Properties

Label 845.2.n.g.484.1
Level $845$
Weight $2$
Character 845.484
Analytic conductor $6.747$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(484,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.484"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,10,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 484.1
Root \(0.550552 + 0.147520i\) of defining polynomial
Character \(\chi\) \(=\) 845.484
Dual form 845.2.n.g.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.31673 + 1.33757i) q^{2} +(0.416726 - 0.240597i) q^{3} +(2.57816 - 4.46551i) q^{4} +(-1.67513 + 1.48119i) q^{5} +(-0.643629 + 1.11480i) q^{6} +(0.698071 + 0.403032i) q^{7} +8.44358i q^{8} +(-1.38423 + 2.39755i) q^{9} +(1.89963 - 5.67213i) q^{10} +(-1.83757 - 3.18276i) q^{11} -2.48119i q^{12} -2.15633 q^{14} +(-0.341700 + 1.02028i) q^{15} +(-6.13752 - 10.6305i) q^{16} +(1.16936 + 0.675131i) q^{17} -7.40597i q^{18} +(0.837565 - 1.45071i) q^{19} +(2.29553 + 11.2991i) q^{20} +0.387873 q^{21} +(8.51429 + 4.91573i) q^{22} +(-5.61288 + 3.24060i) q^{23} +(2.03150 + 3.51866i) q^{24} +(0.612127 - 4.96239i) q^{25} +2.77575i q^{27} +(3.59948 - 2.07816i) q^{28} +(1.20910 + 2.09421i) q^{29} +(-0.573070 - 2.82077i) q^{30} +5.28726 q^{31} +(13.8133 + 7.97508i) q^{32} +(-1.53152 - 0.884226i) q^{33} -3.61213 q^{34} +(-1.76633 + 0.358849i) q^{35} +(7.13752 + 12.3625i) q^{36} +(-3.26358 + 1.88423i) q^{37} +4.48119i q^{38} +(-12.5066 - 14.1441i) q^{40} +(-4.15633 - 7.19897i) q^{41} +(-0.898598 + 0.518806i) q^{42} +(-5.88364 - 3.39692i) q^{43} -18.9502 q^{44} +(-1.23248 - 6.06652i) q^{45} +(8.66902 - 15.0152i) q^{46} -3.19394i q^{47} +(-5.11533 - 2.95334i) q^{48} +(-3.17513 - 5.49949i) q^{49} +(5.21939 + 12.3153i) q^{50} +0.649738 q^{51} -5.73813i q^{53} +(-3.71274 - 6.43066i) q^{54} +(7.79244 + 2.60974i) q^{55} +(-3.40303 + 5.89422i) q^{56} -0.806063i q^{57} +(-5.60230 - 3.23449i) q^{58} +(-2.99389 + 5.18557i) q^{59} +(3.67513 + 4.15633i) q^{60} +(0.884226 - 1.53152i) q^{61} +(-12.2492 + 7.07205i) q^{62} +(-1.93258 + 1.11577i) q^{63} -18.1187 q^{64} +4.73084 q^{66} +(-8.56885 + 4.94723i) q^{67} +(6.02961 - 3.48119i) q^{68} +(-1.55936 + 2.70089i) q^{69} +(3.61213 - 3.19394i) q^{70} +(4.28115 - 7.41517i) q^{71} +(-20.2439 - 11.6878i) q^{72} -11.7685i q^{73} +(5.04055 - 8.73049i) q^{74} +(-0.938847 - 2.21523i) q^{75} +(-4.31876 - 7.48031i) q^{76} -2.96239i q^{77} +2.26187 q^{79} +(26.0270 + 8.71661i) q^{80} +(-3.48484 - 6.03592i) q^{81} +(19.2582 + 11.1187i) q^{82} +3.84367i q^{83} +(1.00000 - 1.73205i) q^{84} +(-2.95883 + 0.601118i) q^{85} +18.1744 q^{86} +(1.00772 + 0.581810i) q^{87} +(26.8739 - 15.5156i) q^{88} +(-1.38787 - 2.40387i) q^{89} +(10.9697 + 12.4060i) q^{90} +33.4191i q^{92} +(2.20334 - 1.27210i) q^{93} +(4.27210 + 7.39949i) q^{94} +(0.745746 + 3.67072i) q^{95} +7.67513 q^{96} +(-1.62292 - 0.936996i) q^{97} +(14.7119 + 8.49389i) q^{98} +10.1744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 10 q^{4} + 4 q^{6} + 6 q^{9} - 2 q^{10} - 12 q^{11} + 16 q^{14} + 16 q^{15} - 10 q^{16} - 20 q^{20} + 8 q^{21} + 16 q^{24} + 4 q^{25} + 12 q^{29} - 8 q^{30} + 40 q^{31} - 40 q^{34} - 8 q^{35} + 22 q^{36}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.31673 + 1.33757i −1.63818 + 0.945802i −0.656716 + 0.754138i \(0.728055\pi\)
−0.981461 + 0.191663i \(0.938612\pi\)
\(3\) 0.416726 0.240597i 0.240597 0.138909i −0.374854 0.927084i \(-0.622307\pi\)
0.615451 + 0.788175i \(0.288974\pi\)
\(4\) 2.57816 4.46551i 1.28908 2.23275i
\(5\) −1.67513 + 1.48119i −0.749141 + 0.662410i
\(6\) −0.643629 + 1.11480i −0.262760 + 0.455114i
\(7\) 0.698071 + 0.403032i 0.263846 + 0.152332i 0.626088 0.779753i \(-0.284655\pi\)
−0.362242 + 0.932084i \(0.617988\pi\)
\(8\) 8.44358i 2.98526i
\(9\) −1.38423 + 2.39755i −0.461409 + 0.799183i
\(10\) 1.89963 5.67213i 0.600717 1.79368i
\(11\) −1.83757 3.18276i −0.554047 0.959637i −0.997977 0.0635759i \(-0.979750\pi\)
0.443930 0.896061i \(-0.353584\pi\)
\(12\) 2.48119i 0.716259i
\(13\) 0 0
\(14\) −2.15633 −0.576302
\(15\) −0.341700 + 1.02028i −0.0882266 + 0.263436i
\(16\) −6.13752 10.6305i −1.53438 2.65762i
\(17\) 1.16936 + 0.675131i 0.283612 + 0.163743i 0.635057 0.772465i \(-0.280976\pi\)
−0.351446 + 0.936208i \(0.614310\pi\)
\(18\) 7.40597i 1.74560i
\(19\) 0.837565 1.45071i 0.192151 0.332815i −0.753812 0.657090i \(-0.771787\pi\)
0.945963 + 0.324275i \(0.105120\pi\)
\(20\) 2.29553 + 11.2991i 0.513295 + 2.52655i
\(21\) 0.387873 0.0846409
\(22\) 8.51429 + 4.91573i 1.81525 + 1.04804i
\(23\) −5.61288 + 3.24060i −1.17037 + 0.675711i −0.953766 0.300549i \(-0.902830\pi\)
−0.216600 + 0.976260i \(0.569497\pi\)
\(24\) 2.03150 + 3.51866i 0.414679 + 0.718244i
\(25\) 0.612127 4.96239i 0.122425 0.992478i
\(26\) 0 0
\(27\) 2.77575i 0.534193i
\(28\) 3.59948 2.07816i 0.680238 0.392736i
\(29\) 1.20910 + 2.09421i 0.224523 + 0.388886i 0.956176 0.292791i \(-0.0945842\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(30\) −0.573070 2.82077i −0.104628 0.515000i
\(31\) 5.28726 0.949620 0.474810 0.880088i \(-0.342517\pi\)
0.474810 + 0.880088i \(0.342517\pi\)
\(32\) 13.8133 + 7.97508i 2.44186 + 1.40981i
\(33\) −1.53152 0.884226i −0.266604 0.153924i
\(34\) −3.61213 −0.619475
\(35\) −1.76633 + 0.358849i −0.298564 + 0.0606565i
\(36\) 7.13752 + 12.3625i 1.18959 + 2.06042i
\(37\) −3.26358 + 1.88423i −0.536528 + 0.309765i −0.743671 0.668546i \(-0.766917\pi\)
0.207142 + 0.978311i \(0.433584\pi\)
\(38\) 4.48119i 0.726946i
\(39\) 0 0
\(40\) −12.5066 14.1441i −1.97747 2.23638i
\(41\) −4.15633 7.19897i −0.649109 1.12429i −0.983336 0.181797i \(-0.941809\pi\)
0.334227 0.942493i \(-0.391525\pi\)
\(42\) −0.898598 + 0.518806i −0.138657 + 0.0800535i
\(43\) −5.88364 3.39692i −0.897247 0.518026i −0.0209410 0.999781i \(-0.506666\pi\)
−0.876306 + 0.481755i \(0.840000\pi\)
\(44\) −18.9502 −2.85685
\(45\) −1.23248 6.06652i −0.183727 0.904343i
\(46\) 8.66902 15.0152i 1.27818 2.21387i
\(47\) 3.19394i 0.465884i −0.972491 0.232942i \(-0.925165\pi\)
0.972491 0.232942i \(-0.0748352\pi\)
\(48\) −5.11533 2.95334i −0.738335 0.426278i
\(49\) −3.17513 5.49949i −0.453590 0.785641i
\(50\) 5.21939 + 12.3153i 0.738133 + 1.74164i
\(51\) 0.649738 0.0909816
\(52\) 0 0
\(53\) 5.73813i 0.788193i −0.919069 0.394097i \(-0.871057\pi\)
0.919069 0.394097i \(-0.128943\pi\)
\(54\) −3.71274 6.43066i −0.505240 0.875102i
\(55\) 7.79244 + 2.60974i 1.05073 + 0.351898i
\(56\) −3.40303 + 5.89422i −0.454749 + 0.787649i
\(57\) 0.806063i 0.106766i
\(58\) −5.60230 3.23449i −0.735618 0.424709i
\(59\) −2.99389 + 5.18557i −0.389771 + 0.675104i −0.992419 0.122904i \(-0.960779\pi\)
0.602647 + 0.798008i \(0.294113\pi\)
\(60\) 3.67513 + 4.15633i 0.474457 + 0.536579i
\(61\) 0.884226 1.53152i 0.113214 0.196092i −0.803851 0.594831i \(-0.797219\pi\)
0.917064 + 0.398740i \(0.130552\pi\)
\(62\) −12.2492 + 7.07205i −1.55564 + 0.898152i
\(63\) −1.93258 + 1.11577i −0.243482 + 0.140574i
\(64\) −18.1187 −2.26484
\(65\) 0 0
\(66\) 4.73084 0.582326
\(67\) −8.56885 + 4.94723i −1.04685 + 0.604400i −0.921766 0.387746i \(-0.873254\pi\)
−0.125086 + 0.992146i \(0.539921\pi\)
\(68\) 6.02961 3.48119i 0.731197 0.422157i
\(69\) −1.55936 + 2.70089i −0.187725 + 0.325148i
\(70\) 3.61213 3.19394i 0.431732 0.381748i
\(71\) 4.28115 7.41517i 0.508079 0.880018i −0.491877 0.870664i \(-0.663689\pi\)
0.999956 0.00935389i \(-0.00297748\pi\)
\(72\) −20.2439 11.6878i −2.38577 1.37742i
\(73\) 11.7685i 1.37739i −0.725050 0.688697i \(-0.758183\pi\)
0.725050 0.688697i \(-0.241817\pi\)
\(74\) 5.04055 8.73049i 0.585952 1.01490i
\(75\) −0.938847 2.21523i −0.108409 0.255793i
\(76\) −4.31876 7.48031i −0.495396 0.858051i
\(77\) 2.96239i 0.337596i
\(78\) 0 0
\(79\) 2.26187 0.254480 0.127240 0.991872i \(-0.459388\pi\)
0.127240 + 0.991872i \(0.459388\pi\)
\(80\) 26.0270 + 8.71661i 2.90990 + 0.974547i
\(81\) −3.48484 6.03592i −0.387205 0.670658i
\(82\) 19.2582 + 11.1187i 2.12671 + 1.22786i
\(83\) 3.84367i 0.421898i 0.977497 + 0.210949i \(0.0676554\pi\)
−0.977497 + 0.210949i \(0.932345\pi\)
\(84\) 1.00000 1.73205i 0.109109 0.188982i
\(85\) −2.95883 + 0.601118i −0.320930 + 0.0652004i
\(86\) 18.1744 1.95980
\(87\) 1.00772 + 0.581810i 0.108039 + 0.0623765i
\(88\) 26.8739 15.5156i 2.86476 1.65397i
\(89\) −1.38787 2.40387i −0.147114 0.254809i 0.783045 0.621964i \(-0.213665\pi\)
−0.930160 + 0.367155i \(0.880332\pi\)
\(90\) 10.9697 + 12.4060i 1.15631 + 1.30770i
\(91\) 0 0
\(92\) 33.4191i 3.48419i
\(93\) 2.20334 1.27210i 0.228476 0.131911i
\(94\) 4.27210 + 7.39949i 0.440633 + 0.763199i
\(95\) 0.745746 + 3.67072i 0.0765119 + 0.376608i
\(96\) 7.67513 0.783340
\(97\) −1.62292 0.936996i −0.164783 0.0951375i 0.415341 0.909666i \(-0.363662\pi\)
−0.580124 + 0.814528i \(0.696996\pi\)
\(98\) 14.7119 + 8.49389i 1.48612 + 0.858013i
\(99\) 10.1744 1.02257
\(100\) −20.5814 15.5273i −2.05814 1.55273i
\(101\) −5.24965 9.09265i −0.522359 0.904753i −0.999662 0.0260137i \(-0.991719\pi\)
0.477302 0.878739i \(-0.341615\pi\)
\(102\) −1.50527 + 0.869067i −0.149044 + 0.0860505i
\(103\) 15.3684i 1.51429i −0.653247 0.757145i \(-0.726594\pi\)
0.653247 0.757145i \(-0.273406\pi\)
\(104\) 0 0
\(105\) −0.649738 + 0.574515i −0.0634080 + 0.0560670i
\(106\) 7.67513 + 13.2937i 0.745475 + 1.29120i
\(107\) 9.63967 5.56547i 0.931902 0.538034i 0.0444895 0.999010i \(-0.485834\pi\)
0.887413 + 0.460976i \(0.152501\pi\)
\(108\) 12.3951 + 7.15633i 1.19272 + 0.688618i
\(109\) 9.58769 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(110\) −21.5437 + 4.37683i −2.05411 + 0.417314i
\(111\) −0.906679 + 1.57041i −0.0860581 + 0.149057i
\(112\) 9.89446i 0.934939i
\(113\) 0.497545 + 0.287258i 0.0468051 + 0.0270229i 0.523220 0.852198i \(-0.324731\pi\)
−0.476415 + 0.879221i \(0.658064\pi\)
\(114\) 1.07816 + 1.86743i 0.100979 + 0.174901i
\(115\) 4.60235 13.7422i 0.429172 1.28147i
\(116\) 12.4690 1.15772
\(117\) 0 0
\(118\) 16.0181i 1.47459i
\(119\) 0.544198 + 0.942579i 0.0498866 + 0.0864061i
\(120\) −8.61486 2.88517i −0.786425 0.263379i
\(121\) −1.25329 + 2.17077i −0.113936 + 0.197343i
\(122\) 4.73084i 0.428310i
\(123\) −3.46410 2.00000i −0.312348 0.180334i
\(124\) 13.6314 23.6103i 1.22414 2.12027i
\(125\) 6.32487 + 9.21933i 0.565713 + 0.824602i
\(126\) 2.98484 5.16990i 0.265911 0.460571i
\(127\) −3.71919 + 2.14728i −0.330025 + 0.190540i −0.655852 0.754889i \(-0.727691\pi\)
0.325827 + 0.945429i \(0.394357\pi\)
\(128\) 14.3497 8.28480i 1.26835 0.732279i
\(129\) −3.26916 −0.287833
\(130\) 0 0
\(131\) −0.836381 −0.0730749 −0.0365375 0.999332i \(-0.511633\pi\)
−0.0365375 + 0.999332i \(0.511633\pi\)
\(132\) −7.89704 + 4.55936i −0.687349 + 0.396841i
\(133\) 1.16936 0.675131i 0.101396 0.0585413i
\(134\) 13.2345 22.9228i 1.14329 1.98023i
\(135\) −4.11142 4.64974i −0.353855 0.400186i
\(136\) −5.70052 + 9.87360i −0.488816 + 0.846654i
\(137\) −12.9366 7.46898i −1.10525 0.638118i −0.167657 0.985845i \(-0.553620\pi\)
−0.937596 + 0.347728i \(0.886953\pi\)
\(138\) 8.34297i 0.710201i
\(139\) −4.21933 + 7.30809i −0.357879 + 0.619864i −0.987606 0.156952i \(-0.949833\pi\)
0.629727 + 0.776816i \(0.283167\pi\)
\(140\) −2.95144 + 8.81273i −0.249442 + 0.744811i
\(141\) −0.768452 1.33100i −0.0647153 0.112090i
\(142\) 22.9053i 1.92217i
\(143\) 0 0
\(144\) 33.9829 2.83190
\(145\) −5.12733 1.71718i −0.425802 0.142604i
\(146\) 15.7411 + 27.2643i 1.30274 + 2.25641i
\(147\) −2.64632 1.52785i −0.218265 0.126015i
\(148\) 19.4314i 1.59725i
\(149\) 5.67513 9.82962i 0.464925 0.805273i −0.534273 0.845312i \(-0.679415\pi\)
0.999198 + 0.0400384i \(0.0127480\pi\)
\(150\) 5.13808 + 3.87633i 0.419522 + 0.316501i
\(151\) −13.9878 −1.13831 −0.569155 0.822230i \(-0.692729\pi\)
−0.569155 + 0.822230i \(0.692729\pi\)
\(152\) 12.2492 + 7.07205i 0.993538 + 0.573619i
\(153\) −3.23732 + 1.86907i −0.261722 + 0.151105i
\(154\) 3.96239 + 6.86306i 0.319298 + 0.553041i
\(155\) −8.85685 + 7.83146i −0.711399 + 0.629038i
\(156\) 0 0
\(157\) 2.77575i 0.221529i 0.993847 + 0.110764i \(0.0353299\pi\)
−0.993847 + 0.110764i \(0.964670\pi\)
\(158\) −5.24013 + 3.02539i −0.416883 + 0.240687i
\(159\) −1.38058 2.39123i −0.109487 0.189637i
\(160\) −34.9517 + 7.10080i −2.76317 + 0.561368i
\(161\) −5.22425 −0.411729
\(162\) 16.1469 + 9.32241i 1.26862 + 0.732437i
\(163\) −1.93258 1.11577i −0.151371 0.0873942i 0.422401 0.906409i \(-0.361187\pi\)
−0.573772 + 0.819015i \(0.694521\pi\)
\(164\) −42.8627 −3.34702
\(165\) 3.87521 0.787291i 0.301685 0.0612905i
\(166\) −5.14117 8.90476i −0.399032 0.691144i
\(167\) 13.5907 7.84661i 1.05168 0.607189i 0.128563 0.991701i \(-0.458964\pi\)
0.923120 + 0.384512i \(0.125630\pi\)
\(168\) 3.27504i 0.252675i
\(169\) 0 0
\(170\) 6.05079 5.35026i 0.464074 0.410346i
\(171\) 2.31876 + 4.01621i 0.177320 + 0.307127i
\(172\) −30.3380 + 17.5156i −2.31325 + 1.33555i
\(173\) −22.1596 12.7938i −1.68476 0.972698i −0.958418 0.285367i \(-0.907885\pi\)
−0.726344 0.687331i \(-0.758782\pi\)
\(174\) −3.11283 −0.235983
\(175\) 2.42731 3.21740i 0.183487 0.243212i
\(176\) −22.5562 + 39.0685i −1.70024 + 2.94490i
\(177\) 2.88129i 0.216571i
\(178\) 6.43066 + 3.71274i 0.481998 + 0.278282i
\(179\) 6.06300 + 10.5014i 0.453170 + 0.784914i 0.998581 0.0532551i \(-0.0169596\pi\)
−0.545411 + 0.838169i \(0.683626\pi\)
\(180\) −30.2676 10.1368i −2.25601 0.755555i
\(181\) −2.73084 −0.202982 −0.101491 0.994836i \(-0.532361\pi\)
−0.101491 + 0.994836i \(0.532361\pi\)
\(182\) 0 0
\(183\) 0.850969i 0.0629054i
\(184\) −27.3623 47.3928i −2.01717 3.49384i
\(185\) 2.67601 7.99031i 0.196744 0.587460i
\(186\) −3.40303 + 5.89422i −0.249522 + 0.432185i
\(187\) 4.96239i 0.362886i
\(188\) −14.2626 8.23449i −1.04020 0.600562i
\(189\) −1.11871 + 1.93767i −0.0813745 + 0.140945i
\(190\) −6.63752 7.50659i −0.481536 0.544585i
\(191\) −10.3127 + 17.8620i −0.746197 + 1.29245i 0.203436 + 0.979088i \(0.434789\pi\)
−0.949633 + 0.313363i \(0.898544\pi\)
\(192\) −7.55055 + 4.35931i −0.544914 + 0.314606i
\(193\) −18.8698 + 10.8945i −1.35827 + 0.784200i −0.989391 0.145275i \(-0.953593\pi\)
−0.368884 + 0.929476i \(0.620260\pi\)
\(194\) 5.01317 0.359925
\(195\) 0 0
\(196\) −32.7440 −2.33886
\(197\) −1.73205 + 1.00000i −0.123404 + 0.0712470i −0.560431 0.828201i \(-0.689365\pi\)
0.437028 + 0.899448i \(0.356031\pi\)
\(198\) −23.5714 + 13.6090i −1.67515 + 0.967146i
\(199\) −8.37565 + 14.5071i −0.593734 + 1.02838i 0.399990 + 0.916520i \(0.369014\pi\)
−0.993724 + 0.111859i \(0.964320\pi\)
\(200\) 41.9003 + 5.16854i 2.96280 + 0.365471i
\(201\) −2.38058 + 4.12328i −0.167913 + 0.290834i
\(202\) 24.3240 + 14.0435i 1.71143 + 0.988097i
\(203\) 1.94921i 0.136808i
\(204\) 1.67513 2.90141i 0.117283 0.203139i
\(205\) 17.6255 + 5.90289i 1.23102 + 0.412275i
\(206\) 20.5562 + 35.6044i 1.43222 + 2.48067i
\(207\) 17.9429i 1.24712i
\(208\) 0 0
\(209\) −6.15633 −0.425842
\(210\) 0.736817 2.20007i 0.0508452 0.151819i
\(211\) 2.45088 + 4.24504i 0.168725 + 0.292241i 0.937972 0.346711i \(-0.112702\pi\)
−0.769247 + 0.638952i \(0.779368\pi\)
\(212\) −25.6237 14.7938i −1.75984 1.01605i
\(213\) 4.12013i 0.282307i
\(214\) −14.8884 + 25.7874i −1.01775 + 1.76279i
\(215\) 14.8874 3.02453i 1.01531 0.206271i
\(216\) −23.4372 −1.59470
\(217\) 3.69088 + 2.13093i 0.250553 + 0.144657i
\(218\) −22.2121 + 12.8242i −1.50439 + 0.868562i
\(219\) −2.83146 4.90423i −0.191332 0.331397i
\(220\) 31.7440 28.0689i 2.14018 1.89240i
\(221\) 0 0
\(222\) 4.85097i 0.325576i
\(223\) 21.5706 12.4538i 1.44448 0.833969i 0.446333 0.894867i \(-0.352730\pi\)
0.998144 + 0.0608976i \(0.0193963\pi\)
\(224\) 6.42842 + 11.1344i 0.429517 + 0.743946i
\(225\) 11.0503 + 8.33667i 0.736683 + 0.555778i
\(226\) −1.53690 −0.102233
\(227\) 8.62136 + 4.97755i 0.572220 + 0.330371i 0.758036 0.652213i \(-0.226159\pi\)
−0.185815 + 0.982585i \(0.559493\pi\)
\(228\) −3.59948 2.07816i −0.238382 0.137630i
\(229\) 5.35026 0.353555 0.176778 0.984251i \(-0.443433\pi\)
0.176778 + 0.984251i \(0.443433\pi\)
\(230\) 7.71866 + 37.9929i 0.508953 + 2.50518i
\(231\) −0.712742 1.23451i −0.0468950 0.0812245i
\(232\) −17.6827 + 10.2091i −1.16092 + 0.670260i
\(233\) 10.7612i 0.704987i 0.935814 + 0.352493i \(0.114666\pi\)
−0.935814 + 0.352493i \(0.885334\pi\)
\(234\) 0 0
\(235\) 4.73084 + 5.35026i 0.308606 + 0.349013i
\(236\) 15.4375 + 26.7385i 1.00489 + 1.74053i
\(237\) 0.942579 0.544198i 0.0612271 0.0353495i
\(238\) −2.52152 1.45580i −0.163446 0.0943656i
\(239\) −11.8618 −0.767274 −0.383637 0.923484i \(-0.625329\pi\)
−0.383637 + 0.923484i \(0.625329\pi\)
\(240\) 12.9433 2.62957i 0.835488 0.169738i
\(241\) −14.3127 + 24.7902i −0.921959 + 1.59688i −0.125578 + 0.992084i \(0.540079\pi\)
−0.796381 + 0.604796i \(0.793255\pi\)
\(242\) 6.70545i 0.431043i
\(243\) −10.1161 5.84051i −0.648945 0.374669i
\(244\) −4.55936 7.89704i −0.291883 0.505556i
\(245\) 13.4646 + 4.50938i 0.860220 + 0.288093i
\(246\) 10.7005 0.682240
\(247\) 0 0
\(248\) 44.6434i 2.83486i
\(249\) 0.924777 + 1.60176i 0.0586054 + 0.101507i
\(250\) −26.9845 12.8988i −1.70665 0.815791i
\(251\) 9.69323 16.7892i 0.611831 1.05972i −0.379100 0.925356i \(-0.623767\pi\)
0.990932 0.134367i \(-0.0429002\pi\)
\(252\) 11.5066i 0.724847i
\(253\) 20.6281 + 11.9096i 1.29688 + 0.748751i
\(254\) 5.74424 9.94932i 0.360426 0.624276i
\(255\) −1.08840 + 0.962389i −0.0681580 + 0.0602671i
\(256\) −4.04420 + 7.00476i −0.252762 + 0.437797i
\(257\) 19.7997 11.4314i 1.23507 0.713069i 0.266989 0.963700i \(-0.413971\pi\)
0.968083 + 0.250631i \(0.0806380\pi\)
\(258\) 7.57376 4.37271i 0.471522 0.272233i
\(259\) −3.03761 −0.188748
\(260\) 0 0
\(261\) −6.69464 −0.414388
\(262\) 1.93767 1.11871i 0.119710 0.0691144i
\(263\) −18.9506 + 10.9411i −1.16854 + 0.674658i −0.953336 0.301910i \(-0.902376\pi\)
−0.215206 + 0.976569i \(0.569042\pi\)
\(264\) 7.46604 12.9316i 0.459503 0.795882i
\(265\) 8.49929 + 9.61213i 0.522107 + 0.590468i
\(266\) −1.80606 + 3.12819i −0.110737 + 0.191802i
\(267\) −1.15673 0.667837i −0.0707905 0.0408709i
\(268\) 51.0191i 3.11648i
\(269\) 11.3757 19.7032i 0.693586 1.20133i −0.277069 0.960850i \(-0.589363\pi\)
0.970655 0.240476i \(-0.0773035\pi\)
\(270\) 15.7444 + 5.27290i 0.958173 + 0.320899i
\(271\) 0.0618192 + 0.107074i 0.00375525 + 0.00650428i 0.867897 0.496744i \(-0.165471\pi\)
−0.864142 + 0.503249i \(0.832138\pi\)
\(272\) 16.5745i 1.00498i
\(273\) 0 0
\(274\) 39.9610 2.41413
\(275\) −16.9189 + 7.17046i −1.02025 + 0.432395i
\(276\) 8.04055 + 13.9266i 0.483984 + 0.838285i
\(277\) 13.2937 + 7.67513i 0.798742 + 0.461154i 0.843031 0.537865i \(-0.180769\pi\)
−0.0442891 + 0.999019i \(0.514102\pi\)
\(278\) 22.5745i 1.35393i
\(279\) −7.31876 + 12.6765i −0.438163 + 0.758920i
\(280\) −3.02997 14.9141i −0.181075 0.891291i
\(281\) −13.9248 −0.830683 −0.415341 0.909666i \(-0.636338\pi\)
−0.415341 + 0.909666i \(0.636338\pi\)
\(282\) 3.56059 + 2.05571i 0.212030 + 0.122416i
\(283\) −17.6509 + 10.1908i −1.04924 + 0.605778i −0.922436 0.386150i \(-0.873805\pi\)
−0.126803 + 0.991928i \(0.540471\pi\)
\(284\) −22.0750 38.2350i −1.30991 2.26883i
\(285\) 1.19394 + 1.35026i 0.0707227 + 0.0799826i
\(286\) 0 0
\(287\) 6.70052i 0.395519i
\(288\) −38.2413 + 22.0786i −2.25339 + 1.30100i
\(289\) −7.58840 13.1435i −0.446376 0.773146i
\(290\) 14.1755 2.87990i 0.832413 0.169114i
\(291\) −0.901754 −0.0528618
\(292\) −52.5521 30.3410i −3.07538 1.77557i
\(293\) −4.65972 2.69029i −0.272224 0.157168i 0.357674 0.933846i \(-0.383570\pi\)
−0.629898 + 0.776678i \(0.716903\pi\)
\(294\) 8.17442 0.476742
\(295\) −2.66568 13.1210i −0.155202 0.763937i
\(296\) −15.9096 27.5563i −0.924728 1.60168i
\(297\) 8.83453 5.10062i 0.512631 0.295968i
\(298\) 30.3634i 1.75891i
\(299\) 0 0
\(300\) −12.3127 1.51881i −0.710871 0.0876883i
\(301\) −2.73813 4.74259i −0.157823 0.273358i
\(302\) 32.4059 18.7096i 1.86475 1.07661i
\(303\) −4.37533 2.52610i −0.251356 0.145121i
\(304\) −20.5623 −1.17933
\(305\) 0.787291 + 3.87521i 0.0450801 + 0.221894i
\(306\) 5.00000 8.66025i 0.285831 0.495074i
\(307\) 19.1695i 1.09406i 0.837113 + 0.547031i \(0.184242\pi\)
−0.837113 + 0.547031i \(0.815758\pi\)
\(308\) −13.2286 7.63752i −0.753768 0.435188i
\(309\) −3.69758 6.40440i −0.210348 0.364334i
\(310\) 10.0439 29.9900i 0.570453 1.70332i
\(311\) −25.2506 −1.43183 −0.715915 0.698187i \(-0.753990\pi\)
−0.715915 + 0.698187i \(0.753990\pi\)
\(312\) 0 0
\(313\) 2.81194i 0.158940i −0.996837 0.0794702i \(-0.974677\pi\)
0.996837 0.0794702i \(-0.0253229\pi\)
\(314\) −3.71274 6.43066i −0.209522 0.362903i
\(315\) 1.58464 4.73159i 0.0892844 0.266595i
\(316\) 5.83146 10.1004i 0.328045 0.568191i
\(317\) 23.7685i 1.33497i 0.744624 + 0.667485i \(0.232629\pi\)
−0.744624 + 0.667485i \(0.767371\pi\)
\(318\) 6.39686 + 3.69323i 0.358718 + 0.207106i
\(319\) 4.44358 7.69651i 0.248793 0.430922i
\(320\) 30.3512 26.8373i 1.69668 1.50025i
\(321\) 2.67807 4.63855i 0.149475 0.258899i
\(322\) 12.1032 6.98778i 0.674485 0.389414i
\(323\) 1.95883 1.13093i 0.108992 0.0629268i
\(324\) −35.9380 −1.99655
\(325\) 0 0
\(326\) 5.96968 0.330630
\(327\) 3.99544 2.30677i 0.220949 0.127565i
\(328\) 60.7851 35.0943i 3.35629 1.93776i
\(329\) 1.28726 2.22960i 0.0709688 0.122922i
\(330\) −7.92478 + 7.00729i −0.436245 + 0.385739i
\(331\) −5.90057 + 10.2201i −0.324325 + 0.561747i −0.981375 0.192100i \(-0.938470\pi\)
0.657051 + 0.753846i \(0.271804\pi\)
\(332\) 17.1640 + 9.90962i 0.941995 + 0.543861i
\(333\) 10.4328i 0.571713i
\(334\) −20.9907 + 36.3570i −1.14856 + 1.98937i
\(335\) 7.02614 20.9794i 0.383879 1.14623i
\(336\) −2.38058 4.12328i −0.129871 0.224944i
\(337\) 16.1114i 0.877645i 0.898574 + 0.438822i \(0.144604\pi\)
−0.898574 + 0.438822i \(0.855396\pi\)
\(338\) 0 0
\(339\) 0.276454 0.0150149
\(340\) −4.94405 + 14.7625i −0.268129 + 0.800608i
\(341\) −9.71568 16.8281i −0.526134 0.911290i
\(342\) −10.7439 6.20299i −0.580963 0.335419i
\(343\) 10.7612i 0.581048i
\(344\) 28.6822 49.6790i 1.54644 2.67851i
\(345\) −1.38841 6.83405i −0.0747494 0.367933i
\(346\) 68.4504 3.67992
\(347\) −23.8108 13.7472i −1.27823 0.737988i −0.301709 0.953400i \(-0.597557\pi\)
−0.976523 + 0.215413i \(0.930890\pi\)
\(348\) 5.19615 3.00000i 0.278543 0.160817i
\(349\) 8.80114 + 15.2440i 0.471114 + 0.815994i 0.999454 0.0330393i \(-0.0105186\pi\)
−0.528340 + 0.849033i \(0.677185\pi\)
\(350\) −1.31994 + 10.7005i −0.0705540 + 0.571967i
\(351\) 0 0
\(352\) 58.6190i 3.12440i
\(353\) 13.6559 7.88423i 0.726829 0.419635i −0.0904319 0.995903i \(-0.528825\pi\)
0.817261 + 0.576268i \(0.195491\pi\)
\(354\) −3.85391 6.67517i −0.204833 0.354781i
\(355\) 3.81182 + 18.7626i 0.202310 + 0.995815i
\(356\) −14.3127 −0.758569
\(357\) 0.453564 + 0.261865i 0.0240051 + 0.0138594i
\(358\) −28.0927 16.2193i −1.48475 0.857218i
\(359\) −14.8242 −0.782389 −0.391195 0.920308i \(-0.627938\pi\)
−0.391195 + 0.920308i \(0.627938\pi\)
\(360\) 51.2231 10.4065i 2.69970 0.548472i
\(361\) 8.09697 + 14.0244i 0.426156 + 0.738124i
\(362\) 6.32662 3.65268i 0.332520 0.191980i
\(363\) 1.20616i 0.0633067i
\(364\) 0 0
\(365\) 17.4314 + 19.7137i 0.912399 + 1.03186i
\(366\) 1.13823 + 1.97147i 0.0594961 + 0.103050i
\(367\) −23.4098 + 13.5156i −1.22198 + 0.705510i −0.965340 0.260997i \(-0.915949\pi\)
−0.256640 + 0.966507i \(0.582616\pi\)
\(368\) 68.8983 + 39.7785i 3.59157 + 2.07360i
\(369\) 23.0132 1.19802
\(370\) 4.48797 + 22.0908i 0.233318 + 1.14844i
\(371\) 2.31265 4.00563i 0.120067 0.207962i
\(372\) 13.1187i 0.680174i
\(373\) 11.2172 + 6.47627i 0.580806 + 0.335329i 0.761454 0.648219i \(-0.224486\pi\)
−0.180648 + 0.983548i \(0.557819\pi\)
\(374\) 6.63752 + 11.4965i 0.343218 + 0.594471i
\(375\) 4.85388 + 2.32019i 0.250654 + 0.119814i
\(376\) 26.9683 1.39078
\(377\) 0 0
\(378\) 5.98541i 0.307856i
\(379\) 15.1429 + 26.2283i 0.777840 + 1.34726i 0.933185 + 0.359397i \(0.117018\pi\)
−0.155345 + 0.987860i \(0.549649\pi\)
\(380\) 18.3143 + 6.13358i 0.939503 + 0.314646i
\(381\) −1.03326 + 1.78965i −0.0529354 + 0.0916867i
\(382\) 55.1754i 2.82302i
\(383\) 18.2682 + 10.5471i 0.933460 + 0.538934i 0.887904 0.460028i \(-0.152161\pi\)
0.0455560 + 0.998962i \(0.485494\pi\)
\(384\) 3.98660 6.90499i 0.203440 0.352369i
\(385\) 4.38787 + 4.96239i 0.223627 + 0.252907i
\(386\) 29.1441 50.4791i 1.48340 2.56932i
\(387\) 16.2886 9.40422i 0.827995 0.478043i
\(388\) −8.36833 + 4.83146i −0.424837 + 0.245280i
\(389\) 6.77575 0.343544 0.171772 0.985137i \(-0.445051\pi\)
0.171772 + 0.985137i \(0.445051\pi\)
\(390\) 0 0
\(391\) −8.75131 −0.442573
\(392\) 46.4354 26.8095i 2.34534 1.35408i
\(393\) −0.348542 + 0.201231i −0.0175816 + 0.0101508i
\(394\) 2.67513 4.63346i 0.134771 0.233430i
\(395\) −3.78892 + 3.35026i −0.190641 + 0.168570i
\(396\) 26.2313 45.4340i 1.31817 2.28314i
\(397\) 9.06640 + 5.23449i 0.455030 + 0.262711i 0.709952 0.704250i \(-0.248717\pi\)
−0.254922 + 0.966961i \(0.582050\pi\)
\(398\) 44.8119i 2.24622i
\(399\) 0.324869 0.562690i 0.0162638 0.0281697i
\(400\) −56.5096 + 23.9495i −2.82548 + 1.19748i
\(401\) 2.50659 + 4.34154i 0.125173 + 0.216806i 0.921801 0.387664i \(-0.126718\pi\)
−0.796628 + 0.604470i \(0.793385\pi\)
\(402\) 12.7367i 0.635250i
\(403\) 0 0
\(404\) −54.1378 −2.69345
\(405\) 14.7779 + 4.94923i 0.734322 + 0.245929i
\(406\) −2.60720 4.51581i −0.129393 0.224116i
\(407\) 11.9941 + 6.92478i 0.594524 + 0.343248i
\(408\) 5.48612i 0.271603i
\(409\) 7.19394 12.4603i 0.355717 0.616120i −0.631523 0.775357i \(-0.717570\pi\)
0.987240 + 0.159237i \(0.0509033\pi\)
\(410\) −48.7289 + 9.89980i −2.40655 + 0.488916i
\(411\) −7.18806 −0.354561
\(412\) −68.6275 39.6221i −3.38104 1.95204i
\(413\) −4.17990 + 2.41327i −0.205679 + 0.118749i
\(414\) 23.9998 + 41.5688i 1.17952 + 2.04300i
\(415\) −5.69323 6.43866i −0.279470 0.316061i
\(416\) 0 0
\(417\) 4.06063i 0.198850i
\(418\) 14.2626 8.23449i 0.697604 0.402762i
\(419\) 8.73084 + 15.1223i 0.426529 + 0.738771i 0.996562 0.0828515i \(-0.0264027\pi\)
−0.570032 + 0.821622i \(0.693069\pi\)
\(420\) 0.890373 + 4.38261i 0.0434457 + 0.213849i
\(421\) −2.88717 −0.140712 −0.0703559 0.997522i \(-0.522414\pi\)
−0.0703559 + 0.997522i \(0.522414\pi\)
\(422\) −11.3560 6.55642i −0.552804 0.319161i
\(423\) 7.65762 + 4.42113i 0.372326 + 0.214963i
\(424\) 48.4504 2.35296
\(425\) 4.06606 5.38956i 0.197233 0.261432i
\(426\) 5.51094 + 9.54523i 0.267006 + 0.462468i
\(427\) 1.23451 0.712742i 0.0597419 0.0344920i
\(428\) 57.3947i 2.77428i
\(429\) 0 0
\(430\) −30.4445 + 26.9199i −1.46817 + 1.29819i
\(431\) 0.444768 + 0.770360i 0.0214237 + 0.0371070i 0.876538 0.481332i \(-0.159847\pi\)
−0.855115 + 0.518439i \(0.826513\pi\)
\(432\) 29.5076 17.0362i 1.41968 0.819654i
\(433\) −21.8677 12.6253i −1.05089 0.606733i −0.127994 0.991775i \(-0.540854\pi\)
−0.922899 + 0.385042i \(0.874187\pi\)
\(434\) −11.4010 −0.547268
\(435\) −2.54984 + 0.518028i −0.122256 + 0.0248375i
\(436\) 24.7186 42.8139i 1.18381 2.05041i
\(437\) 10.8568i 0.519354i
\(438\) 13.1194 + 7.57452i 0.626871 + 0.361924i
\(439\) 14.4060 + 24.9519i 0.687560 + 1.19089i 0.972625 + 0.232380i \(0.0746513\pi\)
−0.285066 + 0.958508i \(0.592015\pi\)
\(440\) −22.0356 + 65.7961i −1.05050 + 3.13671i
\(441\) 17.5804 0.837162
\(442\) 0 0
\(443\) 36.9805i 1.75700i −0.477746 0.878498i \(-0.658546\pi\)
0.477746 0.878498i \(-0.341454\pi\)
\(444\) 4.67513 + 8.09756i 0.221872 + 0.384293i
\(445\) 5.88546 + 1.97108i 0.278998 + 0.0934382i
\(446\) −33.3156 + 57.7043i −1.57754 + 2.73238i
\(447\) 5.46168i 0.258329i
\(448\) −12.6482 7.30242i −0.597569 0.345007i
\(449\) 6.34297 10.9863i 0.299343 0.518478i −0.676643 0.736312i \(-0.736566\pi\)
0.975986 + 0.217834i \(0.0698991\pi\)
\(450\) −36.7513 4.53339i −1.73247 0.213706i
\(451\) −15.2750 + 26.4571i −0.719273 + 1.24582i
\(452\) 2.56550 1.48119i 0.120671 0.0696695i
\(453\) −5.82908 + 3.36542i −0.273874 + 0.158121i
\(454\) −26.6312 −1.24986
\(455\) 0 0
\(456\) 6.80606 0.318723
\(457\) 21.6934 12.5247i 1.01477 0.585880i 0.102188 0.994765i \(-0.467416\pi\)
0.912586 + 0.408885i \(0.134082\pi\)
\(458\) −12.3951 + 7.15633i −0.579186 + 0.334393i
\(459\) −1.87399 + 3.24585i −0.0874705 + 0.151503i
\(460\) −49.5002 55.9814i −2.30796 2.61015i
\(461\) −18.4436 + 31.9452i −0.859003 + 1.48784i 0.0138774 + 0.999904i \(0.495583\pi\)
−0.872881 + 0.487934i \(0.837751\pi\)
\(462\) 3.30246 + 1.90668i 0.153645 + 0.0887067i
\(463\) 39.0191i 1.81337i −0.421809 0.906685i \(-0.638605\pi\)
0.421809 0.906685i \(-0.361395\pi\)
\(464\) 14.8417 25.7066i 0.689008 1.19340i
\(465\) −1.80666 + 5.39451i −0.0837817 + 0.250164i
\(466\) −14.3938 24.9307i −0.666778 1.15489i
\(467\) 32.7694i 1.51639i 0.652029 + 0.758194i \(0.273918\pi\)
−0.652029 + 0.758194i \(0.726082\pi\)
\(468\) 0 0
\(469\) −7.97556 −0.368277
\(470\) −18.1164 6.06731i −0.835648 0.279864i
\(471\) 0.667837 + 1.15673i 0.0307723 + 0.0532992i
\(472\) −43.7848 25.2792i −2.01536 1.16357i
\(473\) 24.9683i 1.14804i
\(474\) −1.45580 + 2.52152i −0.0668672 + 0.115817i
\(475\) −6.68627 5.04434i −0.306787 0.231450i
\(476\) 5.61213 0.257231
\(477\) 13.7575 + 7.94288i 0.629911 + 0.363679i
\(478\) 27.4805 15.8659i 1.25693 0.725689i
\(479\) −8.43747 14.6141i −0.385518 0.667737i 0.606323 0.795219i \(-0.292644\pi\)
−0.991841 + 0.127482i \(0.959311\pi\)
\(480\) −12.8568 + 11.3684i −0.586832 + 0.518892i
\(481\) 0 0
\(482\) 76.5764i 3.48796i
\(483\) −2.17708 + 1.25694i −0.0990608 + 0.0571928i
\(484\) 6.46239 + 11.1932i 0.293745 + 0.508781i
\(485\) 4.10648 0.834276i 0.186466 0.0378825i
\(486\) 31.2482 1.41745
\(487\) −8.00616 4.62236i −0.362794 0.209459i 0.307512 0.951544i \(-0.400504\pi\)
−0.670306 + 0.742085i \(0.733837\pi\)
\(488\) 12.9316 + 7.46604i 0.585384 + 0.337972i
\(489\) −1.07381 −0.0485593
\(490\) −37.2254 + 7.56273i −1.68167 + 0.341649i
\(491\) 12.8749 + 22.3001i 0.581038 + 1.00639i 0.995357 + 0.0962557i \(0.0306867\pi\)
−0.414318 + 0.910132i \(0.635980\pi\)
\(492\) −17.8620 + 10.3127i −0.805283 + 0.464930i
\(493\) 3.26519i 0.147057i
\(494\) 0 0
\(495\) −17.0435 + 15.0703i −0.766048 + 0.677360i
\(496\) −32.4506 56.2062i −1.45708 2.52373i
\(497\) 5.97709 3.45088i 0.268109 0.154793i
\(498\) −4.28492 2.47390i −0.192012 0.110858i
\(499\) −27.7015 −1.24009 −0.620044 0.784567i \(-0.712885\pi\)
−0.620044 + 0.784567i \(0.712885\pi\)
\(500\) 57.4755 4.47483i 2.57038 0.200120i
\(501\) 3.77575 6.53978i 0.168688 0.292176i
\(502\) 51.8613i 2.31468i
\(503\) 2.03965 + 1.17759i 0.0909436 + 0.0525063i 0.544782 0.838578i \(-0.316612\pi\)
−0.453839 + 0.891084i \(0.649946\pi\)
\(504\) −9.42113 16.3179i −0.419650 0.726856i
\(505\) 22.2618 + 7.45564i 0.990639 + 0.331772i
\(506\) −63.7196 −2.83268
\(507\) 0 0
\(508\) 22.1441i 0.982486i
\(509\) −10.7562 18.6303i −0.476762 0.825775i 0.522884 0.852404i \(-0.324856\pi\)
−0.999645 + 0.0266286i \(0.991523\pi\)
\(510\) 1.23426 3.68540i 0.0546542 0.163192i
\(511\) 4.74306 8.21522i 0.209821 0.363420i
\(512\) 11.5017i 0.508306i
\(513\) 4.02679 + 2.32487i 0.177787 + 0.102645i
\(514\) −30.5804 + 52.9668i −1.34884 + 2.33627i
\(515\) 22.7635 + 25.7440i 1.00308 + 1.13442i
\(516\) −8.42842 + 14.5985i −0.371041 + 0.642661i
\(517\) −10.1655 + 5.86907i −0.447079 + 0.258121i
\(518\) 7.03733 4.06300i 0.309203 0.178518i
\(519\) −12.3127 −0.540465
\(520\) 0 0
\(521\) 37.7440 1.65360 0.826798 0.562499i \(-0.190160\pi\)
0.826798 + 0.562499i \(0.190160\pi\)
\(522\) 15.5097 8.95452i 0.678841 0.391929i
\(523\) −20.5609 + 11.8708i −0.899064 + 0.519075i −0.876896 0.480679i \(-0.840390\pi\)
−0.0221676 + 0.999754i \(0.507057\pi\)
\(524\) −2.15633 + 3.73486i −0.0941995 + 0.163158i
\(525\) 0.237428 1.92478i 0.0103622 0.0840042i
\(526\) 29.2689 50.6953i 1.27619 2.21042i
\(527\) 6.18271 + 3.56959i 0.269323 + 0.155494i
\(528\) 21.7078i 0.944712i
\(529\) 9.50294 16.4596i 0.413171 0.715634i
\(530\) −32.5474 10.9004i −1.41377 0.473481i
\(531\) −8.28844 14.3560i −0.359688 0.622997i
\(532\) 6.96239i 0.301858i
\(533\) 0 0
\(534\) 3.57310 0.154623
\(535\) −7.90417 + 23.6011i −0.341727 + 1.02036i
\(536\) −41.7723 72.3518i −1.80429 3.12512i
\(537\) 5.05323 + 2.91748i 0.218063 + 0.125899i
\(538\) 60.8627i 2.62398i
\(539\) −11.6690 + 20.2113i −0.502620 + 0.870564i
\(540\) −31.3634 + 6.37180i −1.34966 + 0.274199i
\(541\) −13.0376 −0.560531 −0.280265 0.959923i \(-0.590422\pi\)
−0.280265 + 0.959923i \(0.590422\pi\)
\(542\) −0.286437 0.165374i −0.0123035 0.00710344i
\(543\) −1.13801 + 0.657032i −0.0488368 + 0.0281960i
\(544\) 10.7685 + 18.6515i 0.461694 + 0.799677i
\(545\) −16.0606 + 14.2012i −0.687962 + 0.608314i
\(546\) 0 0
\(547\) 8.43041i 0.360458i 0.983625 + 0.180229i \(0.0576839\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(548\) −66.7055 + 38.5125i −2.84952 + 1.64517i
\(549\) 2.44794 + 4.23995i 0.104475 + 0.180957i
\(550\) 29.6056 39.2422i 1.26239 1.67329i
\(551\) 4.05079 0.172569
\(552\) −22.8051 13.1666i −0.970652 0.560406i
\(553\) 1.57894 + 0.911603i 0.0671435 + 0.0387653i
\(554\) −41.0640 −1.74464
\(555\) −0.807282 3.97362i −0.0342672 0.168671i
\(556\) 21.7562 + 37.6829i 0.922670 + 1.59811i
\(557\) −11.8587 + 6.84661i −0.502469 + 0.290100i −0.729732 0.683733i \(-0.760355\pi\)
0.227264 + 0.973833i \(0.427022\pi\)
\(558\) 39.1573i 1.65766i
\(559\) 0 0
\(560\) 14.6556 + 16.5745i 0.619313 + 0.700401i
\(561\) −1.19394 2.06796i −0.0504080 0.0873093i
\(562\) 32.2600 18.6253i 1.36080 0.785661i
\(563\) −7.68084 4.43453i −0.323709 0.186893i 0.329336 0.944213i \(-0.393175\pi\)
−0.653044 + 0.757320i \(0.726509\pi\)
\(564\) −7.92478 −0.333693
\(565\) −1.25894 + 0.255767i −0.0529639 + 0.0107602i
\(566\) 27.2616 47.2185i 1.14589 1.98474i
\(567\) 5.61801i 0.235934i
\(568\) 62.6106 + 36.1482i 2.62708 + 1.51675i
\(569\) −16.3908 28.3897i −0.687139 1.19016i −0.972760 0.231816i \(-0.925533\pi\)
0.285621 0.958343i \(-0.407800\pi\)
\(570\) −4.57209 1.53123i −0.191504 0.0641360i
\(571\) 40.2882 1.68601 0.843005 0.537906i \(-0.180785\pi\)
0.843005 + 0.537906i \(0.180785\pi\)
\(572\) 0 0
\(573\) 9.92478i 0.414614i
\(574\) 8.96239 + 15.5233i 0.374083 + 0.647931i
\(575\) 12.6453 + 29.8369i 0.527346 + 1.24429i
\(576\) 25.0804 43.4405i 1.04502 1.81002i
\(577\) 28.8568i 1.20133i −0.799502 0.600663i \(-0.794903\pi\)
0.799502 0.600663i \(-0.205097\pi\)
\(578\) 35.1606 + 20.3000i 1.46249 + 0.844367i
\(579\) −5.24235 + 9.08002i −0.217865 + 0.377353i
\(580\) −20.8872 + 18.4690i −0.867292 + 0.766882i
\(581\) −1.54912 + 2.68316i −0.0642684 + 0.111316i
\(582\) 2.08912 1.20616i 0.0865969 0.0499967i
\(583\) −18.2631 + 10.5442i −0.756380 + 0.436696i
\(584\) 99.3679 4.11187
\(585\) 0 0
\(586\) 14.3938 0.594600
\(587\) −36.0948 + 20.8393i −1.48979 + 0.860131i −0.999932 0.0116712i \(-0.996285\pi\)
−0.489858 + 0.871802i \(0.662952\pi\)
\(588\) −13.6453 + 7.87812i −0.562723 + 0.324888i
\(589\) 4.42842 7.67026i 0.182470 0.316047i
\(590\) 23.7259 + 26.8324i 0.976781 + 1.10467i
\(591\) −0.481194 + 0.833453i −0.0197937 + 0.0342837i
\(592\) 40.0605 + 23.1289i 1.64648 + 0.950594i
\(593\) 22.4993i 0.923935i 0.886897 + 0.461968i \(0.152856\pi\)
−0.886897 + 0.461968i \(0.847144\pi\)
\(594\) −13.6448 + 23.6335i −0.559853 + 0.969695i
\(595\) −2.30775 0.772880i −0.0946084 0.0316850i
\(596\) −29.2628 50.6847i −1.19865 2.07613i
\(597\) 8.06063i 0.329900i
\(598\) 0 0
\(599\) −4.15045 −0.169583 −0.0847913 0.996399i \(-0.527022\pi\)
−0.0847913 + 0.996399i \(0.527022\pi\)
\(600\) 18.7045 7.92723i 0.763609 0.323628i
\(601\) −13.9624 24.1836i −0.569538 0.986468i −0.996612 0.0822515i \(-0.973789\pi\)
0.427074 0.904217i \(-0.359544\pi\)
\(602\) 12.6870 + 7.32487i 0.517085 + 0.298539i
\(603\) 27.3923i 1.11550i
\(604\) −36.0628 + 62.4626i −1.46737 + 2.54157i
\(605\) −1.11590 5.49269i −0.0453677 0.223310i
\(606\) 13.5153 0.549021
\(607\) −7.09698 4.09745i −0.288058 0.166310i 0.349008 0.937120i \(-0.386519\pi\)
−0.637066 + 0.770810i \(0.719852\pi\)
\(608\) 23.1390 13.3593i 0.938411 0.541792i
\(609\) 0.468976 + 0.812289i 0.0190038 + 0.0329156i
\(610\) −7.00729 7.92478i −0.283717 0.320865i
\(611\) 0 0
\(612\) 19.2750i 0.779147i
\(613\) 28.6994 16.5696i 1.15916 0.669239i 0.208055 0.978117i \(-0.433287\pi\)
0.951102 + 0.308878i \(0.0999534\pi\)
\(614\) −25.6405 44.4106i −1.03476 1.79227i
\(615\) 8.76521 1.78075i 0.353447 0.0718066i
\(616\) 25.0132 1.00781
\(617\) −25.1261 14.5066i −1.01154 0.584013i −0.0998982 0.994998i \(-0.531852\pi\)
−0.911642 + 0.410984i \(0.865185\pi\)
\(618\) 17.1326 + 9.89152i 0.689175 + 0.397895i
\(619\) 12.2134 0.490900 0.245450 0.969409i \(-0.421064\pi\)
0.245450 + 0.969409i \(0.421064\pi\)
\(620\) 12.1370 + 59.7411i 0.487435 + 2.39926i
\(621\) −8.99508 15.5799i −0.360960 0.625201i
\(622\) 58.4989 33.7743i 2.34559 1.35423i
\(623\) 2.23743i 0.0896406i
\(624\) 0 0
\(625\) −24.2506 6.07522i −0.970024 0.243009i
\(626\) 3.76116 + 6.51452i 0.150326 + 0.260372i
\(627\) −2.56550 + 1.48119i −0.102456 + 0.0591532i
\(628\) 12.3951 + 7.15633i 0.494619 + 0.285568i
\(629\) −5.08840 −0.202888
\(630\) 2.65762 + 13.0814i 0.105882 + 0.521175i
\(631\) −0.610942 + 1.05818i −0.0243212 + 0.0421256i −0.877930 0.478789i \(-0.841076\pi\)
0.853609 + 0.520915i \(0.174409\pi\)
\(632\) 19.0982i 0.759687i
\(633\) 2.04269 + 1.17935i 0.0811897 + 0.0468749i
\(634\) −31.7919 55.0651i −1.26262 2.18692i
\(635\) 3.04960 9.10581i 0.121020 0.361353i
\(636\) −14.2374 −0.564551
\(637\) 0 0
\(638\) 23.7743i 0.941235i
\(639\) 11.8522 + 20.5285i 0.468864 + 0.812096i
\(640\) −11.7662 + 35.1328i −0.465100 + 1.38875i
\(641\) 11.0508 19.1405i 0.436480 0.756005i −0.560935 0.827860i \(-0.689558\pi\)
0.997415 + 0.0718545i \(0.0228917\pi\)
\(642\) 14.3284i 0.565496i
\(643\) −10.1055 5.83440i −0.398521 0.230086i 0.287325 0.957833i \(-0.407234\pi\)
−0.685846 + 0.727747i \(0.740567\pi\)
\(644\) −13.4690 + 23.3289i −0.530752 + 0.919289i
\(645\) 5.47627 4.84226i 0.215628 0.190664i
\(646\) −3.02539 + 5.24013i −0.119032 + 0.206170i
\(647\) 10.3555 5.97873i 0.407115 0.235048i −0.282434 0.959287i \(-0.591142\pi\)
0.689550 + 0.724238i \(0.257809\pi\)
\(648\) 50.9648 29.4245i 2.00209 1.15591i
\(649\) 22.0059 0.863806
\(650\) 0 0
\(651\) 2.05079 0.0803766
\(652\) −9.96500 + 5.75329i −0.390259 + 0.225316i
\(653\) 9.52505 5.49929i 0.372744 0.215204i −0.301912 0.953336i \(-0.597625\pi\)
0.674657 + 0.738132i \(0.264292\pi\)
\(654\) −6.17091 + 10.6883i −0.241302 + 0.417947i
\(655\) 1.40105 1.23884i 0.0547434 0.0484056i
\(656\) −51.0191 + 88.3676i −1.99196 + 3.45017i
\(657\) 28.2154 + 16.2902i 1.10079 + 0.635541i
\(658\) 6.88717i 0.268490i
\(659\) −1.31994 + 2.28621i −0.0514177 + 0.0890581i −0.890589 0.454810i \(-0.849707\pi\)
0.839171 + 0.543868i \(0.183041\pi\)
\(660\) 6.47528 19.3346i 0.252050 0.752597i
\(661\) 9.15140 + 15.8507i 0.355948 + 0.616520i 0.987280 0.158993i \(-0.0508246\pi\)
−0.631332 + 0.775513i \(0.717491\pi\)
\(662\) 31.5696i 1.22699i
\(663\) 0 0
\(664\) −32.4544 −1.25947
\(665\) −0.958833 + 2.86298i −0.0371819 + 0.111022i
\(666\) 13.9545 + 24.1699i 0.540727 + 0.936566i
\(667\) −13.5730 7.83638i −0.525549 0.303426i
\(668\) 80.9194i 3.13087i
\(669\) 5.99271 10.3797i 0.231691 0.401301i
\(670\) 11.7836 + 58.0015i 0.455241 + 2.24080i
\(671\) −6.49929 −0.250902
\(672\) 5.35779 + 3.09332i 0.206681 + 0.119327i
\(673\) −5.81135 + 3.35519i −0.224011 + 0.129333i −0.607806 0.794085i \(-0.707950\pi\)
0.383795 + 0.923418i \(0.374617\pi\)
\(674\) −21.5501 37.3258i −0.830078 1.43774i
\(675\) 13.7743 + 1.69911i 0.530174 + 0.0653987i
\(676\) 0 0
\(677\) 1.57593i 0.0605679i −0.999541 0.0302840i \(-0.990359\pi\)
0.999541 0.0302840i \(-0.00964116\pi\)
\(678\) −0.640469 + 0.369775i −0.0245971 + 0.0142011i
\(679\) −0.755278 1.30818i −0.0289849 0.0502033i
\(680\) −5.07559 24.9831i −0.194640 0.958060i
\(681\) 4.79033 0.183566
\(682\) 45.0172 + 25.9907i 1.72380 + 0.995236i
\(683\) −13.1583 7.59697i −0.503490 0.290690i 0.226664 0.973973i \(-0.427218\pi\)
−0.730154 + 0.683283i \(0.760551\pi\)
\(684\) 23.9126 0.914320
\(685\) 32.7336 6.65017i 1.25069 0.254090i
\(686\) 14.3938 + 24.9307i 0.549556 + 0.951859i
\(687\) 2.22960 1.28726i 0.0850644 0.0491119i
\(688\) 83.3947i 3.17939i
\(689\) 0 0
\(690\) 12.3576 + 13.9756i 0.470444 + 0.532041i
\(691\) −9.35637 16.2057i −0.355933 0.616494i 0.631344 0.775503i \(-0.282504\pi\)
−0.987277 + 0.159009i \(0.949170\pi\)
\(692\) −114.262 + 65.9692i −4.34359 + 2.50777i
\(693\) 7.10247 + 4.10062i 0.269801 + 0.155769i
\(694\) 73.5510 2.79196
\(695\) −3.75678 18.4917i −0.142503 0.701429i
\(696\) −4.91256 + 8.50880i −0.186210 + 0.322525i
\(697\) 11.2243i 0.425149i
\(698\) −40.7797 23.5442i −1.54354 0.891161i
\(699\) 2.58910 + 4.48446i 0.0979289 + 0.169618i
\(700\) −8.10931 19.1341i −0.306503 0.723202i
\(701\) 24.3028 0.917904 0.458952 0.888461i \(-0.348225\pi\)
0.458952 + 0.888461i \(0.348225\pi\)
\(702\) 0 0
\(703\) 6.31265i 0.238086i
\(704\) 33.2943 + 57.6675i 1.25483 + 2.17342i
\(705\) 3.25872 + 1.09137i 0.122731 + 0.0411033i
\(706\) −21.0913 + 36.5313i −0.793783 + 1.37487i
\(707\) 8.46310i 0.318287i
\(708\) 12.8664 + 7.42842i 0.483549 + 0.279177i
\(709\) 4.83146 8.36833i 0.181449 0.314279i −0.760925 0.648840i \(-0.775255\pi\)
0.942374 + 0.334561i \(0.108588\pi\)
\(710\) −33.9271 38.3693i −1.27326 1.43997i
\(711\) −3.13093 + 5.42293i −0.117419 + 0.203376i
\(712\) 20.2972 11.7186i 0.760672 0.439174i
\(713\) −29.6767 + 17.1339i −1.11140 + 0.641669i
\(714\) −1.40105 −0.0524329
\(715\) 0 0
\(716\) 62.5256 2.33669
\(717\) −4.94312 + 2.85391i −0.184604 + 0.106581i
\(718\) 34.3436 19.8283i 1.28169 0.739985i
\(719\) 14.2071 24.6074i 0.529836 0.917703i −0.469558 0.882901i \(-0.655587\pi\)
0.999394 0.0348012i \(-0.0110798\pi\)
\(720\) −56.9257 + 50.3352i −2.12150 + 1.87588i
\(721\) 6.19394 10.7282i 0.230674 0.399540i
\(722\) −37.5170 21.6604i −1.39624 0.806118i
\(723\) 13.7743i 0.512273i
\(724\) −7.04055 + 12.1946i −0.261660 + 0.453208i
\(725\) 11.1324 4.71808i 0.413448 0.175225i
\(726\) −1.61331 2.79434i −0.0598756 0.103708i
\(727\) 34.8545i 1.29268i −0.763049 0.646341i \(-0.776299\pi\)
0.763049 0.646341i \(-0.223701\pi\)
\(728\) 0 0
\(729\) 15.2882 0.566230
\(730\) −66.7521 22.3557i −2.47061 0.827423i
\(731\) −4.58673 7.94446i −0.169646 0.293836i
\(732\) −3.80001 2.19394i −0.140452 0.0810902i
\(733\) 6.25202i 0.230923i 0.993312 + 0.115462i \(0.0368348\pi\)
−0.993312 + 0.115462i \(0.963165\pi\)
\(734\) 36.1561 62.6242i 1.33455 2.31150i
\(735\) 6.69599 1.36036i 0.246985 0.0501777i
\(736\) −103.376 −3.81050
\(737\) 31.4917 + 18.1817i 1.16001 + 0.669732i
\(738\) −53.3153 + 30.7816i −1.96256 + 1.13309i
\(739\) 16.0423 + 27.7861i 0.590126 + 1.02213i 0.994215 + 0.107408i \(0.0342552\pi\)
−0.404089 + 0.914720i \(0.632411\pi\)
\(740\) −28.7816 32.5501i −1.05803 1.19656i
\(741\) 0 0
\(742\) 12.3733i 0.454238i
\(743\) −26.4521 + 15.2721i −0.970432 + 0.560279i −0.899368 0.437193i \(-0.855973\pi\)
−0.0710638 + 0.997472i \(0.522639\pi\)
\(744\) 10.7411 + 18.6041i 0.393787 + 0.682059i
\(745\) 5.05298 + 24.8719i 0.185127 + 0.911235i
\(746\) −34.6497 −1.26862
\(747\) −9.21540 5.32051i −0.337174 0.194667i
\(748\) −22.1596 12.7938i −0.810235 0.467789i
\(749\) 8.97224 0.327838
\(750\) −14.3486 + 1.11712i −0.523935 + 0.0407916i
\(751\) −14.0811 24.3892i −0.513827 0.889974i −0.999871 0.0160400i \(-0.994894\pi\)
0.486045 0.873934i \(-0.338439\pi\)
\(752\) −33.9531 + 19.6028i −1.23814 + 0.714842i
\(753\) 9.32865i 0.339955i
\(754\) 0 0
\(755\) 23.4314 20.7186i 0.852755 0.754028i
\(756\) 5.76845 + 9.99125i 0.209797 + 0.363378i
\(757\) 30.6667 17.7054i 1.11460 0.643515i 0.174584 0.984642i \(-0.444142\pi\)
0.940017 + 0.341127i \(0.110809\pi\)
\(758\) −70.1642 40.5093i −2.54848 1.47136i
\(759\) 11.4617 0.416033
\(760\) −30.9940 + 6.29676i −1.12427 + 0.228408i
\(761\) −9.61942 + 16.6613i −0.348704 + 0.603973i −0.986019 0.166630i \(-0.946711\pi\)
0.637316 + 0.770603i \(0.280045\pi\)
\(762\) 5.52820i 0.200265i
\(763\) 6.69289 + 3.86414i 0.242299 + 0.139891i
\(764\) 53.1754 + 92.1025i 1.92382 + 3.33215i
\(765\) 2.65448 7.92603i 0.0959730 0.286566i
\(766\) −56.4299 −2.03890
\(767\) 0 0
\(768\) 3.89209i 0.140444i
\(769\) −24.4821 42.4043i −0.882849 1.52914i −0.848159 0.529741i \(-0.822289\pi\)
−0.0346894 0.999398i \(-0.511044\pi\)
\(770\) −16.8030 5.62745i −0.605540 0.202799i
\(771\) 5.50071 9.52750i 0.198103 0.343125i
\(772\) 112.351i 4.04359i
\(773\) −39.9827 23.0840i −1.43808 0.830275i −0.440363 0.897820i \(-0.645150\pi\)
−0.997716 + 0.0675447i \(0.978483\pi\)
\(774\) −25.1575 + 43.5741i −0.904268 + 1.56624i
\(775\) 3.23647 26.2374i 0.116258 0.942476i
\(776\) 7.91160 13.7033i 0.284010 0.491920i
\(777\) −1.26585 + 0.730841i −0.0454122 + 0.0262188i
\(778\) −15.6976 + 9.06300i −0.562786 + 0.324924i
\(779\) −13.9248 −0.498907
\(780\) 0 0
\(781\) −31.4676 −1.12600
\(782\) 20.2744 11.7054i 0.725012 0.418586i
\(783\) −5.81301 + 3.35614i −0.207740 + 0.119939i
\(784\) −38.9749 + 67.5064i −1.39196 + 2.41094i
\(785\) −4.11142 4.64974i −0.146743 0.165956i
\(786\) 0.538319 0.932395i 0.0192012 0.0332574i
\(787\) −19.6118 11.3229i −0.699086 0.403617i 0.107921 0.994159i \(-0.465581\pi\)
−0.807007 + 0.590542i \(0.798914\pi\)
\(788\) 10.3127i 0.367373i
\(789\) −5.26480 + 9.11891i −0.187432 + 0.324642i
\(790\) 4.29672 12.8296i 0.152870 0.456456i
\(791\) 0.231548 + 0.401053i 0.00823290 + 0.0142598i
\(792\) 85.9086i 3.05263i
\(793\) 0 0
\(794\) −28.0059 −0.993891
\(795\) 5.85453 + 1.96072i 0.207639 + 0.0695397i
\(796\) 43.1876 + 74.8031i 1.53074 + 2.65133i
\(797\) −7.13382 4.11871i −0.252693 0.145892i 0.368304 0.929706i \(-0.379939\pi\)
−0.620997 + 0.783813i \(0.713272\pi\)
\(798\) 1.73813i 0.0615293i
\(799\) 2.15633 3.73486i 0.0762853 0.132130i
\(800\) 48.0309 63.6650i 1.69815 2.25090i
\(801\) 7.68452 0.271519
\(802\) −11.6142 6.70545i −0.410111 0.236778i
\(803\) −37.4561 + 21.6253i −1.32180 + 0.763140i
\(804\) 12.2750 + 21.2610i 0.432907 + 0.749817i
\(805\) 8.75131 7.73813i 0.308443 0.272733i
\(806\) 0 0
\(807\) 10.9478i 0.385381i
\(808\) 76.7746 44.3258i 2.70092 1.55938i
\(809\) 22.0659 + 38.2193i 0.775797 + 1.34372i 0.934345 + 0.356369i \(0.115985\pi\)
−0.158548 + 0.987351i \(0.550681\pi\)
\(810\) −40.8564 + 8.30042i −1.43555 + 0.291647i
\(811\) −22.6883 −0.796694 −0.398347 0.917235i \(-0.630416\pi\)
−0.398347 + 0.917235i \(0.630416\pi\)
\(812\) 8.70424 + 5.02539i 0.305459 + 0.176357i
\(813\) 0.0515234 + 0.0297470i 0.00180700 + 0.00104327i
\(814\) −37.0494 −1.29858
\(815\) 4.89000 0.993455i 0.171289 0.0347992i
\(816\) −3.98778 6.90704i −0.139600 0.241795i
\(817\) −9.85587 + 5.69029i −0.344813 + 0.199078i
\(818\) 38.4894i 1.34575i
\(819\) 0 0
\(820\) 71.8007 63.4880i 2.50739 2.21710i
\(821\) −25.1368 43.5382i −0.877281 1.51949i −0.854313 0.519759i \(-0.826022\pi\)
−0.0229677 0.999736i \(-0.507311\pi\)
\(822\) 16.6528 9.61450i 0.580833 0.335344i
\(823\) 4.44352 + 2.56547i 0.154891 + 0.0894265i 0.575442 0.817842i \(-0.304830\pi\)
−0.420551 + 0.907269i \(0.638163\pi\)
\(824\) 129.764 4.52054
\(825\) −5.32536 + 7.05876i −0.185405 + 0.245755i
\(826\) 6.45580 11.1818i 0.224626 0.389064i
\(827\) 18.6946i 0.650076i −0.945701 0.325038i \(-0.894623\pi\)
0.945701 0.325038i \(-0.105377\pi\)
\(828\) −80.1241 46.2597i −2.78450 1.60763i
\(829\) −1.72061 2.98018i −0.0597591 0.103506i 0.834598 0.550859i \(-0.185700\pi\)
−0.894357 + 0.447353i \(0.852367\pi\)
\(830\) 21.8018 + 7.30157i 0.756752 + 0.253441i
\(831\) 7.38646 0.256233
\(832\) 0 0
\(833\) 8.57452i 0.297089i
\(834\) −5.43136 9.40740i −0.188073 0.325752i
\(835\) −11.1439 + 33.2746i −0.385651 + 1.15152i
\(836\) −15.8720 + 27.4911i −0.548945 + 0.950800i
\(837\) 14.6761i 0.507280i
\(838\) −40.4540 23.3561i −1.39746 0.806825i
\(839\) 26.3124 45.5744i 0.908406 1.57340i 0.0921263 0.995747i \(-0.470634\pi\)
0.816279 0.577657i \(-0.196033\pi\)
\(840\) −4.85097 5.48612i −0.167374 0.189289i
\(841\) 11.5762 20.0505i 0.399179 0.691398i
\(842\) 6.68879 3.86177i 0.230511 0.133085i
\(843\) −5.80282 + 3.35026i −0.199860 + 0.115389i
\(844\) 25.2750 0.870003
\(845\) 0 0
\(846\) −23.6542 −0.813248
\(847\) −1.74978 + 1.01023i −0.0601230 + 0.0347121i
\(848\) −60.9992 + 35.2179i −2.09472 + 1.20939i
\(849\) −4.90374 + 8.49353i −0.168296 + 0.291497i
\(850\) −2.21108 + 17.9248i −0.0758394 + 0.614815i
\(851\) 12.2120 21.1519i 0.418623 0.725077i
\(852\) −18.3985 10.6224i −0.630321 0.363916i
\(853\) 6.31853i 0.216342i −0.994132 0.108171i \(-0.965501\pi\)
0.994132 0.108171i \(-0.0344995\pi\)
\(854\) −1.90668 + 3.30246i −0.0652452 + 0.113008i
\(855\) −9.83301 3.29314i −0.336282 0.112623i
\(856\) 46.9925 + 81.3934i 1.60617 + 2.78197i
\(857\) 0.775746i 0.0264990i −0.999912 0.0132495i \(-0.995782\pi\)
0.999912 0.0132495i \(-0.00421757\pi\)
\(858\) 0 0
\(859\) −3.24869 −0.110844 −0.0554220 0.998463i \(-0.517650\pi\)
−0.0554220 + 0.998463i \(0.517650\pi\)
\(860\) 24.8760 74.2774i 0.848265 2.53284i
\(861\) −1.61213 2.79229i −0.0549411 0.0951608i
\(862\) −2.06081 1.18981i −0.0701916 0.0405252i
\(863\) 19.9208i 0.678112i −0.940766 0.339056i \(-0.889892\pi\)
0.940766 0.339056i \(-0.110108\pi\)
\(864\) −22.1368 + 38.3421i −0.753110 + 1.30442i
\(865\) 56.0704 11.3913i 1.90645 0.387316i
\(866\) 67.5487 2.29540
\(867\) −6.32457 3.65149i −0.214794 0.124011i
\(868\) 19.0314 10.9878i 0.645968 0.372950i
\(869\) −4.15633 7.19897i −0.140994 0.244208i
\(870\) 5.21440 4.61071i 0.176785 0.156318i
\(871\) 0 0
\(872\) 80.9544i 2.74146i
\(873\) 4.49299 2.59403i 0.152065 0.0877946i
\(874\) −14.5217 25.1524i −0.491205 0.850793i
\(875\) 0.699528 + 8.98487i 0.0236484 + 0.303744i
\(876\) −29.1998 −0.986570
\(877\) 19.1719 + 11.0689i 0.647388 + 0.373770i 0.787455 0.616372i \(-0.211398\pi\)
−0.140067 + 0.990142i \(0.544732\pi\)
\(878\) −66.7495 38.5379i −2.25269 1.30059i
\(879\) −2.58910 −0.0873283
\(880\) −20.0834 98.8549i −0.677012 3.33240i
\(881\) −1.11577 1.93258i −0.0375914 0.0651102i 0.846618 0.532202i \(-0.178635\pi\)
−0.884209 + 0.467092i \(0.845302\pi\)
\(882\) −40.7291 + 23.5149i −1.37142 + 0.791789i
\(883\) 4.30440i 0.144855i 0.997374 + 0.0724273i \(0.0230745\pi\)
−0.997374 + 0.0724273i \(0.976925\pi\)
\(884\) 0 0
\(885\) −4.26774 4.82653i −0.143459 0.162242i
\(886\) 49.4638 + 85.6739i 1.66177 + 2.87827i
\(887\) 13.7984 7.96651i 0.463305 0.267489i −0.250128 0.968213i \(-0.580473\pi\)
0.713433 + 0.700723i \(0.247139\pi\)
\(888\) −13.2599 7.65562i −0.444974 0.256906i
\(889\) −3.46168 −0.116101
\(890\) −16.2715 + 3.30573i −0.545421 + 0.110808i
\(891\) −12.8072 + 22.1828i −0.429059 + 0.743152i
\(892\) 128.432i 4.30022i
\(893\) −4.63346 2.67513i −0.155053 0.0895198i
\(894\) 7.30536 + 12.6532i 0.244328 + 0.423188i
\(895\) −25.7110 8.61078i −0.859423 0.287827i
\(896\) 13.3561 0.446197
\(897\) 0 0
\(898\) 33.9365i 1.13248i
\(899\) 6.39280 + 11.0727i 0.213212 + 0.369294i
\(900\) 65.7168 27.8517i 2.19056 0.928390i
\(901\) 3.87399 6.70995i 0.129061 0.223541i
\(902\) 81.7255i 2.72116i
\(903\) −2.28211 1.31757i −0.0759438 0.0438461i
\(904\) −2.42548 + 4.20106i −0.0806704 + 0.139725i
\(905\) 4.57452 4.04491i 0.152062 0.134457i
\(906\) 9.00294 15.5935i 0.299103 0.518061i
\(907\) −44.9542 + 25.9543i −1.49268 + 0.861798i −0.999965 0.00839339i \(-0.997328\pi\)
−0.492713 + 0.870192i \(0.663995\pi\)
\(908\) 44.4546 25.6659i 1.47528 0.851751i
\(909\) 29.0668 0.964085
\(910\) 0 0
\(911\) −9.67750 −0.320630 −0.160315 0.987066i \(-0.551251\pi\)
−0.160315 + 0.987066i \(0.551251\pi\)
\(912\) −8.56885 + 4.94723i −0.283743 + 0.163819i
\(913\) 12.2335 7.06300i 0.404869 0.233751i
\(914\) −33.5052 + 58.0327i −1.10825 + 1.91955i
\(915\) 1.26045 + 1.42548i 0.0416692 + 0.0471251i
\(916\) 13.7938 23.8916i 0.455761 0.789402i
\(917\) −0.583853 0.337088i −0.0192805 0.0111316i
\(918\) 10.0263i 0.330919i
\(919\) 6.77575 11.7359i 0.223511 0.387133i −0.732361 0.680917i \(-0.761581\pi\)
0.955872 + 0.293784i \(0.0949147\pi\)
\(920\) 116.033 + 38.8603i 3.82550 + 1.28119i
\(921\) 4.61213 + 7.98844i 0.151975 + 0.263228i
\(922\) 98.6780i 3.24979i
\(923\) 0 0
\(924\) −7.35026 −0.241806
\(925\) 7.35254 + 17.3485i 0.241750 + 0.570416i
\(926\) 52.1905 + 90.3967i 1.71509 + 2.97062i
\(927\) 36.8464 + 21.2733i 1.21019 + 0.698706i
\(928\) 38.5705i 1.26614i
\(929\) 4.72496 8.18387i 0.155021 0.268504i −0.778046 0.628208i \(-0.783789\pi\)
0.933067 + 0.359704i \(0.117122\pi\)
\(930\) −3.02997 14.9141i −0.0993565 0.489054i
\(931\) −10.6375 −0.348631
\(932\) 48.0540 + 27.7440i 1.57406 + 0.908785i
\(933\) −10.5226 + 6.07522i −0.344494 + 0.198894i
\(934\) −43.8312 75.9179i −1.43420 2.48411i
\(935\) 7.35026 + 8.31265i 0.240379 + 0.271853i
\(936\) 0 0
\(937\) 16.0409i 0.524035i 0.965063 + 0.262017i \(0.0843877\pi\)
−0.965063 + 0.262017i \(0.915612\pi\)
\(938\) 18.4772 10.6678i 0.603303 0.348317i
\(939\) −0.676545 1.17181i −0.0220782 0.0382406i
\(940\) 36.0885 7.33176i 1.17708 0.239136i
\(941\) 21.6747 0.706574 0.353287 0.935515i \(-0.385064\pi\)
0.353287 + 0.935515i \(0.385064\pi\)
\(942\) −3.09440 1.78655i −0.100821 0.0582090i
\(943\) 46.6579 + 26.9380i 1.51939 + 0.877220i
\(944\) 73.5002 2.39223
\(945\) −0.996072 4.90288i −0.0324022 0.159491i
\(946\) −33.3967 57.8448i −1.08582 1.88070i
\(947\) 4.01072 2.31559i 0.130331 0.0752466i −0.433417 0.901193i \(-0.642692\pi\)
0.563748 + 0.825947i \(0.309359\pi\)
\(948\) 5.61213i 0.182273i
\(949\) 0 0
\(950\) 22.2374 + 2.74306i 0.721477 + 0.0889966i
\(951\) 5.71862 + 9.90494i 0.185439 + 0.321190i
\(952\) −7.95874 + 4.59498i −0.257944 + 0.148924i
\(953\) 22.7748 + 13.1490i 0.737748 + 0.425939i 0.821250 0.570569i \(-0.193277\pi\)
−0.0835021 + 0.996508i \(0.526611\pi\)
\(954\) −42.4965 −1.37587
\(955\) −9.18210 45.1963i −0.297126 1.46252i
\(956\) −30.5816 + 52.9689i −0.989079 + 1.71314i
\(957\) 4.27645i 0.138238i
\(958\) 39.0947 + 22.5713i 1.26309 + 0.729247i
\(959\) −6.02047 10.4278i −0.194411 0.336730i
\(960\) 6.19117 18.4862i 0.199819 0.596641i
\(961\) −3.04491 −0.0982228
\(962\) 0 0
\(963\) 30.8155i 0.993014i
\(964\) 73.8007 + 127.827i 2.37696 + 4.11702i
\(965\) 15.4725 46.1994i 0.498077 1.48721i
\(966\) 3.36248 5.82399i 0.108186 0.187384i
\(967\) 11.9405i 0.383981i 0.981397 + 0.191990i \(0.0614942\pi\)
−0.981397 + 0.191990i \(0.938506\pi\)
\(968\) −18.3291 10.5823i −0.589118 0.340128i
\(969\) 0.544198 0.942579i 0.0174822 0.0302800i
\(970\) −8.39772 + 7.42548i −0.269635 + 0.238418i
\(971\) −15.0762 + 26.1127i −0.483818 + 0.837997i −0.999827 0.0185861i \(-0.994084\pi\)
0.516010 + 0.856583i \(0.327417\pi\)
\(972\) −52.1617 + 30.1155i −1.67309 + 0.965957i
\(973\) −5.89079 + 3.40105i −0.188850 + 0.109033i
\(974\) 24.7308 0.792427
\(975\) 0 0
\(976\) −21.7078 −0.694850
\(977\) −23.3239 + 13.4660i −0.746196 + 0.430817i −0.824318 0.566127i \(-0.808441\pi\)
0.0781216 + 0.996944i \(0.475108\pi\)
\(978\) 2.48772 1.43629i 0.0795487 0.0459274i
\(979\) −5.10062 + 8.83453i −0.163016 + 0.282353i
\(980\) 54.8505 48.5002i 1.75214 1.54928i
\(981\) −13.2715 + 22.9870i −0.423727 + 0.733917i
\(982\) −59.6556 34.4422i −1.90369 1.09909i
\(983\) 20.5902i 0.656727i −0.944551 0.328363i \(-0.893503\pi\)
0.944551 0.328363i \(-0.106497\pi\)
\(984\) 16.8872 29.2494i 0.538343 0.932438i
\(985\) 1.42022 4.24063i 0.0452519 0.135118i
\(986\) −4.36741 7.56457i −0.139087 0.240905i
\(987\) 1.23884i 0.0394328i
\(988\) 0 0
\(989\) 44.0322 1.40014
\(990\) 19.3277 57.7106i 0.614274 1.83416i
\(991\) 24.0689 + 41.6885i 0.764573 + 1.32428i 0.940472 + 0.339871i \(0.110384\pi\)
−0.175899 + 0.984408i \(0.556283\pi\)
\(992\) 73.0342 + 42.1663i 2.31884 + 1.33878i
\(993\) 5.67864i 0.180206i
\(994\) −9.23155 + 15.9895i −0.292807 + 0.507156i
\(995\) −7.45746 36.7072i −0.236417 1.16370i
\(996\) 9.53690 0.302188
\(997\) −28.9473 16.7127i −0.916771 0.529298i −0.0341674 0.999416i \(-0.510878\pi\)
−0.882603 + 0.470118i \(0.844211\pi\)
\(998\) 64.1769 37.0525i 2.03148 1.17288i
\(999\) −5.23013 9.05886i −0.165474 0.286610i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.n.g.484.1 12
5.4 even 2 inner 845.2.n.g.484.6 12
13.2 odd 12 845.2.d.a.844.2 6
13.3 even 3 845.2.b.c.339.1 6
13.4 even 6 845.2.n.f.529.1 12
13.5 odd 4 845.2.l.e.699.6 12
13.6 odd 12 845.2.l.e.654.5 12
13.7 odd 12 845.2.l.d.654.1 12
13.8 odd 4 845.2.l.d.699.2 12
13.9 even 3 inner 845.2.n.g.529.6 12
13.10 even 6 65.2.b.a.14.6 yes 6
13.11 odd 12 845.2.d.b.844.6 6
13.12 even 2 845.2.n.f.484.6 12
39.23 odd 6 585.2.c.b.469.1 6
52.23 odd 6 1040.2.d.c.209.3 6
65.3 odd 12 4225.2.a.ba.1.1 3
65.4 even 6 845.2.n.f.529.6 12
65.9 even 6 inner 845.2.n.g.529.1 12
65.19 odd 12 845.2.l.d.654.2 12
65.23 odd 12 325.2.a.k.1.3 3
65.24 odd 12 845.2.d.a.844.1 6
65.29 even 6 845.2.b.c.339.6 6
65.34 odd 4 845.2.l.e.699.5 12
65.42 odd 12 4225.2.a.bh.1.3 3
65.44 odd 4 845.2.l.d.699.1 12
65.49 even 6 65.2.b.a.14.1 6
65.54 odd 12 845.2.d.b.844.5 6
65.59 odd 12 845.2.l.e.654.6 12
65.62 odd 12 325.2.a.j.1.1 3
65.64 even 2 845.2.n.f.484.1 12
195.23 even 12 2925.2.a.bf.1.1 3
195.62 even 12 2925.2.a.bj.1.3 3
195.179 odd 6 585.2.c.b.469.6 6
260.23 even 12 5200.2.a.cb.1.3 3
260.127 even 12 5200.2.a.cj.1.1 3
260.179 odd 6 1040.2.d.c.209.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.1 6 65.49 even 6
65.2.b.a.14.6 yes 6 13.10 even 6
325.2.a.j.1.1 3 65.62 odd 12
325.2.a.k.1.3 3 65.23 odd 12
585.2.c.b.469.1 6 39.23 odd 6
585.2.c.b.469.6 6 195.179 odd 6
845.2.b.c.339.1 6 13.3 even 3
845.2.b.c.339.6 6 65.29 even 6
845.2.d.a.844.1 6 65.24 odd 12
845.2.d.a.844.2 6 13.2 odd 12
845.2.d.b.844.5 6 65.54 odd 12
845.2.d.b.844.6 6 13.11 odd 12
845.2.l.d.654.1 12 13.7 odd 12
845.2.l.d.654.2 12 65.19 odd 12
845.2.l.d.699.1 12 65.44 odd 4
845.2.l.d.699.2 12 13.8 odd 4
845.2.l.e.654.5 12 13.6 odd 12
845.2.l.e.654.6 12 65.59 odd 12
845.2.l.e.699.5 12 65.34 odd 4
845.2.l.e.699.6 12 13.5 odd 4
845.2.n.f.484.1 12 65.64 even 2
845.2.n.f.484.6 12 13.12 even 2
845.2.n.f.529.1 12 13.4 even 6
845.2.n.f.529.6 12 65.4 even 6
845.2.n.g.484.1 12 1.1 even 1 trivial
845.2.n.g.484.6 12 5.4 even 2 inner
845.2.n.g.529.1 12 65.9 even 6 inner
845.2.n.g.529.6 12 13.9 even 3 inner
1040.2.d.c.209.3 6 52.23 odd 6
1040.2.d.c.209.4 6 260.179 odd 6
2925.2.a.bf.1.1 3 195.23 even 12
2925.2.a.bj.1.3 3 195.62 even 12
4225.2.a.ba.1.1 3 65.3 odd 12
4225.2.a.bh.1.3 3 65.42 odd 12
5200.2.a.cb.1.3 3 260.23 even 12
5200.2.a.cj.1.1 3 260.127 even 12