i \(0.815758\pi\)
\(308\) 15.2750i 0.870376i
\(309\) 7.39517 0.420696
\(310\) 20.9502 + 23.6932i 1.18989 + 1.34568i
\(311\) −25.2506 −1.43183 −0.715915 0.698187i \(-0.753990\pi\)
−0.715915 + 0.698187i \(0.753990\pi\)
\(312\) 0 0
\(313\) 2.81194i 0.158940i −0.996837 0.0794702i \(-0.974677\pi\)
0.996837 0.0794702i \(-0.0253229\pi\)
\(314\) 7.42548 0.419044
\(315\) 3.30536 + 3.73813i 0.186236 + 0.210620i
\(316\) −11.6629 −0.656090
\(317\) 23.7685i 1.33497i 0.744624 + 0.667485i \(0.232629\pi\)
−0.744624 + 0.667485i \(0.767371\pi\)
\(318\) 7.38646i 0.414212i
\(319\) −8.88717 −0.497586
\(320\) 30.3512 26.8373i 1.69668 1.50025i
\(321\) −5.35614 −0.298951
\(322\) 13.9756i 0.778828i
\(323\) 2.26187i 0.125854i
\(324\) −35.9380 −1.99655
\(325\) 0 0
\(326\) 5.96968 0.330630
\(327\) 4.61354i 0.255129i
\(328\) 70.1886i 3.87551i
\(329\) −2.57452 −0.141938
\(330\) −7.92478 + 7.00729i −0.436245 + 0.385739i
\(331\) 11.8011 0.648649 0.324325 0.945946i \(-0.394863\pi\)
0.324325 + 0.945946i \(0.394863\pi\)
\(332\) 19.8192i 1.08772i
\(333\) 10.4328i 0.571713i
\(334\) 41.9814 2.29712
\(335\) 14.6556 + 16.5745i 0.800722 + 0.905563i
\(336\) 4.76116 0.259742
\(337\) 16.1114i 0.877645i 0.898574 + 0.438822i \(0.144604\pi\)
−0.898574 + 0.438822i \(0.855396\pi\)
\(338\) 0 0
\(339\) 0.276454 0.0150149
\(340\) −10.3127 11.6629i −0.559282 0.632510i
\(341\) 19.4314 1.05227
\(342\) 12.4060i 0.670838i
\(343\) 10.7612i 0.581048i
\(344\) −57.3644 −3.09288
\(345\) −5.22425 + 4.61942i −0.281264 + 0.248701i
\(346\) 68.4504 3.67992
\(347\) 27.4944i 1.47598i 0.674814 + 0.737988i \(0.264224\pi\)
−0.674814 + 0.737988i \(0.735776\pi\)
\(348\) 6.00000i 0.321634i
\(349\) −17.6023 −0.942228 −0.471114 0.882072i \(-0.656148\pi\)
−0.471114 + 0.882072i \(0.656148\pi\)
\(350\) −1.31994 + 10.7005i −0.0705540 + 0.571967i
\(351\) 0 0
\(352\) 58.6190i 3.12440i
\(353\) 15.7685i 0.839270i 0.907693 + 0.419635i \(0.137842\pi\)
−0.907693 + 0.419635i \(0.862158\pi\)
\(354\) 7.70782 0.409666
\(355\) 14.3430 12.6824i 0.761246 0.673113i
\(356\) −14.3127 −0.758569
\(357\) 0.523730i 0.0277187i
\(358\) 32.4387i 1.71444i
\(359\) −14.8242 −0.782389 −0.391195 0.920308i \(-0.627938\pi\)
−0.391195 + 0.920308i \(0.627938\pi\)
\(360\) −34.6239 39.1573i −1.82484 2.06377i
\(361\) −16.1939 −0.852312
\(362\) 7.30536i 0.383961i
\(363\) 1.20616i 0.0633067i
\(364\) 0 0
\(365\) 17.4314 + 19.7137i 0.912399 + 1.03186i
\(366\) −2.27645 −0.118992
\(367\) 27.0313i 1.41102i −0.708700 0.705510i \(-0.750718\pi\)
0.708700 0.705510i \(-0.249282\pi\)
\(368\) 79.5569i 4.14719i
\(369\) 23.0132 1.19802
\(370\) 16.8872 14.9321i 0.877922 0.776281i
\(371\) −4.62530 −0.240134
\(372\) 13.1187i 0.680174i
\(373\) 12.9525i 0.670657i −0.942101 0.335329i \(-0.891153\pi\)
0.942101 0.335329i \(-0.108847\pi\)
\(374\) −13.2750 −0.686436
\(375\) −4.43629 + 3.04349i −0.229089 + 0.157165i
\(376\) 26.9683 1.39078
\(377\) 0 0
\(378\) 5.98541i 0.307856i
\(379\) −30.2858 −1.55568 −0.777840 0.628463i \(-0.783684\pi\)
−0.777840 + 0.628463i \(0.783684\pi\)
\(380\) −14.4690 + 12.7938i −0.742243 + 0.656310i
\(381\) 2.06651 0.105871
\(382\) 55.1754i 2.82302i
\(383\) 21.0943i 1.07787i −0.842348 0.538934i \(-0.818827\pi\)
0.842348 0.538934i \(-0.181173\pi\)
\(384\) −7.97319 −0.406880
\(385\) 4.38787 + 4.96239i 0.223627 + 0.252907i
\(386\) −58.2882 −2.96679
\(387\) 18.8084i 0.956086i
\(388\) 9.66291i 0.490560i
\(389\) 6.77575 0.343544 0.171772 0.985137i \(-0.445051\pi\)
0.171772 + 0.985137i \(0.445051\pi\)
\(390\) 0 0
\(391\) −8.75131 −0.442573
\(392\) 53.6190i 2.70817i
\(393\) 0.402462i 0.0203015i
\(394\) −5.35026 −0.269542
\(395\) −3.78892 + 3.35026i −0.190641 + 0.168570i
\(396\) −52.4626 −2.63635
\(397\) 10.4690i 0.525423i −0.964874 0.262711i \(-0.915383\pi\)
0.964874 0.262711i \(-0.0846167\pi\)
\(398\) 44.8119i 2.24622i
\(399\) −0.649738 −0.0325276
\(400\) 7.51388 60.9135i 0.375694 3.04568i
\(401\) −5.01317 −0.250346 −0.125173 0.992135i \(-0.539949\pi\)
−0.125173 + 0.992135i \(0.539949\pi\)
\(402\) 12.7367i 0.635250i
\(403\) 0 0
\(404\) −54.1378 −2.69345
\(405\) −11.6751 + 10.3235i −0.580142 + 0.512977i
\(406\) 5.21440 0.258787
\(407\) 13.8496i 0.686497i
\(408\) 5.48612i 0.271603i
\(409\) −14.3879 −0.711435 −0.355717 0.934594i \(-0.615763\pi\)
−0.355717 + 0.934594i \(0.615763\pi\)
\(410\) 32.9380 + 37.2506i 1.62669 + 1.83968i
\(411\) −7.18806 −0.354561
\(412\) 79.2443i 3.90408i
\(413\) 4.82653i 0.237498i
\(414\) −47.9995 −2.35905
\(415\) −5.69323 6.43866i −0.279470 0.316061i
\(416\) 0 0
\(417\) 4.06063i 0.198850i
\(418\) 16.4690i 0.805524i
\(419\) −17.4617 −0.853059 −0.426529 0.904474i \(-0.640264\pi\)
−0.426529 + 0.904474i \(0.640264\pi\)
\(420\) 3.35026 2.96239i 0.163476 0.144550i
\(421\) −2.88717 −0.140712 −0.0703559 0.997522i \(-0.522414\pi\)
−0.0703559 + 0.997522i \(0.522414\pi\)
\(422\) 13.1128i 0.638323i
\(423\) 8.84226i 0.429925i
\(424\) 48.4504 2.35296
\(425\) −6.70052 0.826531i −0.325023 0.0400927i
\(426\) −11.0219 −0.534012
\(427\) 1.42548i 0.0689840i
\(428\) 57.3947i 2.77428i
\(429\) 0 0
\(430\) −30.4445 + 26.9199i −1.46817 + 1.29819i
\(431\) −0.889535 −0.0428474 −0.0214237 0.999770i \(-0.506820\pi\)
−0.0214237 + 0.999770i \(0.506820\pi\)
\(432\) 34.0724i 1.63931i
\(433\) 25.2506i 1.21347i 0.794906 + 0.606733i \(0.207520\pi\)
−0.794906 + 0.606733i \(0.792480\pi\)
\(434\) −11.4010 −0.547268
\(435\) 1.72355 + 1.94921i 0.0826377 + 0.0934577i
\(436\) −49.4372 −2.36761
\(437\) 10.8568i 0.519354i
\(438\) 15.1490i 0.723849i
\(439\) −28.8119 −1.37512 −0.687560 0.726128i \(-0.741318\pi\)
−0.687560 + 0.726128i \(0.741318\pi\)
\(440\) −45.9633 51.9814i −2.19122 2.47812i
\(441\) 17.5804 0.837162
\(442\) 0 0
\(443\) 36.9805i 1.75700i −0.477746 0.878498i \(-0.658546\pi\)
0.477746 0.878498i \(-0.341454\pi\)
\(444\) −9.35026 −0.443744
\(445\) −4.64974 + 4.11142i −0.220419 + 0.194900i
\(446\) 66.6312 3.15508
\(447\) 5.46168i 0.258329i
\(448\) 14.6048i 0.690013i
\(449\) −12.6859 −0.598686 −0.299343 0.954146i \(-0.596768\pi\)
−0.299343 + 0.954146i \(0.596768\pi\)
\(450\) −36.7513 4.53339i −1.73247 0.213706i
\(451\) 30.5501 1.43855
\(452\) 2.96239i 0.139339i
\(453\) 6.73084i 0.316242i
\(454\) −26.6312 −1.24986
\(455\) 0 0
\(456\) 6.80606 0.318723
\(457\) 25.0494i 1.17176i 0.810398 + 0.585880i \(0.199251\pi\)
−0.810398 + 0.585880i \(0.800749\pi\)
\(458\) 14.3127i 0.668786i
\(459\) 3.74798 0.174941
\(460\) −49.5002 55.9814i −2.30796 2.61015i
\(461\) 36.8872 1.71801 0.859003 0.511970i \(-0.171084\pi\)
0.859003 + 0.511970i \(0.171084\pi\)
\(462\) 3.81336i 0.177413i
\(463\) 39.0191i 1.81337i −0.421809 0.906685i \(-0.638605\pi\)
0.421809 0.906685i \(-0.361395\pi\)
\(464\) −29.6834 −1.37802
\(465\) −3.76845 4.26187i −0.174758 0.197639i
\(466\) 28.7875 1.33356
\(467\) 32.7694i 1.51639i 0.652029 + 0.758194i \(0.273918\pi\)
−0.652029 + 0.758194i \(0.726082\pi\)
\(468\) 0 0
\(469\) −7.97556 −0.368277
\(470\) 14.3127 12.6556i 0.660193 0.583760i
\(471\) −1.33567 −0.0615446
\(472\) 50.5583i 2.32714i
\(473\) 24.9683i 1.14804i
\(474\) 2.91160 0.133734
\(475\) −1.02539 + 8.31265i −0.0470482 + 0.381411i
\(476\) 5.61213 0.257231
\(477\) 15.8858i 0.727359i
\(478\) 31.7318i 1.45138i
\(479\) 16.8749 0.771036 0.385518 0.922700i \(-0.374023\pi\)
0.385518 + 0.922700i \(0.374023\pi\)
\(480\) −12.8568 + 11.3684i −0.586832 + 0.518892i
\(481\) 0 0
\(482\) 76.5764i 3.48796i
\(483\) 2.51388i 0.114386i
\(484\) −12.9248 −0.587490
\(485\) −2.77575 3.13918i −0.126040 0.142543i
\(486\) 31.2482 1.41745
\(487\) 9.24472i 0.418918i 0.977817 + 0.209459i \(0.0671703\pi\)
−0.977817 + 0.209459i \(0.932830\pi\)
\(488\) 14.9321i 0.675943i
\(489\) −1.07381 −0.0485593
\(490\) 25.1622 + 28.4568i 1.13671 + 1.28555i
\(491\) −25.7499 −1.16208 −0.581038 0.813876i \(-0.697353\pi\)
−0.581038 + 0.813876i \(0.697353\pi\)
\(492\) 20.6253i 0.929860i
\(493\) 3.26519i 0.147057i
\(494\) 0 0
\(495\) −17.0435 + 15.0703i −0.766048 + 0.677360i
\(496\) 64.9013 2.91415
\(497\) 6.90175i 0.309586i
\(498\) 4.94780i 0.221716i
\(499\) −27.7015 −1.24009 −0.620044 0.784567i \(-0.712885\pi\)
−0.620044 + 0.784567i \(0.712885\pi\)
\(500\) −32.6131 47.5379i −1.45850 2.12596i
\(501\) −7.55149 −0.337376
\(502\) 51.8613i 2.31468i
\(503\) 2.35519i 0.105013i −0.998621 0.0525063i \(-0.983279\pi\)
0.998621 0.0525063i \(-0.0167210\pi\)
\(504\) 18.8423 0.839301
\(505\) −17.5877 + 15.5515i −0.782642 + 0.692032i
\(506\) −63.7196 −2.83268
\(507\) 0 0
\(508\) 22.1441i 0.982486i
\(509\) 21.5125 0.953523 0.476762 0.879033i \(-0.341810\pi\)
0.476762 + 0.879033i \(0.341810\pi\)
\(510\) 2.57452 + 2.91160i 0.114001 + 0.128928i
\(511\) −9.48612 −0.419641
\(512\) 11.5017i 0.508306i
\(513\) 4.64974i 0.205291i
\(514\) 61.1608 2.69769
\(515\) 22.7635 + 25.7440i 1.00308 + 1.13442i
\(516\) 16.8568 0.742081
\(517\) 11.7381i 0.516243i
\(518\) 8.12601i 0.357036i
\(519\) −12.3127 −0.540465
\(520\) 0 0
\(521\) 37.7440 1.65360 0.826798 0.562499i \(-0.190160\pi\)
0.826798 + 0.562499i \(0.190160\pi\)
\(522\) 17.9090i 0.783858i
\(523\) 23.7416i 1.03815i −0.854729 0.519075i \(-0.826277\pi\)
0.854729 0.519075i \(-0.173723\pi\)
\(524\) 4.31265 0.188399
\(525\) 0.237428 1.92478i 0.0103622 0.0840042i
\(526\) −58.5379 −2.55237
\(527\) 7.13918i 0.310988i
\(528\) 21.7078i 0.944712i
\(529\) −19.0059 −0.826343
\(530\) 25.7137 22.7367i 1.11693 0.987620i
\(531\) 16.5769 0.719376
\(532\) 6.96239i 0.301858i
\(533\) 0 0
\(534\) 3.57310 0.154623
\(535\) −16.4871 18.6458i −0.712798 0.806127i
\(536\) 83.5447 3.60858
\(537\) 5.83497i 0.251797i
\(538\) 60.8627i 2.62398i
\(539\) 23.3380 1.00524
\(540\) 21.1998 + 23.9756i 0.912295 + 1.03174i
\(541\) −13.0376 −0.560531 −0.280265 0.959923i \(-0.590422\pi\)
−0.280265 + 0.959923i \(0.590422\pi\)
\(542\) 0.330749i 0.0142069i
\(543\) 1.31406i 0.0563919i
\(544\) −21.5369 −0.923387
\(545\) −16.0606 + 14.2012i −0.687962 + 0.608314i
\(546\) 0 0
\(547\) 8.43041i 0.360458i 0.983625 + 0.180229i \(0.0576839\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(548\) 77.0249i 3.29034i
\(549\) −4.89587 −0.208951
\(550\) −48.7875 6.01810i −2.08031 0.256613i
\(551\) 4.05079 0.172569
\(552\) 26.3331i 1.12081i
\(553\) 1.82321i 0.0775306i
\(554\) −41.0640 −1.74464
\(555\) −3.03761 + 2.68594i −0.128939 + 0.114012i
\(556\) −43.5125 −1.84534
\(557\) 13.6932i 0.580201i −0.956996 0.290100i \(-0.906311\pi\)
0.956996 0.290100i \(-0.0936887\pi\)
\(558\) 39.1573i 1.65766i
\(559\) 0 0
\(560\) 14.6556 + 16.5745i 0.619313 + 0.700401i
\(561\) 2.38787 0.100816
\(562\) 37.2506i 1.57132i
\(563\) 8.86907i 0.373787i 0.982380 + 0.186893i \(0.0598419\pi\)
−0.982380 + 0.186893i \(0.940158\pi\)
\(564\) −7.92478 −0.333693
\(565\) 0.850969 + 0.962389i 0.0358005 + 0.0404880i
\(566\) −54.5233 −2.29178
\(567\) 5.61801i 0.235934i
\(568\) 72.2965i 3.03349i
\(569\) 32.7816 1.37428 0.687139 0.726526i \(-0.258866\pi\)
0.687139 + 0.726526i \(0.258866\pi\)
\(570\) 3.61213 3.19394i 0.151295 0.133779i
\(571\) 40.2882 1.68601 0.843005 0.537906i \(-0.180785\pi\)
0.843005 + 0.537906i \(0.180785\pi\)
\(572\) 0 0
\(573\) 9.92478i 0.414614i
\(574\) −17.9248 −0.748166
\(575\) −32.1622 3.96731i −1.34126 0.165448i
\(576\) −50.1608 −2.09003
\(577\) 28.8568i 1.20133i −0.799502 0.600663i \(-0.794903\pi\)
0.799502 0.600663i \(-0.205097\pi\)
\(578\) 40.5999i 1.68873i
\(579\) 10.4847 0.435729
\(580\) −20.8872 + 18.4690i −0.867292 + 0.766882i
\(581\) 3.09825 0.128537
\(582\) 2.41231i 0.0999935i
\(583\) 21.0884i 0.873392i
\(584\) 99.3679 4.11187
\(585\) 0 0
\(586\) 14.3938 0.594600
\(587\) 41.6786i 1.72026i −0.510074 0.860131i \(-0.670382\pi\)
0.510074 0.860131i \(-0.329618\pi\)
\(588\) 15.7562i 0.649776i
\(589\) −8.85685 −0.364940
\(590\) 23.7259 + 26.8324i 0.976781 + 1.10467i
\(591\) 0.962389 0.0395874
\(592\) 46.2579i 1.90119i
\(593\) 22.4993i 0.923935i 0.886897 + 0.461968i \(0.152856\pi\)
−0.886897 + 0.461968i \(0.847144\pi\)
\(594\) 27.2896 1.11971
\(595\) 1.82321 1.61213i 0.0747442 0.0660908i
\(596\) 58.5256 2.39730
\(597\) 8.06063i 0.329900i
\(598\) 0 0
\(599\) −4.15045 −0.169583 −0.0847913 0.996399i \(-0.527022\pi\)
−0.0847913 + 0.996399i \(0.527022\pi\)
\(600\) −2.48707 + 20.1622i −0.101534 + 0.823119i
\(601\) 27.9248 1.13908 0.569538 0.821965i \(-0.307122\pi\)
0.569538 + 0.821965i \(0.307122\pi\)
\(602\) 14.6497i 0.597079i
\(603\) 27.3923i 1.11550i
\(604\) 72.1255 2.93475
\(605\) −4.19886 + 3.71274i −0.170708 + 0.150944i
\(606\) 13.5153 0.549021
\(607\) 8.19489i 0.332620i 0.986073 + 0.166310i \(0.0531853\pi\)
−0.986073 + 0.166310i \(0.946815\pi\)
\(608\) 26.7186i 1.08358i
\(609\) −0.937951 −0.0380077
\(610\) −7.00729 7.92478i −0.283717 0.320865i
\(611\) 0 0
\(612\) 19.2750i 0.779147i
\(613\) 33.1392i 1.33848i 0.743047 + 0.669239i \(0.233380\pi\)
−0.743047 + 0.669239i \(0.766620\pi\)
\(614\) 51.2809 2.06953
\(615\) −5.92478 6.70052i −0.238910 0.270191i
\(616\) 25.0132 1.00781
\(617\) 29.0132i 1.16803i 0.811744 + 0.584013i \(0.198518\pi\)
−0.811744 + 0.584013i \(0.801482\pi\)
\(618\) 19.7830i 0.795791i
\(619\) 12.2134 0.490900 0.245450 0.969409i \(-0.421064\pi\)
0.245450 + 0.969409i \(0.421064\pi\)
\(620\) 45.6688 40.3815i 1.83410 1.62176i
\(621\) 17.9902 0.721920
\(622\) 67.5487i 2.70845i
\(623\) 2.23743i 0.0896406i
\(624\) 0 0
\(625\) −24.2506 6.07522i −0.970024 0.243009i
\(626\) −7.52232 −0.300652
\(627\) 2.96239i 0.118306i
\(628\) 14.3127i 0.571137i
\(629\) −5.08840 −0.202888
\(630\) 10.0000 8.84226i 0.398410 0.352284i
\(631\) 1.22188 0.0486424 0.0243212 0.999704i \(-0.492258\pi\)
0.0243212 + 0.999704i \(0.492258\pi\)
\(632\) 19.0982i 0.759687i
\(633\) 2.35870i 0.0937498i
\(634\) 63.5837 2.52523
\(635\) 6.36107 + 7.19394i 0.252431 + 0.285483i
\(636\) −14.2374 −0.564551
\(637\) 0 0
\(638\) 23.7743i 0.941235i
\(639\) −23.7043 −0.937728
\(640\) −24.5428 27.7562i −0.970139 1.09716i
\(641\) −22.1016 −0.872960 −0.436480 0.899714i \(-0.643775\pi\)
−0.436480 + 0.899714i \(0.643775\pi\)
\(642\) 14.3284i 0.565496i
\(643\) 11.6688i 0.460172i 0.973170 + 0.230086i \(0.0739008\pi\)
−0.973170 + 0.230086i \(0.926099\pi\)
\(644\) 26.9380 1.06150
\(645\) 5.47627 4.84226i 0.215628 0.190664i
\(646\) 6.05079 0.238065
\(647\) 11.9575i 0.470096i 0.971984 + 0.235048i \(0.0755248\pi\)
−0.971984 + 0.235048i \(0.924475\pi\)
\(648\) 58.8491i 2.31181i
\(649\) 22.0059 0.863806
\(650\) 0 0
\(651\) 2.05079 0.0803766
\(652\) 11.5066i 0.450633i
\(653\) 10.9986i 0.430408i 0.976569 + 0.215204i \(0.0690416\pi\)
−0.976569 + 0.215204i \(0.930958\pi\)
\(654\) 12.3418 0.482604
\(655\) 1.40105 1.23884i 0.0547434 0.0484056i
\(656\) 102.038 3.98392
\(657\) 32.5804i 1.27108i
\(658\) 6.88717i 0.268490i
\(659\) 2.63989 0.102835 0.0514177 0.998677i \(-0.483626\pi\)
0.0514177 + 0.998677i \(0.483626\pi\)
\(660\) 13.5066 + 15.2750i 0.525743 + 0.594580i
\(661\) −18.3028 −0.711896 −0.355948 0.934506i \(-0.615842\pi\)
−0.355948 + 0.934506i \(0.615842\pi\)
\(662\) 31.5696i 1.22699i
\(663\) 0 0
\(664\) −32.4544 −1.25947
\(665\) −2.00000 2.26187i −0.0775567 0.0877114i
\(666\) −27.9090 −1.08145
\(667\) 15.6728i 0.606852i
\(668\) 80.9194i 3.13087i
\(669\) −11.9854 −0.463383
\(670\) 44.3390 39.2057i 1.71296 1.51465i
\(671\) −6.49929 −0.250902
\(672\) 6.18664i 0.238655i
\(673\) 6.71037i 0.258666i −0.991601 0.129333i \(-0.958716\pi\)
0.991601 0.129333i \(-0.0412836\pi\)
\(674\) 43.1002 1.66016
\(675\) 13.7743 + 1.69911i 0.530174 + 0.0653987i
\(676\) 0 0
\(677\) 1.57593i 0.0605679i −0.999541 0.0302840i \(-0.990359\pi\)
0.999541 0.0302840i \(-0.00964116\pi\)
\(678\) 0.739549i 0.0284022i
\(679\) 1.51056 0.0579698
\(680\) −19.0982 + 16.8872i −0.732384 + 0.647593i
\(681\) 4.79033 0.183566
\(682\) 51.9814i 1.99047i
\(683\) 15.1939i 0.581380i 0.956817 + 0.290690i \(0.0938848\pi\)
−0.956817 + 0.290690i \(0.906115\pi\)
\(684\) 23.9126 0.914320
\(685\) −22.1260 25.0230i −0.845391 0.956081i
\(686\) −28.7875 −1.09911
\(687\) 2.57452i 0.0982239i
\(688\) 83.3947i 3.17939i
\(689\) 0 0
\(690\) 12.3576 + 13.9756i 0.470444 + 0.532041i
\(691\) 18.7127 0.711866 0.355933 0.934511i \(-0.384163\pi\)
0.355933 + 0.934511i \(0.384163\pi\)
\(692\) 131.938i 5.01555i
\(693\) 8.20123i 0.311539i
\(694\) 73.5510 2.79196
\(695\) −14.1359 + 12.4993i −0.536204 + 0.474125i
\(696\) 9.82512 0.372420
\(697\) 11.2243i 0.425149i
\(698\) 47.0884i 1.78232i
\(699\) −5.17821 −0.195858
\(700\) 20.6253 + 2.54420i 0.779563 + 0.0961617i
\(701\) 24.3028 0.917904 0.458952 0.888461i \(-0.348225\pi\)
0.458952 + 0.888461i \(0.348225\pi\)
\(702\) 0 0
\(703\) 6.31265i 0.238086i
\(704\) −66.5886 −2.50965
\(705\) −2.57452 + 2.27645i −0.0969619 + 0.0857362i
\(706\) 42.1827 1.58757
\(707\) 8.46310i 0.318287i
\(708\) 14.8568i 0.558355i
\(709\) −9.66291 −0.362898 −0.181449 0.983400i \(-0.558079\pi\)
−0.181449 + 0.983400i \(0.558079\pi\)
\(710\) −33.9271 38.3693i −1.27326 1.43997i
\(711\) 6.26187 0.234838
\(712\) 23.4372i 0.878348i
\(713\) 34.2677i 1.28334i
\(714\) −1.40105 −0.0524329
\(715\) 0 0
\(716\) 62.5256 2.33669
\(717\) 5.70782i 0.213162i
\(718\) 39.6566i 1.47997i
\(719\) −28.4142 −1.05967 −0.529836 0.848100i \(-0.677746\pi\)
−0.529836 + 0.848100i \(0.677746\pi\)
\(720\) −56.9257 + 50.3352i −2.12150 + 1.87588i
\(721\) −12.3879 −0.461349
\(722\) 43.3209i 1.61224i
\(723\) 13.7743i 0.512273i
\(724\) 14.0811 0.523320
\(725\) −1.48024 + 12.0000i −0.0549747 + 0.445669i
\(726\) 3.22662 0.119751
\(727\) 34.8545i 1.29268i −0.763049 0.646341i \(-0.776299\pi\)
0.763049 0.646341i \(-0.223701\pi\)
\(728\) 0 0
\(729\) 15.2882 0.566230
\(730\) 52.7367 46.6312i 1.95187 1.72590i
\(731\) 9.17347 0.339293
\(732\) 4.38787i 0.162180i
\(733\) 6.25202i 0.230923i 0.993312 + 0.115462i \(0.0368348\pi\)
−0.993312 + 0.115462i \(0.963165\pi\)
\(734\) −72.3122 −2.66909
\(735\) −4.52610 5.11871i −0.166948 0.188807i
\(736\) −103.376 −3.81050
\(737\) 36.3634i 1.33946i
\(738\) 61.5633i 2.26617i
\(739\) −32.0846 −1.18025 −0.590126 0.807311i \(-0.700922\pi\)
−0.590126 + 0.807311i \(0.700922\pi\)
\(740\) −28.7816 32.5501i −1.05803 1.19656i
\(741\) 0 0
\(742\) 12.3733i 0.454238i
\(743\) 30.5442i 1.12056i −0.828304 0.560279i \(-0.810694\pi\)
0.828304 0.560279i \(-0.189306\pi\)
\(744\) −21.4821 −0.787574
\(745\) 19.0132 16.8119i 0.696589 0.615942i
\(746\) −34.6497 −1.26862
\(747\) 10.6410i 0.389335i
\(748\) 25.5877i 0.935579i
\(749\) 8.97224 0.327838
\(750\) 8.14174 + 11.8677i 0.297294 + 0.433345i
\(751\) 28.1622 1.02765 0.513827 0.857894i \(-0.328227\pi\)
0.513827 + 0.857894i \(0.328227\pi\)
\(752\) 39.2057i 1.42968i
\(753\) 9.32865i 0.339955i
\(754\) 0 0
\(755\) 23.4314 20.7186i 0.852755 0.754028i
\(756\) −11.5369 −0.419593
\(757\) 35.4109i 1.28703i 0.765433 + 0.643515i \(0.222525\pi\)
−0.765433 + 0.643515i \(0.777475\pi\)
\(758\) 81.0186i 2.94273i
\(759\) 11.4617 0.416033
\(760\) 20.9502 + 23.6932i 0.759943 + 0.859444i
\(761\) 19.2388 0.697407 0.348704 0.937233i \(-0.386622\pi\)
0.348704 + 0.937233i \(0.386622\pi\)
\(762\) 5.52820i 0.200265i
\(763\) 7.72829i 0.279783i
\(764\) −106.351 −3.84764
\(765\) 5.53690 + 6.26187i 0.200187 + 0.226398i
\(766\) −56.4299 −2.03890
\(767\) 0 0
\(768\) 3.89209i 0.140444i
\(769\) 48.9643 1.76570 0.882849 0.469657i \(-0.155622\pi\)
0.882849 + 0.469657i \(0.155622\pi\)
\(770\) 13.2750 11.7381i 0.478399 0.423013i
\(771\) −11.0014 −0.396206
\(772\) 112.351i 4.04359i
\(773\) 46.1681i 1.66055i 0.557354 + 0.830275i \(0.311817\pi\)
−0.557354 + 0.830275i \(0.688183\pi\)
\(774\) 50.3150 1.80854
\(775\) 3.23647 26.2374i 0.116258 0.942476i
\(776\) −15.8232 −0.568020
\(777\) 1.46168i 0.0524375i
\(778\) 18.1260i 0.649849i
\(779\) −13.9248 −0.498907
\(780\) 0 0
\(781\) −31.4676 −1.12600
\(782\) 23.4109i 0.837172i
\(783\) 6.71228i 0.239877i
\(784\) 77.9497 2.78392
\(785\) −4.11142 4.64974i −0.146743 0.165956i
\(786\) −1.07664 −0.0384024
\(787\) 22.6458i 0.807234i 0.914928 + 0.403617i \(0.132247\pi\)
−0.914928 + 0.403617i \(0.867753\pi\)
\(788\) 10.3127i 0.367373i
\(789\) 10.5296 0.374864
\(790\) 8.96239 + 10.1359i 0.318867 + 0.360618i
\(791\) −0.463096 −0.0164658
\(792\) 85.9086i 3.05263i
\(793\) 0 0
\(794\) −28.0059 −0.993891
\(795\) −4.62530 + 4.08981i −0.164043 + 0.145051i
\(796\) −86.3752 −3.06149
\(797\) 8.23743i 0.291785i 0.989300 + 0.145892i \(0.0466053\pi\)
−0.989300 + 0.145892i \(0.953395\pi\)
\(798\) 1.73813i 0.0615293i
\(799\) −4.31265 −0.152571
\(800\) −79.1509 9.76353i −2.79841 0.345193i
\(801\) 7.68452 0.271519
\(802\) 13.4109i 0.473555i
\(803\) 43.2506i 1.52628i
\(804\) −24.5501 −0.865814
\(805\) 8.75131 7.73813i 0.308443 0.272733i
\(806\) 0 0
\(807\) 10.9478i 0.385381i
\(808\) 88.6516i 3.11875i
\(809\) −44.1319 −1.55159 −0.775797 0.630982i \(-0.782652\pi\)
−0.775797 + 0.630982i \(0.782652\pi\)
\(810\) 27.6166 + 31.2325i 0.970348 + 1.09740i
\(811\) −22.6883 −0.796694 −0.398347 0.917235i \(-0.630416\pi\)
−0.398347 + 0.917235i \(0.630416\pi\)
\(812\) 10.0508i 0.352713i
\(813\) 0.0594941i 0.00208655i
\(814\) −37.0494 −1.29858
\(815\) −3.30536 3.73813i −0.115782 0.130941i
\(816\) 7.97556 0.279201
\(817\) 11.3806i 0.398156i
\(818\) 38.4894i 1.34575i
\(819\) 0 0
\(820\) 71.8007 63.4880i 2.50739 2.21710i
\(821\) 50.2736 1.75456 0.877281 0.479978i \(-0.159355\pi\)
0.877281 + 0.479978i \(0.159355\pi\)
\(822\) 19.2290i 0.670688i
\(823\) 5.13093i 0.178853i −0.995993 0.0894265i \(-0.971497\pi\)
0.995993 0.0894265i \(-0.0285034\pi\)
\(824\) 129.764 4.52054
\(825\) 8.77575 + 1.08252i 0.305532 + 0.0376884i
\(826\) −12.9116 −0.449252
\(827\) 18.6946i 0.650076i −0.945701 0.325038i \(-0.894623\pi\)
0.945701 0.325038i \(-0.105377\pi\)
\(828\) 92.5193i 3.21527i
\(829\) 3.44121 0.119518 0.0597591 0.998213i \(-0.480967\pi\)
0.0597591 + 0.998213i \(0.480967\pi\)
\(830\) −17.2243 + 15.2301i −0.597863 + 0.528646i
\(831\) 7.38646 0.256233
\(832\) 0 0
\(833\) 8.57452i 0.297089i
\(834\) 10.8627 0.376146
\(835\) −23.2447 26.2882i −0.804417 0.909741i
\(836\) 31.7440 1.09789
\(837\) 14.6761i 0.507280i
\(838\) 46.7123i 1.61365i
\(839\) −52.6248 −1.81681 −0.908406 0.418090i \(-0.862700\pi\)
−0.908406 + 0.418090i \(0.862700\pi\)
\(840\) −4.85097 5.48612i −0.167374 0.189289i
\(841\) −23.1524 −0.798357
\(842\) 7.72355i 0.266171i
\(843\) 6.70052i 0.230778i
\(844\) 25.2750 0.870003
\(845\) 0 0
\(846\) −23.6542 −0.813248
\(847\) 2.02047i 0.0694241i
\(848\) 70.4358i 2.41878i
\(849\) 9.80748 0.336592
\(850\) −2.21108 + 17.9248i −0.0758394 + 0.614815i
\(851\) −24.4241 −0.837246
\(852\) 21.2447i 0.727832i
\(853\) 6.31853i 0.216342i −0.994132 0.108171i \(-0.965501\pi\)
0.994132 0.108171i \(-0.0344995\pi\)
\(854\) 3.81336 0.130490
\(855\) 7.76845 6.86907i 0.265675 0.234917i
\(856\) −93.9850 −3.21234
\(857\) 0.775746i 0.0264990i −0.999912 0.0132495i \(-0.995782\pi\)
0.999912 0.0132495i \(-0.00421757\pi\)
\(858\) 0 0
\(859\) −3.24869 −0.110844 −0.0554220 0.998463i \(-0.517650\pi\)
−0.0554220 + 0.998463i \(0.517650\pi\)
\(860\) 51.8881 + 58.6820i 1.76937 + 2.00104i
\(861\) 3.22425 0.109882
\(862\) 2.37962i 0.0810503i
\(863\) 19.9208i 0.678112i −0.940766 0.339056i \(-0.889892\pi\)
0.940766 0.339056i \(-0.110108\pi\)
\(864\) 44.2736 1.50622
\(865\) −37.9003 42.8627i −1.28865 1.45738i
\(866\) 67.5487 2.29540
\(867\) 7.30299i 0.248022i
\(868\) 21.9756i 0.745899i
\(869\) 8.31265 0.281987
\(870\) 5.21440 4.61071i 0.176785 0.156318i
\(871\) 0 0
\(872\) 80.9544i 2.74146i
\(873\) 5.18806i 0.175589i
\(874\) 29.0435 0.982411
\(875\) 7.43136 5.09825i 0.251226 0.172352i
\(876\) −29.1998 −0.986570
\(877\) 22.1378i 0.747539i −0.927522 0.373770i \(-0.878065\pi\)
0.927522 0.373770i \(-0.121935\pi\)
\(878\) 77.0757i 2.60118i
\(879\) −2.58910 −0.0873283
\(880\) −75.5691 + 66.8202i −2.54743 + 2.25251i
\(881\) 2.23155 0.0751828 0.0375914 0.999293i \(-0.488031\pi\)
0.0375914 + 0.999293i \(0.488031\pi\)
\(882\) 47.0299i 1.58358i
\(883\) 4.30440i 0.144855i 0.997374 + 0.0724273i \(0.0230745\pi\)
−0.997374 + 0.0724273i \(0.976925\pi\)
\(884\) 0 0
\(885\) −4.26774 4.82653i −0.143459 0.162242i
\(886\) −98.9276 −3.32354
\(887\) 15.9330i 0.534979i 0.963561 + 0.267489i \(0.0861940\pi\)
−0.963561 + 0.267489i \(0.913806\pi\)
\(888\) 15.3112i 0.513811i
\(889\) −3.46168 −0.116101
\(890\) 10.9986 + 12.4387i 0.368673 + 0.416945i
\(891\) 25.6145 0.858118
\(892\) 128.432i 4.30022i
\(893\) 5.35026i 0.179040i
\(894\) −14.6107 −0.488655
\(895\) 20.3127 17.9610i 0.678977 0.600369i
\(896\) 13.3561 0.446197
\(897\) 0 0
\(898\) 33.9365i 1.13248i
\(899\) −12.7856 −0.426423
\(900\) −8.73813 + 70.8383i −0.291271 + 2.36128i
\(901\) −7.74798 −0.258123
\(902\) 81.7255i 2.72116i
\(903\) 2.63515i 0.0876923i
\(904\) 4.85097 0.161341
\(905\) 4.57452 4.04491i 0.152062 0.134457i
\(906\) −18.0059 −0.598205
\(907\) 51.9086i 1.72360i −0.507251 0.861798i \(-0.669338\pi\)
0.507251 0.861798i \(-0.330662\pi\)
\(908\) 51.3317i 1.70350i
\(909\) 29.0668 0.964085
\(910\) 0 0
\(911\) −9.67750 −0.320630 −0.160315 0.987066i \(-0.551251\pi\)
−0.160315 + 0.987066i \(0.551251\pi\)
\(912\) 9.89446i 0.327638i
\(913\) 14.1260i 0.467503i
\(914\) 67.0103 2.21651
\(915\) 1.26045 + 1.42548i 0.0416692 + 0.0471251i
\(916\) −27.5877 −0.911523
\(917\) 0.674176i 0.0222632i
\(918\) 10.0263i 0.330919i
\(919\) −13.5515 −0.447022 −0.223511 0.974701i \(-0.571752\pi\)
−0.223511 + 0.974701i \(0.571752\pi\)
\(920\) −91.6707 + 81.0576i −3.02229 + 2.67239i
\(921\) −9.22425 −0.303949
\(922\) 98.6780i 3.24979i
\(923\) 0 0
\(924\) −7.35026 −0.241806
\(925\) −18.7005 2.30677i −0.614869 0.0758462i
\(926\) −104.381 −3.43017
\(927\) 42.5466i 1.39741i
\(928\) 38.5705i 1.26614i
\(929\) −9.44992 −0.310042 −0.155021 0.987911i \(-0.549545\pi\)
−0.155021 + 0.987911i \(0.549545\pi\)
\(930\) −11.4010 + 10.0811i −0.373855 + 0.330572i
\(931\) −10.6375 −0.348631
\(932\) 55.4880i 1.81757i
\(933\) 12.1504i 0.397788i
\(934\) 87.6625 2.86840
\(935\) 7.35026 + 8.31265i 0.240379 + 0.271853i
\(936\) 0 0
\(937\) 16.0409i 0.524035i 0.965063 + 0.262017i \(0.0843877\pi\)
−0.965063 + 0.262017i \(0.915612\pi\)
\(938\) 21.3357i 0.696634i
\(939\) 1.35309 0.0441565
\(940\) −24.3938 27.5877i −0.795636 0.899811i
\(941\) 21.6747 0.706574 0.353287 0.935515i \(-0.385064\pi\)
0.353287 + 0.935515i \(0.385064\pi\)
\(942\) 3.57310i 0.116418i
\(943\) 53.8759i 1.75444i
\(944\) 73.5002 2.39223
\(945\) −3.74798 + 3.31406i −0.121922 + 0.107807i
\(946\) 66.7934 2.17164
\(947\) 4.63118i 0.150493i 0.997165 + 0.0752466i \(0.0239744\pi\)
−0.997165 + 0.0752466i \(0.976026\pi\)
\(948\) 5.61213i 0.182273i
\(949\) 0 0
\(950\) 22.2374 + 2.74306i 0.721477 + 0.0889966i
\(951\) −11.4372 −0.370878
\(952\) 9.18997i 0.297849i
\(953\) 26.2981i 0.851878i −0.904752 0.425939i \(-0.859944\pi\)
0.904752 0.425939i \(-0.140056\pi\)
\(954\) −42.4965 −1.37587
\(955\) −34.5501 + 30.5501i −1.11801 + 0.988577i
\(956\) 61.1632 1.97816
\(957\) 4.27645i 0.138238i
\(958\) 45.1427i 1.45849i
\(959\) 12.0409 0.388822
\(960\) 12.9140 + 14.6048i 0.416797 + 0.471369i
\(961\) −3.04491 −0.0982228
\(962\) 0 0
\(963\) 30.8155i 0.993014i
\(964\) −147.601 −4.75392
\(965\) 32.2736 + 36.4993i 1.03892 + 1.17495i
\(966\) −6.72496 −0.216372
\(967\) 11.9405i 0.383981i 0.981397 + 0.191990i \(0.0614942\pi\)
−0.981397 + 0.191990i \(0.938506\pi\)
\(968\) 21.1646i 0.680255i
\(969\) −1.08840 −0.0349643
\(970\) −8.39772 + 7.42548i −0.269635 + 0.238418i
\(971\) 30.1524 0.967635 0.483818 0.875169i \(-0.339250\pi\)
0.483818 + 0.875169i \(0.339250\pi\)
\(972\) 60.2311i 1.93191i
\(973\) 6.80209i 0.218065i
\(974\) 24.7308 0.792427
\(975\) 0 0
\(976\) −21.7078 −0.694850
\(977\) 26.9321i 0.861633i −0.902439 0.430817i \(-0.858226\pi\)
0.902439 0.430817i \(-0.141774\pi\)
\(978\) 2.87258i 0.0918549i
\(979\) 10.2012 0.326033
\(980\) 54.8505 48.5002i 1.75214 1.54928i
\(981\) 26.5431 0.847455
\(982\) 68.8843i 2.19819i
\(983\) 20.5902i 0.656727i −0.944551 0.328363i \(-0.893503\pi\)
0.944551 0.328363i \(-0.106497\pi\)
\(984\) −33.7743 −1.07669
\(985\) 2.96239 + 3.35026i 0.0943895 + 0.106748i
\(986\) 8.73481 0.278173
\(987\) 1.23884i 0.0394328i
\(988\) 0 0
\(989\) 44.0322 1.40014
\(990\) 40.3150 + 45.5936i 1.28130 + 1.44906i
\(991\) −48.1378 −1.52915 −0.764573 0.644537i \(-0.777050\pi\)
−0.764573 + 0.644537i \(0.777050\pi\)
\(992\) 84.3327i 2.67756i
\(993\) 5.67864i 0.180206i
\(994\) 18.4631 0.585614
\(995\) −28.0606 + 24.8119i −0.889582 + 0.786591i
\(996\) 9.53690 0.302188
\(997\) 33.4255i 1.05860i 0.848436 + 0.529298i \(0.177545\pi\)
−0.848436 + 0.529298i \(0.822455\pi\)
\(998\) 74.1051i 2.34576i
\(999\) 10.4603 0.330948
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.b.c.339.1 6
5.2 odd 4 4225.2.a.bh.1.3 3
5.3 odd 4 4225.2.a.ba.1.1 3
5.4 even 2 inner 845.2.b.c.339.6 6
13.2 odd 12 845.2.l.e.654.5 12
13.3 even 3 845.2.n.g.529.6 12
13.4 even 6 845.2.n.f.484.6 12
13.5 odd 4 845.2.d.a.844.2 6
13.6 odd 12 845.2.l.e.699.6 12
13.7 odd 12 845.2.l.d.699.2 12
13.8 odd 4 845.2.d.b.844.6 6
13.9 even 3 845.2.n.g.484.1 12
13.10 even 6 845.2.n.f.529.1 12
13.11 odd 12 845.2.l.d.654.1 12
13.12 even 2 65.2.b.a.14.6 yes 6
39.38 odd 2 585.2.c.b.469.1 6
52.51 odd 2 1040.2.d.c.209.3 6
65.4 even 6 845.2.n.f.484.1 12
65.9 even 6 845.2.n.g.484.6 12
65.12 odd 4 325.2.a.j.1.1 3
65.19 odd 12 845.2.l.d.699.1 12
65.24 odd 12 845.2.l.e.654.6 12
65.29 even 6 845.2.n.g.529.1 12
65.34 odd 4 845.2.d.a.844.1 6
65.38 odd 4 325.2.a.k.1.3 3
65.44 odd 4 845.2.d.b.844.5 6
65.49 even 6 845.2.n.f.529.6 12
65.54 odd 12 845.2.l.d.654.2 12
65.59 odd 12 845.2.l.e.699.5 12
65.64 even 2 65.2.b.a.14.1 6
195.38 even 4 2925.2.a.bf.1.1 3
195.77 even 4 2925.2.a.bj.1.3 3
195.194 odd 2 585.2.c.b.469.6 6
260.103 even 4 5200.2.a.cb.1.3 3
260.207 even 4 5200.2.a.cj.1.1 3
260.259 odd 2 1040.2.d.c.209.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.1 6 65.64 even 2
65.2.b.a.14.6 yes 6 13.12 even 2
325.2.a.j.1.1 3 65.12 odd 4
325.2.a.k.1.3 3 65.38 odd 4
585.2.c.b.469.1 6 39.38 odd 2
585.2.c.b.469.6 6 195.194 odd 2
845.2.b.c.339.1 6 1.1 even 1 trivial
845.2.b.c.339.6 6 5.4 even 2 inner
845.2.d.a.844.1 6 65.34 odd 4
845.2.d.a.844.2 6 13.5 odd 4
845.2.d.b.844.5 6 65.44 odd 4
845.2.d.b.844.6 6 13.8 odd 4
845.2.l.d.654.1 12 13.11 odd 12
845.2.l.d.654.2 12 65.54 odd 12
845.2.l.d.699.1 12 65.19 odd 12
845.2.l.d.699.2 12 13.7 odd 12
845.2.l.e.654.5 12 13.2 odd 12
845.2.l.e.654.6 12 65.24 odd 12
845.2.l.e.699.5 12 65.59 odd 12
845.2.l.e.699.6 12 13.6 odd 12
845.2.n.f.484.1 12 65.4 even 6
845.2.n.f.484.6 12 13.4 even 6
845.2.n.f.529.1 12 13.10 even 6
845.2.n.f.529.6 12 65.49 even 6
845.2.n.g.484.1 12 13.9 even 3
845.2.n.g.484.6 12 65.9 even 6
845.2.n.g.529.1 12 65.29 even 6
845.2.n.g.529.6 12 13.3 even 3
1040.2.d.c.209.3 6 52.51 odd 2
1040.2.d.c.209.4 6 260.259 odd 2
2925.2.a.bf.1.1 3 195.38 even 4
2925.2.a.bj.1.3 3 195.77 even 4
4225.2.a.ba.1.1 3 5.3 odd 4
4225.2.a.bh.1.3 3 5.2 odd 4
5200.2.a.cb.1.3 3 260.103 even 4
5200.2.a.cj.1.1 3 260.207 even 4