Properties

Label 52.4.h.a.17.2
Level $52$
Weight $4$
Character 52.17
Analytic conductor $3.068$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [52,4,Mod(17,52)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("52.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(52, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 52.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.06809932030\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 51x^{6} - 224x^{5} + 2520x^{4} - 5712x^{3} + 16675x^{2} + 9072x + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Root \(2.54083 - 4.40084i\) of defining polynomial
Character \(\chi\) \(=\) 52.17
Dual form 52.4.h.a.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.643469 + 1.11452i) q^{3} +15.8968i q^{5} +(-1.02552 + 0.592083i) q^{7} +(12.6719 + 21.9484i) q^{9} +(33.6987 + 19.4560i) q^{11} +(-45.4488 - 11.4634i) q^{13} +(-17.7173 - 10.2291i) q^{15} +(-18.4601 - 31.9739i) q^{17} +(37.1887 - 21.4709i) q^{19} -1.52395i q^{21} +(101.967 - 176.612i) q^{23} -127.707 q^{25} -67.3632 q^{27} +(-29.4958 + 51.0882i) q^{29} -77.3896i q^{31} +(-43.3681 + 25.0386i) q^{33} +(-9.41221 - 16.3024i) q^{35} +(223.689 + 129.147i) q^{37} +(42.0210 - 43.2773i) q^{39} +(146.884 + 84.8034i) q^{41} +(183.168 + 317.255i) q^{43} +(-348.908 + 201.442i) q^{45} -249.834i q^{47} +(-170.799 + 295.832i) q^{49} +47.5141 q^{51} +157.459 q^{53} +(-309.287 + 535.701i) q^{55} +55.2634i q^{57} +(582.168 - 336.115i) q^{59} +(-290.125 - 502.512i) q^{61} +(-25.9905 - 15.0056i) q^{63} +(182.231 - 722.489i) q^{65} +(156.637 + 90.4343i) q^{67} +(131.225 + 227.289i) q^{69} +(-449.996 + 259.805i) q^{71} -982.663i q^{73} +(82.1757 - 142.332i) q^{75} -46.0782 q^{77} -1265.85 q^{79} +(-298.795 + 517.528i) q^{81} -1026.42i q^{83} +(508.282 - 293.457i) q^{85} +(-37.9592 - 65.7473i) q^{87} +(1286.09 + 742.526i) q^{89} +(53.3958 - 15.1535i) q^{91} +(86.2523 + 49.7978i) q^{93} +(341.318 + 591.180i) q^{95} +(-303.313 + 175.118i) q^{97} +986.176i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{7} - 70 q^{9} + 72 q^{11} + 62 q^{13} + 96 q^{15} + 88 q^{17} - 144 q^{19} - 20 q^{23} - 84 q^{25} - 432 q^{27} - 484 q^{29} + 1038 q^{33} + 40 q^{35} + 996 q^{37} - 236 q^{39} + 156 q^{41}+ \cdots - 3042 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/52\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.643469 + 1.11452i −0.123836 + 0.214490i −0.921277 0.388907i \(-0.872853\pi\)
0.797442 + 0.603396i \(0.206186\pi\)
\(4\) 0 0
\(5\) 15.8968i 1.42185i 0.703268 + 0.710925i \(0.251724\pi\)
−0.703268 + 0.710925i \(0.748276\pi\)
\(6\) 0 0
\(7\) −1.02552 + 0.592083i −0.0553728 + 0.0319695i −0.527431 0.849598i \(-0.676845\pi\)
0.472058 + 0.881567i \(0.343511\pi\)
\(8\) 0 0
\(9\) 12.6719 + 21.9484i 0.469329 + 0.812903i
\(10\) 0 0
\(11\) 33.6987 + 19.4560i 0.923686 + 0.533290i 0.884809 0.465954i \(-0.154289\pi\)
0.0388769 + 0.999244i \(0.487622\pi\)
\(12\) 0 0
\(13\) −45.4488 11.4634i −0.969632 0.244567i
\(14\) 0 0
\(15\) −17.7173 10.2291i −0.304972 0.176076i
\(16\) 0 0
\(17\) −18.4601 31.9739i −0.263367 0.456165i 0.703767 0.710430i \(-0.251500\pi\)
−0.967135 + 0.254265i \(0.918166\pi\)
\(18\) 0 0
\(19\) 37.1887 21.4709i 0.449035 0.259250i −0.258388 0.966041i \(-0.583191\pi\)
0.707423 + 0.706791i \(0.249858\pi\)
\(20\) 0 0
\(21\) 1.52395i 0.0158358i
\(22\) 0 0
\(23\) 101.967 176.612i 0.924418 1.60114i 0.131924 0.991260i \(-0.457885\pi\)
0.792494 0.609879i \(-0.208782\pi\)
\(24\) 0 0
\(25\) −127.707 −1.02166
\(26\) 0 0
\(27\) −67.3632 −0.480150
\(28\) 0 0
\(29\) −29.4958 + 51.0882i −0.188870 + 0.327132i −0.944874 0.327435i \(-0.893816\pi\)
0.756004 + 0.654567i \(0.227149\pi\)
\(30\) 0 0
\(31\) 77.3896i 0.448374i −0.974546 0.224187i \(-0.928027\pi\)
0.974546 0.224187i \(-0.0719726\pi\)
\(32\) 0 0
\(33\) −43.3681 + 25.0386i −0.228770 + 0.132081i
\(34\) 0 0
\(35\) −9.41221 16.3024i −0.0454558 0.0787318i
\(36\) 0 0
\(37\) 223.689 + 129.147i 0.993898 + 0.573827i 0.906437 0.422340i \(-0.138791\pi\)
0.0874610 + 0.996168i \(0.472125\pi\)
\(38\) 0 0
\(39\) 42.0210 43.2773i 0.172532 0.177690i
\(40\) 0 0
\(41\) 146.884 + 84.8034i 0.559498 + 0.323026i 0.752944 0.658085i \(-0.228633\pi\)
−0.193446 + 0.981111i \(0.561966\pi\)
\(42\) 0 0
\(43\) 183.168 + 317.255i 0.649600 + 1.12514i 0.983219 + 0.182432i \(0.0583968\pi\)
−0.333619 + 0.942708i \(0.608270\pi\)
\(44\) 0 0
\(45\) −348.908 + 201.442i −1.15583 + 0.667316i
\(46\) 0 0
\(47\) 249.834i 0.775362i −0.921794 0.387681i \(-0.873276\pi\)
0.921794 0.387681i \(-0.126724\pi\)
\(48\) 0 0
\(49\) −170.799 + 295.832i −0.497956 + 0.862485i
\(50\) 0 0
\(51\) 47.5141 0.130457
\(52\) 0 0
\(53\) 157.459 0.408087 0.204044 0.978962i \(-0.434592\pi\)
0.204044 + 0.978962i \(0.434592\pi\)
\(54\) 0 0
\(55\) −309.287 + 535.701i −0.758259 + 1.31334i
\(56\) 0 0
\(57\) 55.2634i 0.128418i
\(58\) 0 0
\(59\) 582.168 336.115i 1.28461 0.741668i 0.306919 0.951736i \(-0.400702\pi\)
0.977687 + 0.210068i \(0.0673685\pi\)
\(60\) 0 0
\(61\) −290.125 502.512i −0.608963 1.05476i −0.991412 0.130778i \(-0.958252\pi\)
0.382449 0.923977i \(-0.375081\pi\)
\(62\) 0 0
\(63\) −25.9905 15.0056i −0.0519761 0.0300084i
\(64\) 0 0
\(65\) 182.231 722.489i 0.347738 1.37867i
\(66\) 0 0
\(67\) 156.637 + 90.4343i 0.285615 + 0.164900i 0.635963 0.771720i \(-0.280603\pi\)
−0.350347 + 0.936620i \(0.613936\pi\)
\(68\) 0 0
\(69\) 131.225 + 227.289i 0.228952 + 0.396556i
\(70\) 0 0
\(71\) −449.996 + 259.805i −0.752179 + 0.434271i −0.826481 0.562965i \(-0.809661\pi\)
0.0743017 + 0.997236i \(0.476327\pi\)
\(72\) 0 0
\(73\) 982.663i 1.57551i −0.615991 0.787753i \(-0.711244\pi\)
0.615991 0.787753i \(-0.288756\pi\)
\(74\) 0 0
\(75\) 82.1757 142.332i 0.126518 0.219135i
\(76\) 0 0
\(77\) −46.0782 −0.0681960
\(78\) 0 0
\(79\) −1265.85 −1.80278 −0.901388 0.433013i \(-0.857450\pi\)
−0.901388 + 0.433013i \(0.857450\pi\)
\(80\) 0 0
\(81\) −298.795 + 517.528i −0.409870 + 0.709915i
\(82\) 0 0
\(83\) 1026.42i 1.35740i −0.734414 0.678702i \(-0.762543\pi\)
0.734414 0.678702i \(-0.237457\pi\)
\(84\) 0 0
\(85\) 508.282 293.457i 0.648599 0.374469i
\(86\) 0 0
\(87\) −37.9592 65.7473i −0.0467777 0.0810213i
\(88\) 0 0
\(89\) 1286.09 + 742.526i 1.53175 + 0.884355i 0.999281 + 0.0379029i \(0.0120678\pi\)
0.532466 + 0.846452i \(0.321266\pi\)
\(90\) 0 0
\(91\) 53.3958 15.1535i 0.0615099 0.0174563i
\(92\) 0 0
\(93\) 86.2523 + 49.7978i 0.0961714 + 0.0555246i
\(94\) 0 0
\(95\) 341.318 + 591.180i 0.368615 + 0.638460i
\(96\) 0 0
\(97\) −303.313 + 175.118i −0.317493 + 0.183305i −0.650274 0.759699i \(-0.725346\pi\)
0.332782 + 0.943004i \(0.392013\pi\)
\(98\) 0 0
\(99\) 986.176i 1.00116i
\(100\) 0 0
\(101\) 715.853 1239.89i 0.705248 1.22153i −0.261354 0.965243i \(-0.584169\pi\)
0.966602 0.256282i \(-0.0824977\pi\)
\(102\) 0 0
\(103\) −1492.10 −1.42739 −0.713695 0.700456i \(-0.752980\pi\)
−0.713695 + 0.700456i \(0.752980\pi\)
\(104\) 0 0
\(105\) 24.2258 0.0225162
\(106\) 0 0
\(107\) −580.909 + 1006.16i −0.524847 + 0.909062i 0.474734 + 0.880129i \(0.342544\pi\)
−0.999581 + 0.0289326i \(0.990789\pi\)
\(108\) 0 0
\(109\) 1599.05i 1.40515i 0.711611 + 0.702574i \(0.247966\pi\)
−0.711611 + 0.702574i \(0.752034\pi\)
\(110\) 0 0
\(111\) −287.874 + 166.204i −0.246160 + 0.142121i
\(112\) 0 0
\(113\) −187.357 324.511i −0.155974 0.270155i 0.777439 0.628958i \(-0.216518\pi\)
−0.933413 + 0.358803i \(0.883185\pi\)
\(114\) 0 0
\(115\) 2807.56 + 1620.95i 2.27658 + 1.31438i
\(116\) 0 0
\(117\) −324.320 1142.79i −0.256268 0.902999i
\(118\) 0 0
\(119\) 37.8624 + 21.8599i 0.0291667 + 0.0168394i
\(120\) 0 0
\(121\) 91.5691 + 158.602i 0.0687973 + 0.119160i
\(122\) 0 0
\(123\) −189.030 + 109.137i −0.138571 + 0.0800043i
\(124\) 0 0
\(125\) 43.0377i 0.0307952i
\(126\) 0 0
\(127\) 324.648 562.306i 0.226833 0.392887i −0.730035 0.683410i \(-0.760496\pi\)
0.956868 + 0.290523i \(0.0938294\pi\)
\(128\) 0 0
\(129\) −471.450 −0.321774
\(130\) 0 0
\(131\) −612.966 −0.408818 −0.204409 0.978886i \(-0.565527\pi\)
−0.204409 + 0.978886i \(0.565527\pi\)
\(132\) 0 0
\(133\) −25.4251 + 44.0375i −0.0165762 + 0.0287108i
\(134\) 0 0
\(135\) 1070.86i 0.682702i
\(136\) 0 0
\(137\) 180.827 104.401i 0.112767 0.0651062i −0.442556 0.896741i \(-0.645928\pi\)
0.555323 + 0.831635i \(0.312595\pi\)
\(138\) 0 0
\(139\) 184.795 + 320.074i 0.112763 + 0.195312i 0.916883 0.399155i \(-0.130697\pi\)
−0.804120 + 0.594467i \(0.797363\pi\)
\(140\) 0 0
\(141\) 278.445 + 160.760i 0.166307 + 0.0960175i
\(142\) 0 0
\(143\) −1308.53 1270.55i −0.765211 0.742999i
\(144\) 0 0
\(145\) −812.137 468.888i −0.465133 0.268545i
\(146\) 0 0
\(147\) −219.807 380.718i −0.123329 0.213613i
\(148\) 0 0
\(149\) −857.541 + 495.101i −0.471493 + 0.272217i −0.716865 0.697212i \(-0.754423\pi\)
0.245371 + 0.969429i \(0.421090\pi\)
\(150\) 0 0
\(151\) 2855.12i 1.53872i −0.638816 0.769360i \(-0.720575\pi\)
0.638816 0.769360i \(-0.279425\pi\)
\(152\) 0 0
\(153\) 467.850 810.340i 0.247212 0.428184i
\(154\) 0 0
\(155\) 1230.24 0.637520
\(156\) 0 0
\(157\) −947.845 −0.481823 −0.240912 0.970547i \(-0.577446\pi\)
−0.240912 + 0.970547i \(0.577446\pi\)
\(158\) 0 0
\(159\) −101.320 + 175.491i −0.0505357 + 0.0875305i
\(160\) 0 0
\(161\) 241.492i 0.118213i
\(162\) 0 0
\(163\) 2330.22 1345.35i 1.11973 0.646479i 0.178401 0.983958i \(-0.442908\pi\)
0.941333 + 0.337479i \(0.109574\pi\)
\(164\) 0 0
\(165\) −398.033 689.413i −0.187799 0.325277i
\(166\) 0 0
\(167\) −1563.89 902.913i −0.724656 0.418380i 0.0918081 0.995777i \(-0.470735\pi\)
−0.816464 + 0.577397i \(0.804069\pi\)
\(168\) 0 0
\(169\) 1934.18 + 1041.99i 0.880374 + 0.474280i
\(170\) 0 0
\(171\) 942.502 + 544.154i 0.421491 + 0.243348i
\(172\) 0 0
\(173\) 177.022 + 306.610i 0.0777959 + 0.134747i 0.902299 0.431111i \(-0.141878\pi\)
−0.824503 + 0.565858i \(0.808545\pi\)
\(174\) 0 0
\(175\) 130.966 75.6133i 0.0565720 0.0326619i
\(176\) 0 0
\(177\) 865.117i 0.367380i
\(178\) 0 0
\(179\) −1297.09 + 2246.63i −0.541615 + 0.938104i 0.457197 + 0.889366i \(0.348853\pi\)
−0.998812 + 0.0487386i \(0.984480\pi\)
\(180\) 0 0
\(181\) −2338.97 −0.960522 −0.480261 0.877126i \(-0.659458\pi\)
−0.480261 + 0.877126i \(0.659458\pi\)
\(182\) 0 0
\(183\) 746.747 0.301645
\(184\) 0 0
\(185\) −2053.02 + 3555.93i −0.815897 + 1.41317i
\(186\) 0 0
\(187\) 1436.64i 0.561805i
\(188\) 0 0
\(189\) 69.0821 39.8846i 0.0265872 0.0153501i
\(190\) 0 0
\(191\) −15.3004 26.5011i −0.00579633 0.0100395i 0.863113 0.505011i \(-0.168512\pi\)
−0.868909 + 0.494972i \(0.835178\pi\)
\(192\) 0 0
\(193\) −2634.49 1521.02i −0.982563 0.567283i −0.0795202 0.996833i \(-0.525339\pi\)
−0.903043 + 0.429550i \(0.858672\pi\)
\(194\) 0 0
\(195\) 687.969 + 667.999i 0.252649 + 0.245315i
\(196\) 0 0
\(197\) 3612.02 + 2085.40i 1.30632 + 0.754205i 0.981480 0.191563i \(-0.0613556\pi\)
0.324842 + 0.945768i \(0.394689\pi\)
\(198\) 0 0
\(199\) 2315.80 + 4011.08i 0.824938 + 1.42883i 0.901967 + 0.431806i \(0.142123\pi\)
−0.0770283 + 0.997029i \(0.524543\pi\)
\(200\) 0 0
\(201\) −201.582 + 116.383i −0.0707387 + 0.0408410i
\(202\) 0 0
\(203\) 69.8558i 0.0241523i
\(204\) 0 0
\(205\) −1348.10 + 2334.98i −0.459295 + 0.795522i
\(206\) 0 0
\(207\) 5168.47 1.73543
\(208\) 0 0
\(209\) 1670.95 0.553023
\(210\) 0 0
\(211\) 2701.82 4679.69i 0.881522 1.52684i 0.0318728 0.999492i \(-0.489853\pi\)
0.849649 0.527349i \(-0.176814\pi\)
\(212\) 0 0
\(213\) 668.707i 0.215113i
\(214\) 0 0
\(215\) −5043.34 + 2911.77i −1.59978 + 0.923634i
\(216\) 0 0
\(217\) 45.8210 + 79.3644i 0.0143343 + 0.0248277i
\(218\) 0 0
\(219\) 1095.20 + 632.313i 0.337930 + 0.195104i
\(220\) 0 0
\(221\) 472.462 + 1664.79i 0.143806 + 0.506724i
\(222\) 0 0
\(223\) −4319.82 2494.05i −1.29720 0.748941i −0.317283 0.948331i \(-0.602771\pi\)
−0.979920 + 0.199390i \(0.936104\pi\)
\(224\) 0 0
\(225\) −1618.29 2802.97i −0.479494 0.830509i
\(226\) 0 0
\(227\) −2196.74 + 1268.29i −0.642303 + 0.370834i −0.785501 0.618860i \(-0.787595\pi\)
0.143198 + 0.989694i \(0.454261\pi\)
\(228\) 0 0
\(229\) 747.558i 0.215721i 0.994166 + 0.107860i \(0.0343999\pi\)
−0.994166 + 0.107860i \(0.965600\pi\)
\(230\) 0 0
\(231\) 29.6499 51.3551i 0.00844510 0.0146273i
\(232\) 0 0
\(233\) −1661.81 −0.467248 −0.233624 0.972327i \(-0.575058\pi\)
−0.233624 + 0.972327i \(0.575058\pi\)
\(234\) 0 0
\(235\) 3971.55 1.10245
\(236\) 0 0
\(237\) 814.535 1410.82i 0.223248 0.386677i
\(238\) 0 0
\(239\) 1995.23i 0.540002i 0.962860 + 0.270001i \(0.0870240\pi\)
−0.962860 + 0.270001i \(0.912976\pi\)
\(240\) 0 0
\(241\) 1129.49 652.109i 0.301895 0.174299i −0.341399 0.939918i \(-0.610901\pi\)
0.643294 + 0.765619i \(0.277567\pi\)
\(242\) 0 0
\(243\) −1293.93 2241.16i −0.341588 0.591648i
\(244\) 0 0
\(245\) −4702.78 2715.15i −1.22632 0.708019i
\(246\) 0 0
\(247\) −1936.31 + 549.517i −0.498803 + 0.141559i
\(248\) 0 0
\(249\) 1143.97 + 660.471i 0.291149 + 0.168095i
\(250\) 0 0
\(251\) −2528.81 4380.03i −0.635926 1.10146i −0.986318 0.164852i \(-0.947285\pi\)
0.350393 0.936603i \(-0.386048\pi\)
\(252\) 0 0
\(253\) 6872.32 3967.74i 1.70774 0.985967i
\(254\) 0 0
\(255\) 755.321i 0.185490i
\(256\) 0 0
\(257\) 2225.65 3854.95i 0.540204 0.935661i −0.458687 0.888598i \(-0.651680\pi\)
0.998892 0.0470638i \(-0.0149864\pi\)
\(258\) 0 0
\(259\) −305.863 −0.0733798
\(260\) 0 0
\(261\) −1495.07 −0.354569
\(262\) 0 0
\(263\) 2287.94 3962.83i 0.536428 0.929120i −0.462665 0.886533i \(-0.653107\pi\)
0.999093 0.0425868i \(-0.0135599\pi\)
\(264\) 0 0
\(265\) 2503.09i 0.580239i
\(266\) 0 0
\(267\) −1655.12 + 955.584i −0.379370 + 0.219029i
\(268\) 0 0
\(269\) 2705.66 + 4686.34i 0.613260 + 1.06220i 0.990687 + 0.136159i \(0.0434757\pi\)
−0.377427 + 0.926039i \(0.623191\pi\)
\(270\) 0 0
\(271\) −322.418 186.148i −0.0722712 0.0417258i 0.463429 0.886134i \(-0.346619\pi\)
−0.535700 + 0.844408i \(0.679952\pi\)
\(272\) 0 0
\(273\) −17.4696 + 69.2615i −0.00387292 + 0.0153549i
\(274\) 0 0
\(275\) −4303.57 2484.67i −0.943692 0.544841i
\(276\) 0 0
\(277\) −2953.92 5116.35i −0.640737 1.10979i −0.985269 0.171014i \(-0.945296\pi\)
0.344532 0.938775i \(-0.388038\pi\)
\(278\) 0 0
\(279\) 1698.57 980.673i 0.364484 0.210435i
\(280\) 0 0
\(281\) 3598.50i 0.763946i 0.924174 + 0.381973i \(0.124755\pi\)
−0.924174 + 0.381973i \(0.875245\pi\)
\(282\) 0 0
\(283\) −1706.65 + 2956.00i −0.358480 + 0.620905i −0.987707 0.156316i \(-0.950038\pi\)
0.629227 + 0.777221i \(0.283371\pi\)
\(284\) 0 0
\(285\) −878.509 −0.182591
\(286\) 0 0
\(287\) −200.843 −0.0413079
\(288\) 0 0
\(289\) 1774.95 3074.30i 0.361275 0.625748i
\(290\) 0 0
\(291\) 450.732i 0.0907985i
\(292\) 0 0
\(293\) −976.718 + 563.908i −0.194746 + 0.112436i −0.594202 0.804316i \(-0.702532\pi\)
0.399457 + 0.916752i \(0.369199\pi\)
\(294\) 0 0
\(295\) 5343.14 + 9254.58i 1.05454 + 1.82652i
\(296\) 0 0
\(297\) −2270.05 1310.62i −0.443508 0.256059i
\(298\) 0 0
\(299\) −6658.85 + 6857.92i −1.28793 + 1.32643i
\(300\) 0 0
\(301\) −375.683 216.901i −0.0719402 0.0415347i
\(302\) 0 0
\(303\) 921.258 + 1595.67i 0.174670 + 0.302537i
\(304\) 0 0
\(305\) 7988.32 4612.06i 1.49970 0.865854i
\(306\) 0 0
\(307\) 7338.57i 1.36428i 0.731221 + 0.682141i \(0.238951\pi\)
−0.731221 + 0.682141i \(0.761049\pi\)
\(308\) 0 0
\(309\) 960.121 1662.98i 0.176762 0.306160i
\(310\) 0 0
\(311\) 7550.86 1.37675 0.688376 0.725354i \(-0.258324\pi\)
0.688376 + 0.725354i \(0.258324\pi\)
\(312\) 0 0
\(313\) −1262.18 −0.227932 −0.113966 0.993485i \(-0.536356\pi\)
−0.113966 + 0.993485i \(0.536356\pi\)
\(314\) 0 0
\(315\) 238.541 413.165i 0.0426675 0.0739023i
\(316\) 0 0
\(317\) 4085.51i 0.723865i 0.932204 + 0.361933i \(0.117883\pi\)
−0.932204 + 0.361933i \(0.882117\pi\)
\(318\) 0 0
\(319\) −1987.94 + 1147.74i −0.348913 + 0.201445i
\(320\) 0 0
\(321\) −747.594 1294.87i −0.129990 0.225148i
\(322\) 0 0
\(323\) −1373.02 792.711i −0.236522 0.136556i
\(324\) 0 0
\(325\) 5804.14 + 1463.96i 0.990633 + 0.249864i
\(326\) 0 0
\(327\) −1782.17 1028.94i −0.301390 0.174007i
\(328\) 0 0
\(329\) 147.922 + 256.209i 0.0247879 + 0.0429339i
\(330\) 0 0
\(331\) −3910.68 + 2257.83i −0.649397 + 0.374930i −0.788225 0.615387i \(-0.789000\pi\)
0.138828 + 0.990316i \(0.455666\pi\)
\(332\) 0 0
\(333\) 6546.14i 1.07726i
\(334\) 0 0
\(335\) −1437.61 + 2490.02i −0.234463 + 0.406102i
\(336\) 0 0
\(337\) −123.448 −0.0199545 −0.00997723 0.999950i \(-0.503176\pi\)
−0.00997723 + 0.999950i \(0.503176\pi\)
\(338\) 0 0
\(339\) 482.233 0.0772605
\(340\) 0 0
\(341\) 1505.69 2607.93i 0.239113 0.414156i
\(342\) 0 0
\(343\) 810.677i 0.127616i
\(344\) 0 0
\(345\) −3613.16 + 2086.06i −0.563844 + 0.325535i
\(346\) 0 0
\(347\) −1226.45 2124.28i −0.189739 0.328637i 0.755424 0.655236i \(-0.227431\pi\)
−0.945163 + 0.326599i \(0.894097\pi\)
\(348\) 0 0
\(349\) −7602.22 4389.14i −1.16601 0.673196i −0.213273 0.976993i \(-0.568412\pi\)
−0.952737 + 0.303797i \(0.901746\pi\)
\(350\) 0 0
\(351\) 3061.57 + 772.210i 0.465569 + 0.117429i
\(352\) 0 0
\(353\) 3395.57 + 1960.43i 0.511977 + 0.295590i 0.733646 0.679532i \(-0.237817\pi\)
−0.221669 + 0.975122i \(0.571150\pi\)
\(354\) 0 0
\(355\) −4130.07 7153.48i −0.617468 1.06949i
\(356\) 0 0
\(357\) −48.7265 + 28.1323i −0.00722376 + 0.00417064i
\(358\) 0 0
\(359\) 9182.02i 1.34988i −0.737870 0.674942i \(-0.764168\pi\)
0.737870 0.674942i \(-0.235832\pi\)
\(360\) 0 0
\(361\) −2507.50 + 4343.12i −0.365578 + 0.633200i
\(362\) 0 0
\(363\) −235.688 −0.0340782
\(364\) 0 0
\(365\) 15621.2 2.24013
\(366\) 0 0
\(367\) 4207.89 7288.28i 0.598502 1.03664i −0.394541 0.918878i \(-0.629096\pi\)
0.993042 0.117757i \(-0.0375704\pi\)
\(368\) 0 0
\(369\) 4298.48i 0.606423i
\(370\) 0 0
\(371\) −161.477 + 93.2286i −0.0225969 + 0.0130463i
\(372\) 0 0
\(373\) −6212.22 10759.9i −0.862350 1.49363i −0.869655 0.493661i \(-0.835659\pi\)
0.00730479 0.999973i \(-0.497675\pi\)
\(374\) 0 0
\(375\) 47.9664 + 27.6934i 0.00660526 + 0.00381355i
\(376\) 0 0
\(377\) 1926.19 1983.77i 0.263140 0.271007i
\(378\) 0 0
\(379\) 1036.75 + 598.565i 0.140512 + 0.0811246i 0.568608 0.822609i \(-0.307482\pi\)
−0.428096 + 0.903733i \(0.640815\pi\)
\(380\) 0 0
\(381\) 417.801 + 723.653i 0.0561801 + 0.0973068i
\(382\) 0 0
\(383\) 778.326 449.367i 0.103840 0.0599519i −0.447181 0.894444i \(-0.647572\pi\)
0.551020 + 0.834492i \(0.314239\pi\)
\(384\) 0 0
\(385\) 732.494i 0.0969646i
\(386\) 0 0
\(387\) −4642.16 + 8040.46i −0.609753 + 1.05612i
\(388\) 0 0
\(389\) −1927.09 −0.251175 −0.125588 0.992083i \(-0.540082\pi\)
−0.125588 + 0.992083i \(0.540082\pi\)
\(390\) 0 0
\(391\) −7529.31 −0.973846
\(392\) 0 0
\(393\) 394.425 683.164i 0.0506262 0.0876872i
\(394\) 0 0
\(395\) 20122.9i 2.56328i
\(396\) 0 0
\(397\) −1880.41 + 1085.66i −0.237721 + 0.137248i −0.614129 0.789206i \(-0.710493\pi\)
0.376408 + 0.926454i \(0.377159\pi\)
\(398\) 0 0
\(399\) −32.7205 56.6736i −0.00410545 0.00711084i
\(400\) 0 0
\(401\) −9051.43 5225.85i −1.12720 0.650789i −0.183970 0.982932i \(-0.558895\pi\)
−0.943229 + 0.332143i \(0.892228\pi\)
\(402\) 0 0
\(403\) −887.146 + 3517.26i −0.109657 + 0.434757i
\(404\) 0 0
\(405\) −8227.03 4749.88i −1.00939 0.582774i
\(406\) 0 0
\(407\) 5025.35 + 8704.17i 0.612033 + 1.06007i
\(408\) 0 0
\(409\) −3741.15 + 2159.95i −0.452293 + 0.261132i −0.708798 0.705411i \(-0.750762\pi\)
0.256505 + 0.966543i \(0.417429\pi\)
\(410\) 0 0
\(411\) 268.714i 0.0322499i
\(412\) 0 0
\(413\) −398.015 + 689.383i −0.0474214 + 0.0821364i
\(414\) 0 0
\(415\) 16316.8 1.93002
\(416\) 0 0
\(417\) −475.639 −0.0558564
\(418\) 0 0
\(419\) 1071.86 1856.51i 0.124973 0.216460i −0.796749 0.604310i \(-0.793449\pi\)
0.921722 + 0.387850i \(0.126782\pi\)
\(420\) 0 0
\(421\) 11308.5i 1.30912i 0.756009 + 0.654561i \(0.227147\pi\)
−0.756009 + 0.654561i \(0.772853\pi\)
\(422\) 0 0
\(423\) 5483.45 3165.87i 0.630294 0.363900i
\(424\) 0 0
\(425\) 2357.49 + 4083.30i 0.269071 + 0.466045i
\(426\) 0 0
\(427\) 595.057 + 343.557i 0.0674399 + 0.0389365i
\(428\) 0 0
\(429\) 2258.06 640.829i 0.254126 0.0721200i
\(430\) 0 0
\(431\) 7167.83 + 4138.35i 0.801072 + 0.462499i 0.843846 0.536585i \(-0.180286\pi\)
−0.0427737 + 0.999085i \(0.513619\pi\)
\(432\) 0 0
\(433\) 156.904 + 271.766i 0.0174142 + 0.0301622i 0.874601 0.484843i \(-0.161123\pi\)
−0.857187 + 0.515005i \(0.827790\pi\)
\(434\) 0 0
\(435\) 1045.17 603.429i 0.115200 0.0665108i
\(436\) 0 0
\(437\) 8757.30i 0.958623i
\(438\) 0 0
\(439\) 2399.23 4155.59i 0.260840 0.451789i −0.705625 0.708585i \(-0.749334\pi\)
0.966465 + 0.256797i \(0.0826670\pi\)
\(440\) 0 0
\(441\) −8657.38 −0.934822
\(442\) 0 0
\(443\) −871.652 −0.0934841 −0.0467420 0.998907i \(-0.514884\pi\)
−0.0467420 + 0.998907i \(0.514884\pi\)
\(444\) 0 0
\(445\) −11803.8 + 20444.7i −1.25742 + 2.17792i
\(446\) 0 0
\(447\) 1274.33i 0.134840i
\(448\) 0 0
\(449\) 6902.27 3985.03i 0.725475 0.418853i −0.0912892 0.995824i \(-0.529099\pi\)
0.816765 + 0.576971i \(0.195765\pi\)
\(450\) 0 0
\(451\) 3299.87 + 5715.53i 0.344533 + 0.596749i
\(452\) 0 0
\(453\) 3182.09 + 1837.18i 0.330039 + 0.190548i
\(454\) 0 0
\(455\) 240.892 + 848.821i 0.0248202 + 0.0874579i
\(456\) 0 0
\(457\) 7830.03 + 4520.67i 0.801473 + 0.462731i 0.843986 0.536365i \(-0.180203\pi\)
−0.0425127 + 0.999096i \(0.513536\pi\)
\(458\) 0 0
\(459\) 1243.53 + 2153.86i 0.126456 + 0.219028i
\(460\) 0 0
\(461\) −1989.15 + 1148.44i −0.200963 + 0.116026i −0.597104 0.802163i \(-0.703682\pi\)
0.396142 + 0.918189i \(0.370349\pi\)
\(462\) 0 0
\(463\) 10243.3i 1.02817i 0.857738 + 0.514087i \(0.171869\pi\)
−0.857738 + 0.514087i \(0.828131\pi\)
\(464\) 0 0
\(465\) −791.624 + 1371.13i −0.0789477 + 0.136741i
\(466\) 0 0
\(467\) −11561.2 −1.14558 −0.572792 0.819701i \(-0.694140\pi\)
−0.572792 + 0.819701i \(0.694140\pi\)
\(468\) 0 0
\(469\) −214.178 −0.0210871
\(470\) 0 0
\(471\) 609.909 1056.39i 0.0596669 0.103346i
\(472\) 0 0
\(473\) 14254.8i 1.38570i
\(474\) 0 0
\(475\) −4749.26 + 2741.99i −0.458760 + 0.264865i
\(476\) 0 0
\(477\) 1995.30 + 3455.96i 0.191527 + 0.331735i
\(478\) 0 0
\(479\) 3471.88 + 2004.49i 0.331178 + 0.191206i 0.656364 0.754444i \(-0.272094\pi\)
−0.325186 + 0.945650i \(0.605427\pi\)
\(480\) 0 0
\(481\) −8685.93 8433.80i −0.823377 0.799476i
\(482\) 0 0
\(483\) −269.148 155.393i −0.0253554 0.0146389i
\(484\) 0 0
\(485\) −2783.81 4821.70i −0.260632 0.451427i
\(486\) 0 0
\(487\) 2566.87 1481.98i 0.238842 0.137896i −0.375802 0.926700i \(-0.622633\pi\)
0.614644 + 0.788804i \(0.289299\pi\)
\(488\) 0 0
\(489\) 3462.77i 0.320228i
\(490\) 0 0
\(491\) 8977.60 15549.7i 0.825160 1.42922i −0.0766377 0.997059i \(-0.524418\pi\)
0.901797 0.432159i \(-0.142248\pi\)
\(492\) 0 0
\(493\) 2177.99 0.198969
\(494\) 0 0
\(495\) −15677.0 −1.42349
\(496\) 0 0
\(497\) 307.653 532.870i 0.0277668 0.0480935i
\(498\) 0 0
\(499\) 15327.6i 1.37507i −0.726153 0.687533i \(-0.758694\pi\)
0.726153 0.687533i \(-0.241306\pi\)
\(500\) 0 0
\(501\) 2012.63 1161.99i 0.179476 0.103621i
\(502\) 0 0
\(503\) 6413.37 + 11108.3i 0.568505 + 0.984679i 0.996714 + 0.0809994i \(0.0258112\pi\)
−0.428209 + 0.903679i \(0.640855\pi\)
\(504\) 0 0
\(505\) 19710.3 + 11379.8i 1.73683 + 1.00276i
\(506\) 0 0
\(507\) −2405.91 + 1485.20i −0.210750 + 0.130098i
\(508\) 0 0
\(509\) −2082.85 1202.54i −0.181377 0.104718i 0.406563 0.913623i \(-0.366727\pi\)
−0.587939 + 0.808905i \(0.700061\pi\)
\(510\) 0 0
\(511\) 581.818 + 1007.74i 0.0503681 + 0.0872401i
\(512\) 0 0
\(513\) −2505.15 + 1446.35i −0.215604 + 0.124479i
\(514\) 0 0
\(515\) 23719.6i 2.02954i
\(516\) 0 0
\(517\) 4860.76 8419.08i 0.413493 0.716191i
\(518\) 0 0
\(519\) −455.631 −0.0385356
\(520\) 0 0
\(521\) 13258.4 1.11490 0.557450 0.830210i \(-0.311780\pi\)
0.557450 + 0.830210i \(0.311780\pi\)
\(522\) 0 0
\(523\) −2257.47 + 3910.05i −0.188742 + 0.326911i −0.944831 0.327558i \(-0.893774\pi\)
0.756089 + 0.654469i \(0.227108\pi\)
\(524\) 0 0
\(525\) 194.619i 0.0161788i
\(526\) 0 0
\(527\) −2474.45 + 1428.62i −0.204532 + 0.118087i
\(528\) 0 0
\(529\) −14711.1 25480.4i −1.20910 2.09422i
\(530\) 0 0
\(531\) 14754.3 + 8518.42i 1.20581 + 0.696173i
\(532\) 0 0
\(533\) −5703.56 5538.00i −0.463506 0.450051i
\(534\) 0 0
\(535\) −15994.8 9234.58i −1.29255 0.746254i
\(536\) 0 0
\(537\) −1669.27 2891.27i −0.134142 0.232341i
\(538\) 0 0
\(539\) −11511.4 + 6646.11i −0.919910 + 0.531110i
\(540\) 0 0
\(541\) 7456.65i 0.592581i 0.955098 + 0.296291i \(0.0957497\pi\)
−0.955098 + 0.296291i \(0.904250\pi\)
\(542\) 0 0
\(543\) 1505.06 2606.83i 0.118947 0.206022i
\(544\) 0 0
\(545\) −25419.7 −1.99791
\(546\) 0 0
\(547\) −6132.43 −0.479349 −0.239674 0.970853i \(-0.577041\pi\)
−0.239674 + 0.970853i \(0.577041\pi\)
\(548\) 0 0
\(549\) 7352.88 12735.6i 0.571609 0.990055i
\(550\) 0 0
\(551\) 2533.20i 0.195859i
\(552\) 0 0
\(553\) 1298.15 749.488i 0.0998246 0.0576338i
\(554\) 0 0
\(555\) −2642.11 4576.26i −0.202074 0.350003i
\(556\) 0 0
\(557\) 9031.62 + 5214.41i 0.687042 + 0.396664i 0.802503 0.596648i \(-0.203501\pi\)
−0.115461 + 0.993312i \(0.536835\pi\)
\(558\) 0 0
\(559\) −4687.92 16518.6i −0.354701 1.24984i
\(560\) 0 0
\(561\) 1601.16 + 924.433i 0.120501 + 0.0695714i
\(562\) 0 0
\(563\) 11392.3 + 19732.0i 0.852801 + 1.47709i 0.878670 + 0.477429i \(0.158431\pi\)
−0.0258691 + 0.999665i \(0.508235\pi\)
\(564\) 0 0
\(565\) 5158.68 2978.37i 0.384119 0.221771i
\(566\) 0 0
\(567\) 707.646i 0.0524133i
\(568\) 0 0
\(569\) 6439.75 11154.0i 0.474461 0.821791i −0.525111 0.851034i \(-0.675976\pi\)
0.999572 + 0.0292427i \(0.00930957\pi\)
\(570\) 0 0
\(571\) 6071.36 0.444971 0.222485 0.974936i \(-0.428583\pi\)
0.222485 + 0.974936i \(0.428583\pi\)
\(572\) 0 0
\(573\) 39.3813 0.00287117
\(574\) 0 0
\(575\) −13022.0 + 22554.7i −0.944440 + 1.63582i
\(576\) 0 0
\(577\) 2429.06i 0.175257i −0.996153 0.0876283i \(-0.972071\pi\)
0.996153 0.0876283i \(-0.0279288\pi\)
\(578\) 0 0
\(579\) 3390.42 1957.46i 0.243353 0.140500i
\(580\) 0 0
\(581\) 607.727 + 1052.61i 0.0433955 + 0.0751631i
\(582\) 0 0
\(583\) 5306.16 + 3063.51i 0.376944 + 0.217629i
\(584\) 0 0
\(585\) 18166.7 5155.63i 1.28393 0.364375i
\(586\) 0 0
\(587\) 12664.9 + 7312.09i 0.890523 + 0.514144i 0.874114 0.485722i \(-0.161443\pi\)
0.0164096 + 0.999865i \(0.494776\pi\)
\(588\) 0 0
\(589\) −1661.62 2878.01i −0.116241 0.201335i
\(590\) 0 0
\(591\) −4648.44 + 2683.78i −0.323538 + 0.186795i
\(592\) 0 0
\(593\) 15282.4i 1.05830i −0.848529 0.529149i \(-0.822511\pi\)
0.848529 0.529149i \(-0.177489\pi\)
\(594\) 0 0
\(595\) −347.501 + 601.890i −0.0239431 + 0.0414707i
\(596\) 0 0
\(597\) −5960.58 −0.408627
\(598\) 0 0
\(599\) −11067.6 −0.754940 −0.377470 0.926022i \(-0.623206\pi\)
−0.377470 + 0.926022i \(0.623206\pi\)
\(600\) 0 0
\(601\) −9143.59 + 15837.2i −0.620590 + 1.07489i 0.368786 + 0.929514i \(0.379774\pi\)
−0.989376 + 0.145379i \(0.953560\pi\)
\(602\) 0 0
\(603\) 4583.90i 0.309570i
\(604\) 0 0
\(605\) −2521.27 + 1455.65i −0.169428 + 0.0978194i
\(606\) 0 0
\(607\) −1381.29 2392.46i −0.0923638 0.159979i 0.816142 0.577852i \(-0.196109\pi\)
−0.908505 + 0.417873i \(0.862776\pi\)
\(608\) 0 0
\(609\) 77.8557 + 44.9500i 0.00518042 + 0.00299091i
\(610\) 0 0
\(611\) −2863.94 + 11354.6i −0.189628 + 0.751816i
\(612\) 0 0
\(613\) 22586.0 + 13040.0i 1.48816 + 0.859187i 0.999909 0.0135178i \(-0.00430298\pi\)
0.488248 + 0.872705i \(0.337636\pi\)
\(614\) 0 0
\(615\) −1734.92 3004.97i −0.113754 0.197028i
\(616\) 0 0
\(617\) −7941.30 + 4584.91i −0.518160 + 0.299160i −0.736182 0.676784i \(-0.763373\pi\)
0.218021 + 0.975944i \(0.430040\pi\)
\(618\) 0 0
\(619\) 17765.0i 1.15353i 0.816909 + 0.576767i \(0.195686\pi\)
−0.816909 + 0.576767i \(0.804314\pi\)
\(620\) 0 0
\(621\) −6868.83 + 11897.2i −0.443859 + 0.768787i
\(622\) 0 0
\(623\) −1758.55 −0.113089
\(624\) 0 0
\(625\) −15279.3 −0.977872
\(626\) 0 0
\(627\) −1075.20 + 1862.30i −0.0684840 + 0.118618i
\(628\) 0 0
\(629\) 9536.28i 0.604509i
\(630\) 0 0
\(631\) 25243.7 14574.4i 1.59261 0.919492i 0.599748 0.800189i \(-0.295267\pi\)
0.992858 0.119303i \(-0.0380659\pi\)
\(632\) 0 0
\(633\) 3477.08 + 6022.47i 0.218328 + 0.378154i
\(634\) 0 0
\(635\) 8938.86 + 5160.85i 0.558626 + 0.322523i
\(636\) 0 0
\(637\) 11153.8 11487.3i 0.693769 0.714510i
\(638\) 0 0
\(639\) −11404.6 6584.45i −0.706040 0.407632i
\(640\) 0 0
\(641\) 12306.7 + 21315.8i 0.758323 + 1.31345i 0.943705 + 0.330787i \(0.107314\pi\)
−0.185383 + 0.982666i \(0.559352\pi\)
\(642\) 0 0
\(643\) −23498.4 + 13566.8i −1.44119 + 0.832071i −0.997929 0.0643213i \(-0.979512\pi\)
−0.443261 + 0.896393i \(0.646178\pi\)
\(644\) 0 0
\(645\) 7494.54i 0.457515i
\(646\) 0 0
\(647\) −11867.2 + 20554.5i −0.721092 + 1.24897i 0.239470 + 0.970904i \(0.423026\pi\)
−0.960562 + 0.278064i \(0.910307\pi\)
\(648\) 0 0
\(649\) 26157.7 1.58210
\(650\) 0 0
\(651\) −117.938 −0.00710037
\(652\) 0 0
\(653\) −9688.22 + 16780.5i −0.580596 + 1.00562i 0.414813 + 0.909907i \(0.363847\pi\)
−0.995409 + 0.0957153i \(0.969486\pi\)
\(654\) 0 0
\(655\) 9744.19i 0.581278i
\(656\) 0 0
\(657\) 21567.8 12452.2i 1.28073 0.739432i
\(658\) 0 0
\(659\) −5635.78 9761.46i −0.333139 0.577014i 0.649986 0.759946i \(-0.274775\pi\)
−0.983126 + 0.182932i \(0.941441\pi\)
\(660\) 0 0
\(661\) −7260.87 4192.07i −0.427254 0.246675i 0.270922 0.962601i \(-0.412672\pi\)
−0.698176 + 0.715926i \(0.746005\pi\)
\(662\) 0 0
\(663\) −2159.46 544.672i −0.126495 0.0319055i
\(664\) 0 0
\(665\) −700.055 404.177i −0.0408225 0.0235689i
\(666\) 0 0
\(667\) 6015.20 + 10418.6i 0.349190 + 0.604814i
\(668\) 0 0
\(669\) 5559.33 3209.68i 0.321280 0.185491i
\(670\) 0 0
\(671\) 22578.7i 1.29902i
\(672\) 0 0
\(673\) 2703.65 4682.86i 0.154856 0.268219i −0.778151 0.628078i \(-0.783842\pi\)
0.933007 + 0.359859i \(0.117175\pi\)
\(674\) 0 0
\(675\) 8602.77 0.490549
\(676\) 0 0
\(677\) −10090.8 −0.572854 −0.286427 0.958102i \(-0.592468\pi\)
−0.286427 + 0.958102i \(0.592468\pi\)
\(678\) 0 0
\(679\) 207.369 359.173i 0.0117203 0.0203002i
\(680\) 0 0
\(681\) 3264.41i 0.183690i
\(682\) 0 0
\(683\) −11461.5 + 6617.28i −0.642109 + 0.370722i −0.785427 0.618955i \(-0.787556\pi\)
0.143317 + 0.989677i \(0.454223\pi\)
\(684\) 0 0
\(685\) 1659.63 + 2874.57i 0.0925713 + 0.160338i
\(686\) 0 0
\(687\) −833.169 481.030i −0.0462698 0.0267139i
\(688\) 0 0
\(689\) −7156.31 1805.01i −0.395695 0.0998046i
\(690\) 0 0
\(691\) −2406.47 1389.37i −0.132484 0.0764895i 0.432293 0.901733i \(-0.357705\pi\)
−0.564777 + 0.825244i \(0.691038\pi\)
\(692\) 0 0
\(693\) −583.898 1011.34i −0.0320064 0.0554367i
\(694\) 0 0
\(695\) −5088.14 + 2937.64i −0.277704 + 0.160332i
\(696\) 0 0
\(697\) 6261.93i 0.340298i
\(698\) 0 0
\(699\) 1069.32 1852.12i 0.0578619 0.100220i
\(700\) 0 0
\(701\) −19737.6 −1.06345 −0.531725 0.846917i \(-0.678456\pi\)
−0.531725 + 0.846917i \(0.678456\pi\)
\(702\) 0 0
\(703\) 11091.6 0.595060
\(704\) 0 0
\(705\) −2555.57 + 4426.38i −0.136522 + 0.236464i
\(706\) 0 0
\(707\) 1695.38i 0.0901856i
\(708\) 0 0
\(709\) 5242.69 3026.87i 0.277706 0.160333i −0.354679 0.934988i \(-0.615410\pi\)
0.632384 + 0.774655i \(0.282076\pi\)
\(710\) 0 0
\(711\) −16040.7 27783.3i −0.846096 1.46548i
\(712\) 0 0
\(713\) −13667.9 7891.19i −0.717908 0.414485i
\(714\) 0 0
\(715\) 20197.7 20801.5i 1.05643 1.08802i
\(716\) 0 0
\(717\) −2223.72 1283.87i −0.115825 0.0668715i
\(718\) 0 0
\(719\) −6878.79 11914.4i −0.356795 0.617987i 0.630628 0.776085i \(-0.282797\pi\)
−0.987423 + 0.158098i \(0.949464\pi\)
\(720\) 0 0
\(721\) 1530.18 883.448i 0.0790385 0.0456329i
\(722\) 0 0
\(723\) 1678.45i 0.0863377i
\(724\) 0 0
\(725\) 3766.83 6524.34i 0.192961 0.334218i
\(726\) 0 0
\(727\) −18384.8 −0.937903 −0.468951 0.883224i \(-0.655368\pi\)
−0.468951 + 0.883224i \(0.655368\pi\)
\(728\) 0 0
\(729\) −12804.5 −0.650537
\(730\) 0 0
\(731\) 6762.60 11713.2i 0.342166 0.592650i
\(732\) 0 0
\(733\) 7848.53i 0.395487i 0.980254 + 0.197744i \(0.0633613\pi\)
−0.980254 + 0.197744i \(0.936639\pi\)
\(734\) 0 0
\(735\) 6052.18 3494.23i 0.303725 0.175356i
\(736\) 0 0
\(737\) 3518.97 + 6095.04i 0.175879 + 0.304632i
\(738\) 0 0
\(739\) 13925.8 + 8040.07i 0.693193 + 0.400215i 0.804807 0.593537i \(-0.202269\pi\)
−0.111614 + 0.993752i \(0.535602\pi\)
\(740\) 0 0
\(741\) 633.505 2511.65i 0.0314067 0.124518i
\(742\) 0 0
\(743\) 8126.52 + 4691.85i 0.401256 + 0.231665i 0.687026 0.726633i \(-0.258916\pi\)
−0.285770 + 0.958298i \(0.592249\pi\)
\(744\) 0 0
\(745\) −7870.51 13632.1i −0.387051 0.670393i
\(746\) 0 0
\(747\) 22528.3 13006.7i 1.10344 0.637069i
\(748\) 0 0
\(749\) 1375.79i 0.0671163i
\(750\) 0 0
\(751\) −4055.29 + 7023.97i −0.197043 + 0.341289i −0.947568 0.319553i \(-0.896467\pi\)
0.750525 + 0.660842i \(0.229801\pi\)
\(752\) 0 0
\(753\) 6508.85 0.315001
\(754\) 0 0
\(755\) 45387.3 2.18783
\(756\) 0 0
\(757\) 12990.3 22499.9i 0.623701 1.08028i −0.365089 0.930973i \(-0.618962\pi\)
0.988790 0.149310i \(-0.0477051\pi\)
\(758\) 0 0
\(759\) 10212.5i 0.488391i
\(760\) 0 0
\(761\) −26638.1 + 15379.5i −1.26890 + 0.732598i −0.974779 0.223171i \(-0.928359\pi\)
−0.294118 + 0.955769i \(0.595026\pi\)
\(762\) 0 0
\(763\) −946.770 1639.85i −0.0449219 0.0778069i
\(764\) 0 0
\(765\) 12881.8 + 7437.30i 0.608813 + 0.351498i
\(766\) 0 0
\(767\) −30311.8 + 8602.39i −1.42698 + 0.404973i
\(768\) 0 0
\(769\) −16156.1 9327.72i −0.757611 0.437407i 0.0708261 0.997489i \(-0.477436\pi\)
−0.828437 + 0.560082i \(0.810770\pi\)
\(770\) 0 0
\(771\) 2864.28 + 4961.08i 0.133793 + 0.231736i
\(772\) 0 0
\(773\) −14683.6 + 8477.58i −0.683225 + 0.394460i −0.801069 0.598572i \(-0.795735\pi\)
0.117844 + 0.993032i \(0.462402\pi\)
\(774\) 0 0
\(775\) 9883.22i 0.458085i
\(776\) 0 0
\(777\) 196.813 340.890i 0.00908704 0.0157392i
\(778\) 0 0
\(779\) 7283.22 0.334979
\(780\) 0 0
\(781\) −20219.1 −0.926370
\(782\) 0 0
\(783\) 1986.93 3441.46i 0.0906859 0.157073i
\(784\) 0 0
\(785\) 15067.7i 0.685081i
\(786\) 0 0
\(787\) −23675.8 + 13669.2i −1.07236 + 0.619129i −0.928826 0.370516i \(-0.879181\pi\)
−0.143537 + 0.989645i \(0.545848\pi\)
\(788\) 0 0
\(789\) 2944.44 + 5099.91i 0.132858 + 0.230116i
\(790\) 0 0
\(791\) 384.275 + 221.861i 0.0172734 + 0.00997280i
\(792\) 0 0
\(793\) 7425.36 + 26164.4i 0.332512 + 1.17166i
\(794\) 0 0
\(795\) −2789.74 1610.66i −0.124455 0.0718543i
\(796\) 0 0
\(797\) 8686.11 + 15044.8i 0.386045 + 0.668649i 0.991914 0.126915i \(-0.0405077\pi\)
−0.605869 + 0.795565i \(0.707174\pi\)
\(798\) 0 0
\(799\) −7988.16 + 4611.97i −0.353693 + 0.204205i
\(800\) 0 0
\(801\) 37636.8i 1.66021i
\(802\) 0 0
\(803\) 19118.7 33114.5i 0.840203 1.45527i
\(804\) 0 0
\(805\) −3838.94 −0.168081
\(806\) 0 0
\(807\) −6964.03 −0.303774
\(808\) 0 0
\(809\) −12746.3 + 22077.3i −0.553939 + 0.959450i 0.444046 + 0.896004i \(0.353543\pi\)
−0.997985 + 0.0634464i \(0.979791\pi\)
\(810\) 0 0
\(811\) 7742.96i 0.335255i 0.985850 + 0.167628i \(0.0536106\pi\)
−0.985850 + 0.167628i \(0.946389\pi\)
\(812\) 0 0
\(813\) 414.932 239.561i 0.0178995 0.0103343i
\(814\) 0 0
\(815\) 21386.7 + 37042.9i 0.919196 + 1.59209i
\(816\) 0 0
\(817\) 13623.5 + 7865.54i 0.583386 + 0.336818i
\(818\) 0 0
\(819\) 1009.22 + 979.926i 0.0430587 + 0.0418088i
\(820\) 0 0
\(821\) 11683.2 + 6745.28i 0.496645 + 0.286738i 0.727327 0.686291i \(-0.240762\pi\)
−0.230682 + 0.973029i \(0.574096\pi\)
\(822\) 0 0
\(823\) −16550.2 28665.7i −0.700975 1.21412i −0.968124 0.250470i \(-0.919415\pi\)
0.267149 0.963655i \(-0.413918\pi\)
\(824\) 0 0
\(825\) 5538.43 3197.61i 0.233725 0.134941i
\(826\) 0 0
\(827\) 5211.34i 0.219125i −0.993980 0.109562i \(-0.965055\pi\)
0.993980 0.109562i \(-0.0349449\pi\)
\(828\) 0 0
\(829\) 7049.97 12210.9i 0.295363 0.511583i −0.679707 0.733484i \(-0.737893\pi\)
0.975069 + 0.221901i \(0.0712262\pi\)
\(830\) 0 0
\(831\) 7603.03 0.317384
\(832\) 0 0
\(833\) 12611.9 0.524581
\(834\) 0 0
\(835\) 14353.4 24860.8i 0.594874 1.03035i
\(836\) 0 0
\(837\) 5213.21i 0.215287i
\(838\) 0 0
\(839\) 6335.36 3657.72i 0.260693 0.150511i −0.363958 0.931415i \(-0.618575\pi\)
0.624650 + 0.780904i \(0.285241\pi\)
\(840\) 0 0
\(841\) 10454.5 + 18107.7i 0.428656 + 0.742454i
\(842\) 0 0
\(843\) −4010.61 2315.52i −0.163858 0.0946037i
\(844\) 0 0
\(845\) −16564.3 + 30747.2i −0.674355 + 1.25176i
\(846\) 0 0
\(847\) −187.812 108.433i −0.00761899 0.00439882i
\(848\) 0 0
\(849\) −2196.35 3804.19i −0.0887851 0.153780i
\(850\) 0 0
\(851\) 45617.8 26337.5i 1.83756 1.06091i
\(852\) 0 0
\(853\) 24221.1i 0.972234i 0.873894 + 0.486117i \(0.161587\pi\)
−0.873894 + 0.486117i \(0.838413\pi\)
\(854\) 0 0
\(855\) −8650.28 + 14982.7i −0.346004 + 0.599297i
\(856\) 0 0
\(857\) −9191.63 −0.366371 −0.183186 0.983078i \(-0.558641\pi\)
−0.183186 + 0.983078i \(0.558641\pi\)
\(858\) 0 0
\(859\) −1899.06 −0.0754309 −0.0377155 0.999289i \(-0.512008\pi\)
−0.0377155 + 0.999289i \(0.512008\pi\)
\(860\) 0 0
\(861\) 129.236 223.843i 0.00511539 0.00886011i
\(862\) 0 0
\(863\) 18688.4i 0.737149i 0.929598 + 0.368574i \(0.120154\pi\)
−0.929598 + 0.368574i \(0.879846\pi\)
\(864\) 0 0
\(865\) −4874.11 + 2814.07i −0.191589 + 0.110614i
\(866\) 0 0
\(867\) 2284.25 + 3956.43i 0.0894775 + 0.154980i
\(868\) 0 0
\(869\) −42657.5 24628.3i −1.66520 0.961403i
\(870\) 0 0
\(871\) −6082.27 5905.71i −0.236613 0.229745i
\(872\) 0 0
\(873\) −7687.11 4438.15i −0.298017 0.172060i
\(874\) 0 0
\(875\) 25.4819 + 44.1359i 0.000984508 + 0.00170522i
\(876\) 0 0
\(877\) 25996.8 15009.3i 1.00097 0.577910i 0.0924350 0.995719i \(-0.470535\pi\)
0.908535 + 0.417808i \(0.137202\pi\)
\(878\) 0 0
\(879\) 1451.43i 0.0556945i
\(880\) 0 0
\(881\) 5969.14 10338.9i 0.228270 0.395375i −0.729026 0.684486i \(-0.760027\pi\)
0.957295 + 0.289112i \(0.0933599\pi\)
\(882\) 0 0
\(883\) −22169.9 −0.844933 −0.422467 0.906379i \(-0.638836\pi\)
−0.422467 + 0.906379i \(0.638836\pi\)
\(884\) 0 0
\(885\) −13752.6 −0.522359
\(886\) 0 0
\(887\) 364.388 631.139i 0.0137936 0.0238913i −0.859046 0.511898i \(-0.828943\pi\)
0.872840 + 0.488007i \(0.162276\pi\)
\(888\) 0 0
\(889\) 768.874i 0.0290070i
\(890\) 0 0
\(891\) −20138.0 + 11626.7i −0.757182 + 0.437159i
\(892\) 0 0
\(893\) −5364.15 9290.99i −0.201013 0.348165i
\(894\) 0 0
\(895\) −35714.1 20619.5i −1.33384 0.770095i
\(896\) 0 0
\(897\) −3358.53 11834.3i −0.125015 0.440508i
\(898\) 0 0
\(899\) 3953.69 + 2282.67i 0.146678 + 0.0846843i
\(900\) 0 0
\(901\) −2906.71 5034.57i −0.107477 0.186155i
\(902\) 0 0
\(903\) 483.481 279.138i 0.0178175 0.0102870i
\(904\) 0 0
\(905\) 37182.1i 1.36572i
\(906\) 0 0
\(907\) −19565.6 + 33888.7i −0.716280 + 1.24063i 0.246183 + 0.969223i \(0.420823\pi\)
−0.962464 + 0.271411i \(0.912510\pi\)
\(908\) 0 0
\(909\) 36284.9 1.32397
\(910\) 0 0
\(911\) 40955.0 1.48946 0.744730 0.667366i \(-0.232578\pi\)
0.744730 + 0.667366i \(0.232578\pi\)
\(912\) 0 0
\(913\) 19970.0 34589.1i 0.723890 1.25381i
\(914\) 0 0
\(915\) 11870.9i 0.428895i
\(916\) 0 0
\(917\) 628.608 362.927i 0.0226374 0.0130697i
\(918\) 0 0
\(919\) 6283.90 + 10884.0i 0.225557 + 0.390676i 0.956486 0.291777i \(-0.0942465\pi\)
−0.730929 + 0.682453i \(0.760913\pi\)
\(920\) 0 0
\(921\) −8178.99 4722.14i −0.292624 0.168947i
\(922\) 0 0
\(923\) 23430.0 6649.36i 0.835545 0.237125i
\(924\) 0 0
\(925\) −28566.7 16493.0i −1.01542 0.586256i
\(926\) 0 0
\(927\) −18907.8 32749.2i −0.669916 1.16033i
\(928\) 0 0
\(929\) −8538.00 + 4929.42i −0.301532 + 0.174089i −0.643131 0.765756i \(-0.722365\pi\)
0.341599 + 0.939846i \(0.389031\pi\)
\(930\) 0 0
\(931\) 14668.8i 0.516381i
\(932\) 0 0
\(933\) −4858.74 + 8415.59i −0.170491 + 0.295299i
\(934\) 0 0
\(935\) 22837.9 0.798802
\(936\) 0 0
\(937\) 14064.4 0.490355 0.245177 0.969478i \(-0.421154\pi\)
0.245177 + 0.969478i \(0.421154\pi\)
\(938\) 0 0
\(939\) 812.175 1406.73i 0.0282261 0.0488891i
\(940\) 0 0
\(941\) 37759.0i 1.30808i −0.756458 0.654042i \(-0.773072\pi\)
0.756458 0.654042i \(-0.226928\pi\)
\(942\) 0 0
\(943\) 29954.7 17294.3i 1.03442 0.597222i
\(944\) 0 0
\(945\) 634.036 + 1098.18i 0.0218256 + 0.0378031i
\(946\) 0 0
\(947\) −37020.8 21374.0i −1.27034 0.733433i −0.295291 0.955407i \(-0.595417\pi\)
−0.975053 + 0.221974i \(0.928750\pi\)
\(948\) 0 0
\(949\) −11264.6 + 44660.8i −0.385317 + 1.52766i
\(950\) 0 0
\(951\) −4553.39 2628.90i −0.155262 0.0896403i
\(952\) 0 0
\(953\) −14794.6 25625.0i −0.502879 0.871012i −0.999994 0.00332777i \(-0.998941\pi\)
0.497115 0.867684i \(-0.334393\pi\)
\(954\) 0 0
\(955\) 421.282 243.227i 0.0142747 0.00824151i
\(956\) 0 0
\(957\) 2954.13i 0.0997843i
\(958\) 0 0
\(959\) −123.628 + 214.129i −0.00416282 + 0.00721022i
\(960\) 0 0
\(961\) 23801.9 0.798961
\(962\) 0 0
\(963\) −29444.9 −0.985305
\(964\) 0 0
\(965\) 24179.4 41879.9i 0.806592 1.39706i
\(966\) 0 0
\(967\) 7140.75i 0.237468i 0.992926 + 0.118734i \(0.0378835\pi\)
−0.992926 + 0.118734i \(0.962117\pi\)
\(968\) 0 0
\(969\) 1766.99 1020.17i 0.0585797 0.0338210i
\(970\) 0 0
\(971\) −17433.3 30195.3i −0.576169 0.997954i −0.995914 0.0903116i \(-0.971214\pi\)
0.419745 0.907642i \(-0.362120\pi\)
\(972\) 0 0
\(973\) −379.021 218.828i −0.0124880 0.00720996i
\(974\) 0 0
\(975\) −5366.39 + 5526.82i −0.176269 + 0.181538i
\(976\) 0 0
\(977\) 27921.3 + 16120.4i 0.914311 + 0.527878i 0.881816 0.471594i \(-0.156321\pi\)
0.0324954 + 0.999472i \(0.489655\pi\)
\(978\) 0 0
\(979\) 28893.1 + 50044.3i 0.943236 + 1.63373i
\(980\) 0 0
\(981\) −35096.5 + 20263.0i −1.14225 + 0.659478i
\(982\) 0 0
\(983\) 16467.0i 0.534298i −0.963655 0.267149i \(-0.913918\pi\)
0.963655 0.267149i \(-0.0860816\pi\)
\(984\) 0 0
\(985\) −33151.1 + 57419.4i −1.07237 + 1.85739i
\(986\) 0 0
\(987\) −380.734 −0.0122785
\(988\) 0 0
\(989\) 74708.3 2.40201
\(990\) 0 0
\(991\) −6174.36 + 10694.3i −0.197916 + 0.342801i −0.947853 0.318709i \(-0.896751\pi\)
0.749936 + 0.661510i \(0.230084\pi\)
\(992\) 0 0
\(993\) 5811.38i 0.185719i
\(994\) 0 0
\(995\) −63763.3 + 36813.7i −2.03159 + 1.17294i
\(996\) 0 0
\(997\) −1942.47 3364.46i −0.0617038 0.106874i 0.833523 0.552484i \(-0.186320\pi\)
−0.895227 + 0.445610i \(0.852987\pi\)
\(998\) 0 0
\(999\) −15068.4 8699.75i −0.477220 0.275523i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 52.4.h.a.17.2 8
3.2 odd 2 468.4.t.g.433.1 8
4.3 odd 2 208.4.w.c.17.3 8
13.2 odd 12 676.4.e.h.653.4 16
13.3 even 3 676.4.h.e.361.2 8
13.4 even 6 676.4.d.d.337.5 8
13.5 odd 4 676.4.e.h.529.4 16
13.6 odd 12 676.4.a.g.1.6 8
13.7 odd 12 676.4.a.g.1.5 8
13.8 odd 4 676.4.e.h.529.3 16
13.9 even 3 676.4.d.d.337.6 8
13.10 even 6 inner 52.4.h.a.49.2 yes 8
13.11 odd 12 676.4.e.h.653.3 16
13.12 even 2 676.4.h.e.485.2 8
39.23 odd 6 468.4.t.g.361.4 8
52.23 odd 6 208.4.w.c.49.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.4.h.a.17.2 8 1.1 even 1 trivial
52.4.h.a.49.2 yes 8 13.10 even 6 inner
208.4.w.c.17.3 8 4.3 odd 2
208.4.w.c.49.3 8 52.23 odd 6
468.4.t.g.361.4 8 39.23 odd 6
468.4.t.g.433.1 8 3.2 odd 2
676.4.a.g.1.5 8 13.7 odd 12
676.4.a.g.1.6 8 13.6 odd 12
676.4.d.d.337.5 8 13.4 even 6
676.4.d.d.337.6 8 13.9 even 3
676.4.e.h.529.3 16 13.8 odd 4
676.4.e.h.529.4 16 13.5 odd 4
676.4.e.h.653.3 16 13.11 odd 12
676.4.e.h.653.4 16 13.2 odd 12
676.4.h.e.361.2 8 13.3 even 3
676.4.h.e.485.2 8 13.12 even 2