Properties

Label 676.4.h.e.485.2
Level $676$
Weight $4$
Character 676.485
Analytic conductor $39.885$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [676,4,Mod(361,676)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("676.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(676, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 676.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.8852911639\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 51x^{6} - 224x^{5} + 2520x^{4} - 5712x^{3} + 16675x^{2} + 9072x + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 485.2
Root \(2.54083 - 4.40084i\) of defining polynomial
Character \(\chi\) \(=\) 676.485
Dual form 676.4.h.e.361.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.643469 + 1.11452i) q^{3} -15.8968i q^{5} +(1.02552 - 0.592083i) q^{7} +(12.6719 + 21.9484i) q^{9} +(-33.6987 - 19.4560i) q^{11} +(17.7173 + 10.2291i) q^{15} +(-18.4601 - 31.9739i) q^{17} +(-37.1887 + 21.4709i) q^{19} +1.52395i q^{21} +(101.967 - 176.612i) q^{23} -127.707 q^{25} -67.3632 q^{27} +(-29.4958 + 51.0882i) q^{29} +77.3896i q^{31} +(43.3681 - 25.0386i) q^{33} +(-9.41221 - 16.3024i) q^{35} +(-223.689 - 129.147i) q^{37} +(-146.884 - 84.8034i) q^{41} +(183.168 + 317.255i) q^{43} +(348.908 - 201.442i) q^{45} +249.834i q^{47} +(-170.799 + 295.832i) q^{49} +47.5141 q^{51} +157.459 q^{53} +(-309.287 + 535.701i) q^{55} -55.2634i q^{57} +(-582.168 + 336.115i) q^{59} +(-290.125 - 502.512i) q^{61} +(25.9905 + 15.0056i) q^{63} +(-156.637 - 90.4343i) q^{67} +(131.225 + 227.289i) q^{69} +(449.996 - 259.805i) q^{71} +982.663i q^{73} +(82.1757 - 142.332i) q^{75} -46.0782 q^{77} -1265.85 q^{79} +(-298.795 + 517.528i) q^{81} +1026.42i q^{83} +(-508.282 + 293.457i) q^{85} +(-37.9592 - 65.7473i) q^{87} +(-1286.09 - 742.526i) q^{89} +(-86.2523 - 49.7978i) q^{93} +(341.318 + 591.180i) q^{95} +(303.313 - 175.118i) q^{97} -986.176i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{7} - 70 q^{9} - 72 q^{11} - 96 q^{15} + 88 q^{17} + 144 q^{19} - 20 q^{23} - 84 q^{25} - 432 q^{27} - 484 q^{29} - 1038 q^{33} + 40 q^{35} - 996 q^{37} - 156 q^{41} + 504 q^{43} + 1530 q^{45}+ \cdots + 3042 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.643469 + 1.11452i −0.123836 + 0.214490i −0.921277 0.388907i \(-0.872853\pi\)
0.797442 + 0.603396i \(0.206186\pi\)
\(4\) 0 0
\(5\) 15.8968i 1.42185i −0.703268 0.710925i \(-0.748276\pi\)
0.703268 0.710925i \(-0.251724\pi\)
\(6\) 0 0
\(7\) 1.02552 0.592083i 0.0553728 0.0319695i −0.472058 0.881567i \(-0.656489\pi\)
0.527431 + 0.849598i \(0.323155\pi\)
\(8\) 0 0
\(9\) 12.6719 + 21.9484i 0.469329 + 0.812903i
\(10\) 0 0
\(11\) −33.6987 19.4560i −0.923686 0.533290i −0.0388769 0.999244i \(-0.512378\pi\)
−0.884809 + 0.465954i \(0.845711\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 17.7173 + 10.2291i 0.304972 + 0.176076i
\(16\) 0 0
\(17\) −18.4601 31.9739i −0.263367 0.456165i 0.703767 0.710430i \(-0.251500\pi\)
−0.967135 + 0.254265i \(0.918166\pi\)
\(18\) 0 0
\(19\) −37.1887 + 21.4709i −0.449035 + 0.259250i −0.707423 0.706791i \(-0.750142\pi\)
0.258388 + 0.966041i \(0.416809\pi\)
\(20\) 0 0
\(21\) 1.52395i 0.0158358i
\(22\) 0 0
\(23\) 101.967 176.612i 0.924418 1.60114i 0.131924 0.991260i \(-0.457885\pi\)
0.792494 0.609879i \(-0.208782\pi\)
\(24\) 0 0
\(25\) −127.707 −1.02166
\(26\) 0 0
\(27\) −67.3632 −0.480150
\(28\) 0 0
\(29\) −29.4958 + 51.0882i −0.188870 + 0.327132i −0.944874 0.327435i \(-0.893816\pi\)
0.756004 + 0.654567i \(0.227149\pi\)
\(30\) 0 0
\(31\) 77.3896i 0.448374i 0.974546 + 0.224187i \(0.0719726\pi\)
−0.974546 + 0.224187i \(0.928027\pi\)
\(32\) 0 0
\(33\) 43.3681 25.0386i 0.228770 0.132081i
\(34\) 0 0
\(35\) −9.41221 16.3024i −0.0454558 0.0787318i
\(36\) 0 0
\(37\) −223.689 129.147i −0.993898 0.573827i −0.0874610 0.996168i \(-0.527875\pi\)
−0.906437 + 0.422340i \(0.861209\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −146.884 84.8034i −0.559498 0.323026i 0.193446 0.981111i \(-0.438034\pi\)
−0.752944 + 0.658085i \(0.771367\pi\)
\(42\) 0 0
\(43\) 183.168 + 317.255i 0.649600 + 1.12514i 0.983219 + 0.182432i \(0.0583968\pi\)
−0.333619 + 0.942708i \(0.608270\pi\)
\(44\) 0 0
\(45\) 348.908 201.442i 1.15583 0.667316i
\(46\) 0 0
\(47\) 249.834i 0.775362i 0.921794 + 0.387681i \(0.126724\pi\)
−0.921794 + 0.387681i \(0.873276\pi\)
\(48\) 0 0
\(49\) −170.799 + 295.832i −0.497956 + 0.862485i
\(50\) 0 0
\(51\) 47.5141 0.130457
\(52\) 0 0
\(53\) 157.459 0.408087 0.204044 0.978962i \(-0.434592\pi\)
0.204044 + 0.978962i \(0.434592\pi\)
\(54\) 0 0
\(55\) −309.287 + 535.701i −0.758259 + 1.31334i
\(56\) 0 0
\(57\) 55.2634i 0.128418i
\(58\) 0 0
\(59\) −582.168 + 336.115i −1.28461 + 0.741668i −0.977687 0.210068i \(-0.932632\pi\)
−0.306919 + 0.951736i \(0.599298\pi\)
\(60\) 0 0
\(61\) −290.125 502.512i −0.608963 1.05476i −0.991412 0.130778i \(-0.958252\pi\)
0.382449 0.923977i \(-0.375081\pi\)
\(62\) 0 0
\(63\) 25.9905 + 15.0056i 0.0519761 + 0.0300084i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −156.637 90.4343i −0.285615 0.164900i 0.350347 0.936620i \(-0.386064\pi\)
−0.635963 + 0.771720i \(0.719397\pi\)
\(68\) 0 0
\(69\) 131.225 + 227.289i 0.228952 + 0.396556i
\(70\) 0 0
\(71\) 449.996 259.805i 0.752179 0.434271i −0.0743017 0.997236i \(-0.523673\pi\)
0.826481 + 0.562965i \(0.190339\pi\)
\(72\) 0 0
\(73\) 982.663i 1.57551i 0.615991 + 0.787753i \(0.288756\pi\)
−0.615991 + 0.787753i \(0.711244\pi\)
\(74\) 0 0
\(75\) 82.1757 142.332i 0.126518 0.219135i
\(76\) 0 0
\(77\) −46.0782 −0.0681960
\(78\) 0 0
\(79\) −1265.85 −1.80278 −0.901388 0.433013i \(-0.857450\pi\)
−0.901388 + 0.433013i \(0.857450\pi\)
\(80\) 0 0
\(81\) −298.795 + 517.528i −0.409870 + 0.709915i
\(82\) 0 0
\(83\) 1026.42i 1.35740i 0.734414 + 0.678702i \(0.237457\pi\)
−0.734414 + 0.678702i \(0.762543\pi\)
\(84\) 0 0
\(85\) −508.282 + 293.457i −0.648599 + 0.374469i
\(86\) 0 0
\(87\) −37.9592 65.7473i −0.0467777 0.0810213i
\(88\) 0 0
\(89\) −1286.09 742.526i −1.53175 0.884355i −0.999281 0.0379029i \(-0.987932\pi\)
−0.532466 0.846452i \(-0.678734\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −86.2523 49.7978i −0.0961714 0.0555246i
\(94\) 0 0
\(95\) 341.318 + 591.180i 0.368615 + 0.638460i
\(96\) 0 0
\(97\) 303.313 175.118i 0.317493 0.183305i −0.332782 0.943004i \(-0.607987\pi\)
0.650274 + 0.759699i \(0.274654\pi\)
\(98\) 0 0
\(99\) 986.176i 1.00116i
\(100\) 0 0
\(101\) 715.853 1239.89i 0.705248 1.22153i −0.261354 0.965243i \(-0.584169\pi\)
0.966602 0.256282i \(-0.0824977\pi\)
\(102\) 0 0
\(103\) −1492.10 −1.42739 −0.713695 0.700456i \(-0.752980\pi\)
−0.713695 + 0.700456i \(0.752980\pi\)
\(104\) 0 0
\(105\) 24.2258 0.0225162
\(106\) 0 0
\(107\) −580.909 + 1006.16i −0.524847 + 0.909062i 0.474734 + 0.880129i \(0.342544\pi\)
−0.999581 + 0.0289326i \(0.990789\pi\)
\(108\) 0 0
\(109\) 1599.05i 1.40515i −0.711611 0.702574i \(-0.752034\pi\)
0.711611 0.702574i \(-0.247966\pi\)
\(110\) 0 0
\(111\) 287.874 166.204i 0.246160 0.142121i
\(112\) 0 0
\(113\) −187.357 324.511i −0.155974 0.270155i 0.777439 0.628958i \(-0.216518\pi\)
−0.933413 + 0.358803i \(0.883185\pi\)
\(114\) 0 0
\(115\) −2807.56 1620.95i −2.27658 1.31438i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −37.8624 21.8599i −0.0291667 0.0168394i
\(120\) 0 0
\(121\) 91.5691 + 158.602i 0.0687973 + 0.119160i
\(122\) 0 0
\(123\) 189.030 109.137i 0.138571 0.0800043i
\(124\) 0 0
\(125\) 43.0377i 0.0307952i
\(126\) 0 0
\(127\) 324.648 562.306i 0.226833 0.392887i −0.730035 0.683410i \(-0.760496\pi\)
0.956868 + 0.290523i \(0.0938294\pi\)
\(128\) 0 0
\(129\) −471.450 −0.321774
\(130\) 0 0
\(131\) −612.966 −0.408818 −0.204409 0.978886i \(-0.565527\pi\)
−0.204409 + 0.978886i \(0.565527\pi\)
\(132\) 0 0
\(133\) −25.4251 + 44.0375i −0.0165762 + 0.0287108i
\(134\) 0 0
\(135\) 1070.86i 0.682702i
\(136\) 0 0
\(137\) −180.827 + 104.401i −0.112767 + 0.0651062i −0.555323 0.831635i \(-0.687405\pi\)
0.442556 + 0.896741i \(0.354072\pi\)
\(138\) 0 0
\(139\) 184.795 + 320.074i 0.112763 + 0.195312i 0.916883 0.399155i \(-0.130697\pi\)
−0.804120 + 0.594467i \(0.797363\pi\)
\(140\) 0 0
\(141\) −278.445 160.760i −0.166307 0.0960175i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 812.137 + 468.888i 0.465133 + 0.268545i
\(146\) 0 0
\(147\) −219.807 380.718i −0.123329 0.213613i
\(148\) 0 0
\(149\) 857.541 495.101i 0.471493 0.272217i −0.245371 0.969429i \(-0.578910\pi\)
0.716865 + 0.697212i \(0.245577\pi\)
\(150\) 0 0
\(151\) 2855.12i 1.53872i 0.638816 + 0.769360i \(0.279425\pi\)
−0.638816 + 0.769360i \(0.720575\pi\)
\(152\) 0 0
\(153\) 467.850 810.340i 0.247212 0.428184i
\(154\) 0 0
\(155\) 1230.24 0.637520
\(156\) 0 0
\(157\) −947.845 −0.481823 −0.240912 0.970547i \(-0.577446\pi\)
−0.240912 + 0.970547i \(0.577446\pi\)
\(158\) 0 0
\(159\) −101.320 + 175.491i −0.0505357 + 0.0875305i
\(160\) 0 0
\(161\) 241.492i 0.118213i
\(162\) 0 0
\(163\) −2330.22 + 1345.35i −1.11973 + 0.646479i −0.941333 0.337479i \(-0.890426\pi\)
−0.178401 + 0.983958i \(0.557092\pi\)
\(164\) 0 0
\(165\) −398.033 689.413i −0.187799 0.325277i
\(166\) 0 0
\(167\) 1563.89 + 902.913i 0.724656 + 0.418380i 0.816464 0.577397i \(-0.195931\pi\)
−0.0918081 + 0.995777i \(0.529265\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −942.502 544.154i −0.421491 0.243348i
\(172\) 0 0
\(173\) 177.022 + 306.610i 0.0777959 + 0.134747i 0.902299 0.431111i \(-0.141878\pi\)
−0.824503 + 0.565858i \(0.808545\pi\)
\(174\) 0 0
\(175\) −130.966 + 75.6133i −0.0565720 + 0.0326619i
\(176\) 0 0
\(177\) 865.117i 0.367380i
\(178\) 0 0
\(179\) −1297.09 + 2246.63i −0.541615 + 0.938104i 0.457197 + 0.889366i \(0.348853\pi\)
−0.998812 + 0.0487386i \(0.984480\pi\)
\(180\) 0 0
\(181\) −2338.97 −0.960522 −0.480261 0.877126i \(-0.659458\pi\)
−0.480261 + 0.877126i \(0.659458\pi\)
\(182\) 0 0
\(183\) 746.747 0.301645
\(184\) 0 0
\(185\) −2053.02 + 3555.93i −0.815897 + 1.41317i
\(186\) 0 0
\(187\) 1436.64i 0.561805i
\(188\) 0 0
\(189\) −69.0821 + 39.8846i −0.0265872 + 0.0153501i
\(190\) 0 0
\(191\) −15.3004 26.5011i −0.00579633 0.0100395i 0.863113 0.505011i \(-0.168512\pi\)
−0.868909 + 0.494972i \(0.835178\pi\)
\(192\) 0 0
\(193\) 2634.49 + 1521.02i 0.982563 + 0.567283i 0.903043 0.429550i \(-0.141328\pi\)
0.0795202 + 0.996833i \(0.474661\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3612.02 2085.40i −1.30632 0.754205i −0.324842 0.945768i \(-0.605311\pi\)
−0.981480 + 0.191563i \(0.938644\pi\)
\(198\) 0 0
\(199\) 2315.80 + 4011.08i 0.824938 + 1.42883i 0.901967 + 0.431806i \(0.142123\pi\)
−0.0770283 + 0.997029i \(0.524543\pi\)
\(200\) 0 0
\(201\) 201.582 116.383i 0.0707387 0.0408410i
\(202\) 0 0
\(203\) 69.8558i 0.0241523i
\(204\) 0 0
\(205\) −1348.10 + 2334.98i −0.459295 + 0.795522i
\(206\) 0 0
\(207\) 5168.47 1.73543
\(208\) 0 0
\(209\) 1670.95 0.553023
\(210\) 0 0
\(211\) 2701.82 4679.69i 0.881522 1.52684i 0.0318728 0.999492i \(-0.489853\pi\)
0.849649 0.527349i \(-0.176814\pi\)
\(212\) 0 0
\(213\) 668.707i 0.215113i
\(214\) 0 0
\(215\) 5043.34 2911.77i 1.59978 0.923634i
\(216\) 0 0
\(217\) 45.8210 + 79.3644i 0.0143343 + 0.0248277i
\(218\) 0 0
\(219\) −1095.20 632.313i −0.337930 0.195104i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4319.82 + 2494.05i 1.29720 + 0.748941i 0.979920 0.199390i \(-0.0638962\pi\)
0.317283 + 0.948331i \(0.397229\pi\)
\(224\) 0 0
\(225\) −1618.29 2802.97i −0.479494 0.830509i
\(226\) 0 0
\(227\) 2196.74 1268.29i 0.642303 0.370834i −0.143198 0.989694i \(-0.545739\pi\)
0.785501 + 0.618860i \(0.212405\pi\)
\(228\) 0 0
\(229\) 747.558i 0.215721i −0.994166 0.107860i \(-0.965600\pi\)
0.994166 0.107860i \(-0.0343999\pi\)
\(230\) 0 0
\(231\) 29.6499 51.3551i 0.00844510 0.0146273i
\(232\) 0 0
\(233\) −1661.81 −0.467248 −0.233624 0.972327i \(-0.575058\pi\)
−0.233624 + 0.972327i \(0.575058\pi\)
\(234\) 0 0
\(235\) 3971.55 1.10245
\(236\) 0 0
\(237\) 814.535 1410.82i 0.223248 0.386677i
\(238\) 0 0
\(239\) 1995.23i 0.540002i −0.962860 0.270001i \(-0.912976\pi\)
0.962860 0.270001i \(-0.0870240\pi\)
\(240\) 0 0
\(241\) −1129.49 + 652.109i −0.301895 + 0.174299i −0.643294 0.765619i \(-0.722433\pi\)
0.341399 + 0.939918i \(0.389099\pi\)
\(242\) 0 0
\(243\) −1293.93 2241.16i −0.341588 0.591648i
\(244\) 0 0
\(245\) 4702.78 + 2715.15i 1.22632 + 0.708019i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1143.97 660.471i −0.291149 0.168095i
\(250\) 0 0
\(251\) −2528.81 4380.03i −0.635926 1.10146i −0.986318 0.164852i \(-0.947285\pi\)
0.350393 0.936603i \(-0.386048\pi\)
\(252\) 0 0
\(253\) −6872.32 + 3967.74i −1.70774 + 0.985967i
\(254\) 0 0
\(255\) 755.321i 0.185490i
\(256\) 0 0
\(257\) 2225.65 3854.95i 0.540204 0.935661i −0.458687 0.888598i \(-0.651680\pi\)
0.998892 0.0470638i \(-0.0149864\pi\)
\(258\) 0 0
\(259\) −305.863 −0.0733798
\(260\) 0 0
\(261\) −1495.07 −0.354569
\(262\) 0 0
\(263\) 2287.94 3962.83i 0.536428 0.929120i −0.462665 0.886533i \(-0.653107\pi\)
0.999093 0.0425868i \(-0.0135599\pi\)
\(264\) 0 0
\(265\) 2503.09i 0.580239i
\(266\) 0 0
\(267\) 1655.12 955.584i 0.379370 0.219029i
\(268\) 0 0
\(269\) 2705.66 + 4686.34i 0.613260 + 1.06220i 0.990687 + 0.136159i \(0.0434757\pi\)
−0.377427 + 0.926039i \(0.623191\pi\)
\(270\) 0 0
\(271\) 322.418 + 186.148i 0.0722712 + 0.0417258i 0.535700 0.844408i \(-0.320048\pi\)
−0.463429 + 0.886134i \(0.653381\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4303.57 + 2484.67i 0.943692 + 0.544841i
\(276\) 0 0
\(277\) −2953.92 5116.35i −0.640737 1.10979i −0.985269 0.171014i \(-0.945296\pi\)
0.344532 0.938775i \(-0.388038\pi\)
\(278\) 0 0
\(279\) −1698.57 + 980.673i −0.364484 + 0.210435i
\(280\) 0 0
\(281\) 3598.50i 0.763946i −0.924174 0.381973i \(-0.875245\pi\)
0.924174 0.381973i \(-0.124755\pi\)
\(282\) 0 0
\(283\) −1706.65 + 2956.00i −0.358480 + 0.620905i −0.987707 0.156316i \(-0.950038\pi\)
0.629227 + 0.777221i \(0.283371\pi\)
\(284\) 0 0
\(285\) −878.509 −0.182591
\(286\) 0 0
\(287\) −200.843 −0.0413079
\(288\) 0 0
\(289\) 1774.95 3074.30i 0.361275 0.625748i
\(290\) 0 0
\(291\) 450.732i 0.0907985i
\(292\) 0 0
\(293\) 976.718 563.908i 0.194746 0.112436i −0.399457 0.916752i \(-0.630801\pi\)
0.594202 + 0.804316i \(0.297468\pi\)
\(294\) 0 0
\(295\) 5343.14 + 9254.58i 1.05454 + 1.82652i
\(296\) 0 0
\(297\) 2270.05 + 1310.62i 0.443508 + 0.256059i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 375.683 + 216.901i 0.0719402 + 0.0415347i
\(302\) 0 0
\(303\) 921.258 + 1595.67i 0.174670 + 0.302537i
\(304\) 0 0
\(305\) −7988.32 + 4612.06i −1.49970 + 0.865854i
\(306\) 0 0
\(307\) 7338.57i 1.36428i −0.731221 0.682141i \(-0.761049\pi\)
0.731221 0.682141i \(-0.238951\pi\)
\(308\) 0 0
\(309\) 960.121 1662.98i 0.176762 0.306160i
\(310\) 0 0
\(311\) 7550.86 1.37675 0.688376 0.725354i \(-0.258324\pi\)
0.688376 + 0.725354i \(0.258324\pi\)
\(312\) 0 0
\(313\) −1262.18 −0.227932 −0.113966 0.993485i \(-0.536356\pi\)
−0.113966 + 0.993485i \(0.536356\pi\)
\(314\) 0 0
\(315\) 238.541 413.165i 0.0426675 0.0739023i
\(316\) 0 0
\(317\) 4085.51i 0.723865i −0.932204 0.361933i \(-0.882117\pi\)
0.932204 0.361933i \(-0.117883\pi\)
\(318\) 0 0
\(319\) 1987.94 1147.74i 0.348913 0.201445i
\(320\) 0 0
\(321\) −747.594 1294.87i −0.129990 0.225148i
\(322\) 0 0
\(323\) 1373.02 + 792.711i 0.236522 + 0.136556i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1782.17 + 1028.94i 0.301390 + 0.174007i
\(328\) 0 0
\(329\) 147.922 + 256.209i 0.0247879 + 0.0429339i
\(330\) 0 0
\(331\) 3910.68 2257.83i 0.649397 0.374930i −0.138828 0.990316i \(-0.544334\pi\)
0.788225 + 0.615387i \(0.211000\pi\)
\(332\) 0 0
\(333\) 6546.14i 1.07726i
\(334\) 0 0
\(335\) −1437.61 + 2490.02i −0.234463 + 0.406102i
\(336\) 0 0
\(337\) −123.448 −0.0199545 −0.00997723 0.999950i \(-0.503176\pi\)
−0.00997723 + 0.999950i \(0.503176\pi\)
\(338\) 0 0
\(339\) 482.233 0.0772605
\(340\) 0 0
\(341\) 1505.69 2607.93i 0.239113 0.414156i
\(342\) 0 0
\(343\) 810.677i 0.127616i
\(344\) 0 0
\(345\) 3613.16 2086.06i 0.563844 0.325535i
\(346\) 0 0
\(347\) −1226.45 2124.28i −0.189739 0.328637i 0.755424 0.655236i \(-0.227431\pi\)
−0.945163 + 0.326599i \(0.894097\pi\)
\(348\) 0 0
\(349\) 7602.22 + 4389.14i 1.16601 + 0.673196i 0.952737 0.303797i \(-0.0982544\pi\)
0.213273 + 0.976993i \(0.431588\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3395.57 1960.43i −0.511977 0.295590i 0.221669 0.975122i \(-0.428850\pi\)
−0.733646 + 0.679532i \(0.762183\pi\)
\(354\) 0 0
\(355\) −4130.07 7153.48i −0.617468 1.06949i
\(356\) 0 0
\(357\) 48.7265 28.1323i 0.00722376 0.00417064i
\(358\) 0 0
\(359\) 9182.02i 1.34988i 0.737870 + 0.674942i \(0.235832\pi\)
−0.737870 + 0.674942i \(0.764168\pi\)
\(360\) 0 0
\(361\) −2507.50 + 4343.12i −0.365578 + 0.633200i
\(362\) 0 0
\(363\) −235.688 −0.0340782
\(364\) 0 0
\(365\) 15621.2 2.24013
\(366\) 0 0
\(367\) 4207.89 7288.28i 0.598502 1.03664i −0.394541 0.918878i \(-0.629096\pi\)
0.993042 0.117757i \(-0.0375704\pi\)
\(368\) 0 0
\(369\) 4298.48i 0.606423i
\(370\) 0 0
\(371\) 161.477 93.2286i 0.0225969 0.0130463i
\(372\) 0 0
\(373\) −6212.22 10759.9i −0.862350 1.49363i −0.869655 0.493661i \(-0.835659\pi\)
0.00730479 0.999973i \(-0.497675\pi\)
\(374\) 0 0
\(375\) −47.9664 27.6934i −0.00660526 0.00381355i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1036.75 598.565i −0.140512 0.0811246i 0.428096 0.903733i \(-0.359185\pi\)
−0.568608 + 0.822609i \(0.692518\pi\)
\(380\) 0 0
\(381\) 417.801 + 723.653i 0.0561801 + 0.0973068i
\(382\) 0 0
\(383\) −778.326 + 449.367i −0.103840 + 0.0599519i −0.551020 0.834492i \(-0.685761\pi\)
0.447181 + 0.894444i \(0.352428\pi\)
\(384\) 0 0
\(385\) 732.494i 0.0969646i
\(386\) 0 0
\(387\) −4642.16 + 8040.46i −0.609753 + 1.05612i
\(388\) 0 0
\(389\) −1927.09 −0.251175 −0.125588 0.992083i \(-0.540082\pi\)
−0.125588 + 0.992083i \(0.540082\pi\)
\(390\) 0 0
\(391\) −7529.31 −0.973846
\(392\) 0 0
\(393\) 394.425 683.164i 0.0506262 0.0876872i
\(394\) 0 0
\(395\) 20122.9i 2.56328i
\(396\) 0 0
\(397\) 1880.41 1085.66i 0.237721 0.137248i −0.376408 0.926454i \(-0.622841\pi\)
0.614129 + 0.789206i \(0.289507\pi\)
\(398\) 0 0
\(399\) −32.7205 56.6736i −0.00410545 0.00711084i
\(400\) 0 0
\(401\) 9051.43 + 5225.85i 1.12720 + 0.650789i 0.943229 0.332143i \(-0.107772\pi\)
0.183970 + 0.982932i \(0.441105\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 8227.03 + 4749.88i 1.00939 + 0.582774i
\(406\) 0 0
\(407\) 5025.35 + 8704.17i 0.612033 + 1.06007i
\(408\) 0 0
\(409\) 3741.15 2159.95i 0.452293 0.261132i −0.256505 0.966543i \(-0.582571\pi\)
0.708798 + 0.705411i \(0.249238\pi\)
\(410\) 0 0
\(411\) 268.714i 0.0322499i
\(412\) 0 0
\(413\) −398.015 + 689.383i −0.0474214 + 0.0821364i
\(414\) 0 0
\(415\) 16316.8 1.93002
\(416\) 0 0
\(417\) −475.639 −0.0558564
\(418\) 0 0
\(419\) 1071.86 1856.51i 0.124973 0.216460i −0.796749 0.604310i \(-0.793449\pi\)
0.921722 + 0.387850i \(0.126782\pi\)
\(420\) 0 0
\(421\) 11308.5i 1.30912i −0.756009 0.654561i \(-0.772853\pi\)
0.756009 0.654561i \(-0.227147\pi\)
\(422\) 0 0
\(423\) −5483.45 + 3165.87i −0.630294 + 0.363900i
\(424\) 0 0
\(425\) 2357.49 + 4083.30i 0.269071 + 0.466045i
\(426\) 0 0
\(427\) −595.057 343.557i −0.0674399 0.0389365i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7167.83 4138.35i −0.801072 0.462499i 0.0427737 0.999085i \(-0.486381\pi\)
−0.843846 + 0.536585i \(0.819714\pi\)
\(432\) 0 0
\(433\) 156.904 + 271.766i 0.0174142 + 0.0301622i 0.874601 0.484843i \(-0.161123\pi\)
−0.857187 + 0.515005i \(0.827790\pi\)
\(434\) 0 0
\(435\) −1045.17 + 603.429i −0.115200 + 0.0665108i
\(436\) 0 0
\(437\) 8757.30i 0.958623i
\(438\) 0 0
\(439\) 2399.23 4155.59i 0.260840 0.451789i −0.705625 0.708585i \(-0.749334\pi\)
0.966465 + 0.256797i \(0.0826670\pi\)
\(440\) 0 0
\(441\) −8657.38 −0.934822
\(442\) 0 0
\(443\) −871.652 −0.0934841 −0.0467420 0.998907i \(-0.514884\pi\)
−0.0467420 + 0.998907i \(0.514884\pi\)
\(444\) 0 0
\(445\) −11803.8 + 20444.7i −1.25742 + 2.17792i
\(446\) 0 0
\(447\) 1274.33i 0.134840i
\(448\) 0 0
\(449\) −6902.27 + 3985.03i −0.725475 + 0.418853i −0.816765 0.576971i \(-0.804235\pi\)
0.0912892 + 0.995824i \(0.470901\pi\)
\(450\) 0 0
\(451\) 3299.87 + 5715.53i 0.344533 + 0.596749i
\(452\) 0 0
\(453\) −3182.09 1837.18i −0.330039 0.190548i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7830.03 4520.67i −0.801473 0.462731i 0.0425127 0.999096i \(-0.486464\pi\)
−0.843986 + 0.536365i \(0.819797\pi\)
\(458\) 0 0
\(459\) 1243.53 + 2153.86i 0.126456 + 0.219028i
\(460\) 0 0
\(461\) 1989.15 1148.44i 0.200963 0.116026i −0.396142 0.918189i \(-0.629651\pi\)
0.597104 + 0.802163i \(0.296318\pi\)
\(462\) 0 0
\(463\) 10243.3i 1.02817i −0.857738 0.514087i \(-0.828131\pi\)
0.857738 0.514087i \(-0.171869\pi\)
\(464\) 0 0
\(465\) −791.624 + 1371.13i −0.0789477 + 0.136741i
\(466\) 0 0
\(467\) −11561.2 −1.14558 −0.572792 0.819701i \(-0.694140\pi\)
−0.572792 + 0.819701i \(0.694140\pi\)
\(468\) 0 0
\(469\) −214.178 −0.0210871
\(470\) 0 0
\(471\) 609.909 1056.39i 0.0596669 0.103346i
\(472\) 0 0
\(473\) 14254.8i 1.38570i
\(474\) 0 0
\(475\) 4749.26 2741.99i 0.458760 0.264865i
\(476\) 0 0
\(477\) 1995.30 + 3455.96i 0.191527 + 0.331735i
\(478\) 0 0
\(479\) −3471.88 2004.49i −0.331178 0.191206i 0.325186 0.945650i \(-0.394573\pi\)
−0.656364 + 0.754444i \(0.727906\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 269.148 + 155.393i 0.0253554 + 0.0146389i
\(484\) 0 0
\(485\) −2783.81 4821.70i −0.260632 0.451427i
\(486\) 0 0
\(487\) −2566.87 + 1481.98i −0.238842 + 0.137896i −0.614644 0.788804i \(-0.710701\pi\)
0.375802 + 0.926700i \(0.377367\pi\)
\(488\) 0 0
\(489\) 3462.77i 0.320228i
\(490\) 0 0
\(491\) 8977.60 15549.7i 0.825160 1.42922i −0.0766377 0.997059i \(-0.524418\pi\)
0.901797 0.432159i \(-0.142248\pi\)
\(492\) 0 0
\(493\) 2177.99 0.198969
\(494\) 0 0
\(495\) −15677.0 −1.42349
\(496\) 0 0
\(497\) 307.653 532.870i 0.0277668 0.0480935i
\(498\) 0 0
\(499\) 15327.6i 1.37507i 0.726153 + 0.687533i \(0.241306\pi\)
−0.726153 + 0.687533i \(0.758694\pi\)
\(500\) 0 0
\(501\) −2012.63 + 1161.99i −0.179476 + 0.103621i
\(502\) 0 0
\(503\) 6413.37 + 11108.3i 0.568505 + 0.984679i 0.996714 + 0.0809994i \(0.0258112\pi\)
−0.428209 + 0.903679i \(0.640855\pi\)
\(504\) 0 0
\(505\) −19710.3 11379.8i −1.73683 1.00276i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2082.85 + 1202.54i 0.181377 + 0.104718i 0.587939 0.808905i \(-0.299939\pi\)
−0.406563 + 0.913623i \(0.633273\pi\)
\(510\) 0 0
\(511\) 581.818 + 1007.74i 0.0503681 + 0.0872401i
\(512\) 0 0
\(513\) 2505.15 1446.35i 0.215604 0.124479i
\(514\) 0 0
\(515\) 23719.6i 2.02954i
\(516\) 0 0
\(517\) 4860.76 8419.08i 0.413493 0.716191i
\(518\) 0 0
\(519\) −455.631 −0.0385356
\(520\) 0 0
\(521\) 13258.4 1.11490 0.557450 0.830210i \(-0.311780\pi\)
0.557450 + 0.830210i \(0.311780\pi\)
\(522\) 0 0
\(523\) −2257.47 + 3910.05i −0.188742 + 0.326911i −0.944831 0.327558i \(-0.893774\pi\)
0.756089 + 0.654469i \(0.227108\pi\)
\(524\) 0 0
\(525\) 194.619i 0.0161788i
\(526\) 0 0
\(527\) 2474.45 1428.62i 0.204532 0.118087i
\(528\) 0 0
\(529\) −14711.1 25480.4i −1.20910 2.09422i
\(530\) 0 0
\(531\) −14754.3 8518.42i −1.20581 0.696173i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 15994.8 + 9234.58i 1.29255 + 0.746254i
\(536\) 0 0
\(537\) −1669.27 2891.27i −0.134142 0.232341i
\(538\) 0 0
\(539\) 11511.4 6646.11i 0.919910 0.531110i
\(540\) 0 0
\(541\) 7456.65i 0.592581i −0.955098 0.296291i \(-0.904250\pi\)
0.955098 0.296291i \(-0.0957497\pi\)
\(542\) 0 0
\(543\) 1505.06 2606.83i 0.118947 0.206022i
\(544\) 0 0
\(545\) −25419.7 −1.99791
\(546\) 0 0
\(547\) −6132.43 −0.479349 −0.239674 0.970853i \(-0.577041\pi\)
−0.239674 + 0.970853i \(0.577041\pi\)
\(548\) 0 0
\(549\) 7352.88 12735.6i 0.571609 0.990055i
\(550\) 0 0
\(551\) 2533.20i 0.195859i
\(552\) 0 0
\(553\) −1298.15 + 749.488i −0.0998246 + 0.0576338i
\(554\) 0 0
\(555\) −2642.11 4576.26i −0.202074 0.350003i
\(556\) 0 0
\(557\) −9031.62 5214.41i −0.687042 0.396664i 0.115461 0.993312i \(-0.463165\pi\)
−0.802503 + 0.596648i \(0.796499\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1601.16 924.433i −0.120501 0.0695714i
\(562\) 0 0
\(563\) 11392.3 + 19732.0i 0.852801 + 1.47709i 0.878670 + 0.477429i \(0.158431\pi\)
−0.0258691 + 0.999665i \(0.508235\pi\)
\(564\) 0 0
\(565\) −5158.68 + 2978.37i −0.384119 + 0.221771i
\(566\) 0 0
\(567\) 707.646i 0.0524133i
\(568\) 0 0
\(569\) 6439.75 11154.0i 0.474461 0.821791i −0.525111 0.851034i \(-0.675976\pi\)
0.999572 + 0.0292427i \(0.00930957\pi\)
\(570\) 0 0
\(571\) 6071.36 0.444971 0.222485 0.974936i \(-0.428583\pi\)
0.222485 + 0.974936i \(0.428583\pi\)
\(572\) 0 0
\(573\) 39.3813 0.00287117
\(574\) 0 0
\(575\) −13022.0 + 22554.7i −0.944440 + 1.63582i
\(576\) 0 0
\(577\) 2429.06i 0.175257i 0.996153 + 0.0876283i \(0.0279288\pi\)
−0.996153 + 0.0876283i \(0.972071\pi\)
\(578\) 0 0
\(579\) −3390.42 + 1957.46i −0.243353 + 0.140500i
\(580\) 0 0
\(581\) 607.727 + 1052.61i 0.0433955 + 0.0751631i
\(582\) 0 0
\(583\) −5306.16 3063.51i −0.376944 0.217629i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12664.9 7312.09i −0.890523 0.514144i −0.0164096 0.999865i \(-0.505224\pi\)
−0.874114 + 0.485722i \(0.838557\pi\)
\(588\) 0 0
\(589\) −1661.62 2878.01i −0.116241 0.201335i
\(590\) 0 0
\(591\) 4648.44 2683.78i 0.323538 0.186795i
\(592\) 0 0
\(593\) 15282.4i 1.05830i 0.848529 + 0.529149i \(0.177489\pi\)
−0.848529 + 0.529149i \(0.822511\pi\)
\(594\) 0 0
\(595\) −347.501 + 601.890i −0.0239431 + 0.0414707i
\(596\) 0 0
\(597\) −5960.58 −0.408627
\(598\) 0 0
\(599\) −11067.6 −0.754940 −0.377470 0.926022i \(-0.623206\pi\)
−0.377470 + 0.926022i \(0.623206\pi\)
\(600\) 0 0
\(601\) −9143.59 + 15837.2i −0.620590 + 1.07489i 0.368786 + 0.929514i \(0.379774\pi\)
−0.989376 + 0.145379i \(0.953560\pi\)
\(602\) 0 0
\(603\) 4583.90i 0.309570i
\(604\) 0 0
\(605\) 2521.27 1455.65i 0.169428 0.0978194i
\(606\) 0 0
\(607\) −1381.29 2392.46i −0.0923638 0.159979i 0.816142 0.577852i \(-0.196109\pi\)
−0.908505 + 0.417873i \(0.862776\pi\)
\(608\) 0 0
\(609\) −77.8557 44.9500i −0.00518042 0.00299091i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −22586.0 13040.0i −1.48816 0.859187i −0.488248 0.872705i \(-0.662364\pi\)
−0.999909 + 0.0135178i \(0.995697\pi\)
\(614\) 0 0
\(615\) −1734.92 3004.97i −0.113754 0.197028i
\(616\) 0 0
\(617\) 7941.30 4584.91i 0.518160 0.299160i −0.218021 0.975944i \(-0.569960\pi\)
0.736182 + 0.676784i \(0.236627\pi\)
\(618\) 0 0
\(619\) 17765.0i 1.15353i −0.816909 0.576767i \(-0.804314\pi\)
0.816909 0.576767i \(-0.195686\pi\)
\(620\) 0 0
\(621\) −6868.83 + 11897.2i −0.443859 + 0.768787i
\(622\) 0 0
\(623\) −1758.55 −0.113089
\(624\) 0 0
\(625\) −15279.3 −0.977872
\(626\) 0 0
\(627\) −1075.20 + 1862.30i −0.0684840 + 0.118618i
\(628\) 0 0
\(629\) 9536.28i 0.604509i
\(630\) 0 0
\(631\) −25243.7 + 14574.4i −1.59261 + 0.919492i −0.599748 + 0.800189i \(0.704733\pi\)
−0.992858 + 0.119303i \(0.961934\pi\)
\(632\) 0 0
\(633\) 3477.08 + 6022.47i 0.218328 + 0.378154i
\(634\) 0 0
\(635\) −8938.86 5160.85i −0.558626 0.322523i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 11404.6 + 6584.45i 0.706040 + 0.407632i
\(640\) 0 0
\(641\) 12306.7 + 21315.8i 0.758323 + 1.31345i 0.943705 + 0.330787i \(0.107314\pi\)
−0.185383 + 0.982666i \(0.559352\pi\)
\(642\) 0 0
\(643\) 23498.4 13566.8i 1.44119 0.832071i 0.443261 0.896393i \(-0.353822\pi\)
0.997929 + 0.0643213i \(0.0204882\pi\)
\(644\) 0 0
\(645\) 7494.54i 0.457515i
\(646\) 0 0
\(647\) −11867.2 + 20554.5i −0.721092 + 1.24897i 0.239470 + 0.970904i \(0.423026\pi\)
−0.960562 + 0.278064i \(0.910307\pi\)
\(648\) 0 0
\(649\) 26157.7 1.58210
\(650\) 0 0
\(651\) −117.938 −0.00710037
\(652\) 0 0
\(653\) −9688.22 + 16780.5i −0.580596 + 1.00562i 0.414813 + 0.909907i \(0.363847\pi\)
−0.995409 + 0.0957153i \(0.969486\pi\)
\(654\) 0 0
\(655\) 9744.19i 0.581278i
\(656\) 0 0
\(657\) −21567.8 + 12452.2i −1.28073 + 0.739432i
\(658\) 0 0
\(659\) −5635.78 9761.46i −0.333139 0.577014i 0.649986 0.759946i \(-0.274775\pi\)
−0.983126 + 0.182932i \(0.941441\pi\)
\(660\) 0 0
\(661\) 7260.87 + 4192.07i 0.427254 + 0.246675i 0.698176 0.715926i \(-0.253995\pi\)
−0.270922 + 0.962601i \(0.587328\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 700.055 + 404.177i 0.0408225 + 0.0235689i
\(666\) 0 0
\(667\) 6015.20 + 10418.6i 0.349190 + 0.604814i
\(668\) 0 0
\(669\) −5559.33 + 3209.68i −0.321280 + 0.185491i
\(670\) 0 0
\(671\) 22578.7i 1.29902i
\(672\) 0 0
\(673\) 2703.65 4682.86i 0.154856 0.268219i −0.778151 0.628078i \(-0.783842\pi\)
0.933007 + 0.359859i \(0.117175\pi\)
\(674\) 0 0
\(675\) 8602.77 0.490549
\(676\) 0 0
\(677\) −10090.8 −0.572854 −0.286427 0.958102i \(-0.592468\pi\)
−0.286427 + 0.958102i \(0.592468\pi\)
\(678\) 0 0
\(679\) 207.369 359.173i 0.0117203 0.0203002i
\(680\) 0 0
\(681\) 3264.41i 0.183690i
\(682\) 0 0
\(683\) 11461.5 6617.28i 0.642109 0.370722i −0.143317 0.989677i \(-0.545777\pi\)
0.785427 + 0.618955i \(0.212444\pi\)
\(684\) 0 0
\(685\) 1659.63 + 2874.57i 0.0925713 + 0.160338i
\(686\) 0 0
\(687\) 833.169 + 481.030i 0.0462698 + 0.0267139i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2406.47 + 1389.37i 0.132484 + 0.0764895i 0.564777 0.825244i \(-0.308962\pi\)
−0.432293 + 0.901733i \(0.642295\pi\)
\(692\) 0 0
\(693\) −583.898 1011.34i −0.0320064 0.0554367i
\(694\) 0 0
\(695\) 5088.14 2937.64i 0.277704 0.160332i
\(696\) 0 0
\(697\) 6261.93i 0.340298i
\(698\) 0 0
\(699\) 1069.32 1852.12i 0.0578619 0.100220i
\(700\) 0 0
\(701\) −19737.6 −1.06345 −0.531725 0.846917i \(-0.678456\pi\)
−0.531725 + 0.846917i \(0.678456\pi\)
\(702\) 0 0
\(703\) 11091.6 0.595060
\(704\) 0 0
\(705\) −2555.57 + 4426.38i −0.136522 + 0.236464i
\(706\) 0 0
\(707\) 1695.38i 0.0901856i
\(708\) 0 0
\(709\) −5242.69 + 3026.87i −0.277706 + 0.160333i −0.632384 0.774655i \(-0.717924\pi\)
0.354679 + 0.934988i \(0.384590\pi\)
\(710\) 0 0
\(711\) −16040.7 27783.3i −0.846096 1.46548i
\(712\) 0 0
\(713\) 13667.9 + 7891.19i 0.717908 + 0.414485i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2223.72 + 1283.87i 0.115825 + 0.0668715i
\(718\) 0 0
\(719\) −6878.79 11914.4i −0.356795 0.617987i 0.630628 0.776085i \(-0.282797\pi\)
−0.987423 + 0.158098i \(0.949464\pi\)
\(720\) 0 0
\(721\) −1530.18 + 883.448i −0.0790385 + 0.0456329i
\(722\) 0 0
\(723\) 1678.45i 0.0863377i
\(724\) 0 0
\(725\) 3766.83 6524.34i 0.192961 0.334218i
\(726\) 0 0
\(727\) −18384.8 −0.937903 −0.468951 0.883224i \(-0.655368\pi\)
−0.468951 + 0.883224i \(0.655368\pi\)
\(728\) 0 0
\(729\) −12804.5 −0.650537
\(730\) 0 0
\(731\) 6762.60 11713.2i 0.342166 0.592650i
\(732\) 0 0
\(733\) 7848.53i 0.395487i −0.980254 0.197744i \(-0.936639\pi\)
0.980254 0.197744i \(-0.0633613\pi\)
\(734\) 0 0
\(735\) −6052.18 + 3494.23i −0.303725 + 0.175356i
\(736\) 0 0
\(737\) 3518.97 + 6095.04i 0.175879 + 0.304632i
\(738\) 0 0
\(739\) −13925.8 8040.07i −0.693193 0.400215i 0.111614 0.993752i \(-0.464398\pi\)
−0.804807 + 0.593537i \(0.797731\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8126.52 4691.85i −0.401256 0.231665i 0.285770 0.958298i \(-0.407751\pi\)
−0.687026 + 0.726633i \(0.741084\pi\)
\(744\) 0 0
\(745\) −7870.51 13632.1i −0.387051 0.670393i
\(746\) 0 0
\(747\) −22528.3 + 13006.7i −1.10344 + 0.637069i
\(748\) 0 0
\(749\) 1375.79i 0.0671163i
\(750\) 0 0
\(751\) −4055.29 + 7023.97i −0.197043 + 0.341289i −0.947568 0.319553i \(-0.896467\pi\)
0.750525 + 0.660842i \(0.229801\pi\)
\(752\) 0 0
\(753\) 6508.85 0.315001
\(754\) 0 0
\(755\) 45387.3 2.18783
\(756\) 0 0
\(757\) 12990.3 22499.9i 0.623701 1.08028i −0.365089 0.930973i \(-0.618962\pi\)
0.988790 0.149310i \(-0.0477051\pi\)
\(758\) 0 0
\(759\) 10212.5i 0.488391i
\(760\) 0 0
\(761\) 26638.1 15379.5i 1.26890 0.732598i 0.294118 0.955769i \(-0.404974\pi\)
0.974779 + 0.223171i \(0.0716410\pi\)
\(762\) 0 0
\(763\) −946.770 1639.85i −0.0449219 0.0778069i
\(764\) 0 0
\(765\) −12881.8 7437.30i −0.608813 0.351498i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 16156.1 + 9327.72i 0.757611 + 0.437407i 0.828437 0.560082i \(-0.189230\pi\)
−0.0708261 + 0.997489i \(0.522564\pi\)
\(770\) 0 0
\(771\) 2864.28 + 4961.08i 0.133793 + 0.231736i
\(772\) 0 0
\(773\) 14683.6 8477.58i 0.683225 0.394460i −0.117844 0.993032i \(-0.537598\pi\)
0.801069 + 0.598572i \(0.204265\pi\)
\(774\) 0 0
\(775\) 9883.22i 0.458085i
\(776\) 0 0
\(777\) 196.813 340.890i 0.00908704 0.0157392i
\(778\) 0 0
\(779\) 7283.22 0.334979
\(780\) 0 0
\(781\) −20219.1 −0.926370
\(782\) 0 0
\(783\) 1986.93 3441.46i 0.0906859 0.157073i
\(784\) 0 0
\(785\) 15067.7i 0.685081i
\(786\) 0 0
\(787\) 23675.8 13669.2i 1.07236 0.619129i 0.143537 0.989645i \(-0.454152\pi\)
0.928826 + 0.370516i \(0.120819\pi\)
\(788\) 0 0
\(789\) 2944.44 + 5099.91i 0.132858 + 0.230116i
\(790\) 0 0
\(791\) −384.275 221.861i −0.0172734 0.00997280i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 2789.74 + 1610.66i 0.124455 + 0.0718543i
\(796\) 0 0
\(797\) 8686.11 + 15044.8i 0.386045 + 0.668649i 0.991914 0.126915i \(-0.0405077\pi\)
−0.605869 + 0.795565i \(0.707174\pi\)
\(798\) 0 0
\(799\) 7988.16 4611.97i 0.353693 0.204205i
\(800\) 0 0
\(801\) 37636.8i 1.66021i
\(802\) 0 0
\(803\) 19118.7 33114.5i 0.840203 1.45527i
\(804\) 0 0
\(805\) −3838.94 −0.168081
\(806\) 0 0
\(807\) −6964.03 −0.303774
\(808\) 0 0
\(809\) −12746.3 + 22077.3i −0.553939 + 0.959450i 0.444046 + 0.896004i \(0.353543\pi\)
−0.997985 + 0.0634464i \(0.979791\pi\)
\(810\) 0 0
\(811\) 7742.96i 0.335255i −0.985850 0.167628i \(-0.946389\pi\)
0.985850 0.167628i \(-0.0536106\pi\)
\(812\) 0 0
\(813\) −414.932 + 239.561i −0.0178995 + 0.0103343i
\(814\) 0 0
\(815\) 21386.7 + 37042.9i 0.919196 + 1.59209i
\(816\) 0 0
\(817\) −13623.5 7865.54i −0.583386 0.336818i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11683.2 6745.28i −0.496645 0.286738i 0.230682 0.973029i \(-0.425904\pi\)
−0.727327 + 0.686291i \(0.759238\pi\)
\(822\) 0 0
\(823\) −16550.2 28665.7i −0.700975 1.21412i −0.968124 0.250470i \(-0.919415\pi\)
0.267149 0.963655i \(-0.413918\pi\)
\(824\) 0 0
\(825\) −5538.43 + 3197.61i −0.233725 + 0.134941i
\(826\) 0 0
\(827\) 5211.34i 0.219125i 0.993980 + 0.109562i \(0.0349449\pi\)
−0.993980 + 0.109562i \(0.965055\pi\)
\(828\) 0 0
\(829\) 7049.97 12210.9i 0.295363 0.511583i −0.679707 0.733484i \(-0.737893\pi\)
0.975069 + 0.221901i \(0.0712262\pi\)
\(830\) 0 0
\(831\) 7603.03 0.317384
\(832\) 0 0
\(833\) 12611.9 0.524581
\(834\) 0 0
\(835\) 14353.4 24860.8i 0.594874 1.03035i
\(836\) 0 0
\(837\) 5213.21i 0.215287i
\(838\) 0 0
\(839\) −6335.36 + 3657.72i −0.260693 + 0.150511i −0.624650 0.780904i \(-0.714759\pi\)
0.363958 + 0.931415i \(0.381425\pi\)
\(840\) 0 0
\(841\) 10454.5 + 18107.7i 0.428656 + 0.742454i
\(842\) 0 0
\(843\) 4010.61 + 2315.52i 0.163858 + 0.0946037i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 187.812 + 108.433i 0.00761899 + 0.00439882i
\(848\) 0 0
\(849\) −2196.35 3804.19i −0.0887851 0.153780i
\(850\) 0 0
\(851\) −45617.8 + 26337.5i −1.83756 + 1.06091i
\(852\) 0 0
\(853\) 24221.1i 0.972234i −0.873894 0.486117i \(-0.838413\pi\)
0.873894 0.486117i \(-0.161587\pi\)
\(854\) 0 0
\(855\) −8650.28 + 14982.7i −0.346004 + 0.599297i
\(856\) 0 0
\(857\) −9191.63 −0.366371 −0.183186 0.983078i \(-0.558641\pi\)
−0.183186 + 0.983078i \(0.558641\pi\)
\(858\) 0 0
\(859\) −1899.06 −0.0754309 −0.0377155 0.999289i \(-0.512008\pi\)
−0.0377155 + 0.999289i \(0.512008\pi\)
\(860\) 0 0
\(861\) 129.236 223.843i 0.00511539 0.00886011i
\(862\) 0 0
\(863\) 18688.4i 0.737149i −0.929598 0.368574i \(-0.879846\pi\)
0.929598 0.368574i \(-0.120154\pi\)
\(864\) 0 0
\(865\) 4874.11 2814.07i 0.191589 0.110614i
\(866\) 0 0
\(867\) 2284.25 + 3956.43i 0.0894775 + 0.154980i
\(868\) 0 0
\(869\) 42657.5 + 24628.3i 1.66520 + 0.961403i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 7687.11 + 4438.15i 0.298017 + 0.172060i
\(874\) 0 0
\(875\) 25.4819 + 44.1359i 0.000984508 + 0.00170522i
\(876\) 0 0
\(877\) −25996.8 + 15009.3i −1.00097 + 0.577910i −0.908535 0.417808i \(-0.862798\pi\)
−0.0924350 + 0.995719i \(0.529465\pi\)
\(878\) 0 0
\(879\) 1451.43i 0.0556945i
\(880\) 0 0
\(881\) 5969.14 10338.9i 0.228270 0.395375i −0.729026 0.684486i \(-0.760027\pi\)
0.957295 + 0.289112i \(0.0933599\pi\)
\(882\) 0 0
\(883\) −22169.9 −0.844933 −0.422467 0.906379i \(-0.638836\pi\)
−0.422467 + 0.906379i \(0.638836\pi\)
\(884\) 0 0
\(885\) −13752.6 −0.522359
\(886\) 0 0
\(887\) 364.388 631.139i 0.0137936 0.0238913i −0.859046 0.511898i \(-0.828943\pi\)
0.872840 + 0.488007i \(0.162276\pi\)
\(888\) 0 0
\(889\) 768.874i 0.0290070i
\(890\) 0 0
\(891\) 20138.0 11626.7i 0.757182 0.437159i
\(892\) 0 0
\(893\) −5364.15 9290.99i −0.201013 0.348165i
\(894\) 0 0
\(895\) 35714.1 + 20619.5i 1.33384 + 0.770095i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3953.69 2282.67i −0.146678 0.0846843i
\(900\) 0 0
\(901\) −2906.71 5034.57i −0.107477 0.186155i
\(902\) 0 0
\(903\) −483.481 + 279.138i −0.0178175 + 0.0102870i
\(904\) 0 0
\(905\) 37182.1i 1.36572i
\(906\) 0 0
\(907\) −19565.6 + 33888.7i −0.716280 + 1.24063i 0.246183 + 0.969223i \(0.420823\pi\)
−0.962464 + 0.271411i \(0.912510\pi\)
\(908\) 0 0
\(909\) 36284.9 1.32397
\(910\) 0 0
\(911\) 40955.0 1.48946 0.744730 0.667366i \(-0.232578\pi\)
0.744730 + 0.667366i \(0.232578\pi\)
\(912\) 0 0
\(913\) 19970.0 34589.1i 0.723890 1.25381i
\(914\) 0 0
\(915\) 11870.9i 0.428895i
\(916\) 0 0
\(917\) −628.608 + 362.927i −0.0226374 + 0.0130697i
\(918\) 0 0
\(919\) 6283.90 + 10884.0i 0.225557 + 0.390676i 0.956486 0.291777i \(-0.0942465\pi\)
−0.730929 + 0.682453i \(0.760913\pi\)
\(920\) 0 0
\(921\) 8178.99 + 4722.14i 0.292624 + 0.168947i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 28566.7 + 16493.0i 1.01542 + 0.586256i
\(926\) 0 0
\(927\) −18907.8 32749.2i −0.669916 1.16033i
\(928\) 0 0
\(929\) 8538.00 4929.42i 0.301532 0.174089i −0.341599 0.939846i \(-0.610969\pi\)
0.643131 + 0.765756i \(0.277635\pi\)
\(930\) 0 0
\(931\) 14668.8i 0.516381i
\(932\) 0 0
\(933\) −4858.74 + 8415.59i −0.170491 + 0.295299i
\(934\) 0 0
\(935\) 22837.9 0.798802
\(936\) 0 0
\(937\) 14064.4 0.490355 0.245177 0.969478i \(-0.421154\pi\)
0.245177 + 0.969478i \(0.421154\pi\)
\(938\) 0 0
\(939\) 812.175 1406.73i 0.0282261 0.0488891i
\(940\) 0 0
\(941\) 37759.0i 1.30808i 0.756458 + 0.654042i \(0.226928\pi\)
−0.756458 + 0.654042i \(0.773072\pi\)
\(942\) 0 0
\(943\) −29954.7 + 17294.3i −1.03442 + 0.597222i
\(944\) 0 0
\(945\) 634.036 + 1098.18i 0.0218256 + 0.0378031i
\(946\) 0 0
\(947\) 37020.8 + 21374.0i 1.27034 + 0.733433i 0.975053 0.221974i \(-0.0712500\pi\)
0.295291 + 0.955407i \(0.404583\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 4553.39 + 2628.90i 0.155262 + 0.0896403i
\(952\) 0 0
\(953\) −14794.6 25625.0i −0.502879 0.871012i −0.999994 0.00332777i \(-0.998941\pi\)
0.497115 0.867684i \(-0.334393\pi\)
\(954\) 0 0
\(955\) −421.282 + 243.227i −0.0142747 + 0.00824151i
\(956\) 0 0
\(957\) 2954.13i 0.0997843i
\(958\) 0 0
\(959\) −123.628 + 214.129i −0.00416282 + 0.00721022i
\(960\) 0 0
\(961\) 23801.9 0.798961
\(962\) 0 0
\(963\) −29444.9 −0.985305
\(964\) 0 0
\(965\) 24179.4 41879.9i 0.806592 1.39706i
\(966\) 0 0
\(967\) 7140.75i 0.237468i −0.992926 0.118734i \(-0.962117\pi\)
0.992926 0.118734i \(-0.0378835\pi\)
\(968\) 0 0
\(969\) −1766.99 + 1020.17i −0.0585797 + 0.0338210i
\(970\) 0 0
\(971\) −17433.3 30195.3i −0.576169 0.997954i −0.995914 0.0903116i \(-0.971214\pi\)
0.419745 0.907642i \(-0.362120\pi\)
\(972\) 0 0
\(973\) 379.021 + 218.828i 0.0124880 + 0.00720996i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27921.3 16120.4i −0.914311 0.527878i −0.0324954 0.999472i \(-0.510345\pi\)
−0.881816 + 0.471594i \(0.843679\pi\)
\(978\) 0 0
\(979\) 28893.1 + 50044.3i 0.943236 + 1.63373i
\(980\) 0 0
\(981\) 35096.5 20263.0i 1.14225 0.659478i
\(982\) 0 0
\(983\) 16467.0i 0.534298i 0.963655 + 0.267149i \(0.0860816\pi\)
−0.963655 + 0.267149i \(0.913918\pi\)
\(984\) 0 0
\(985\) −33151.1 + 57419.4i −1.07237 + 1.85739i
\(986\) 0 0
\(987\) −380.734 −0.0122785
\(988\) 0 0
\(989\) 74708.3 2.40201
\(990\) 0 0
\(991\) −6174.36 + 10694.3i −0.197916 + 0.342801i −0.947853 0.318709i \(-0.896751\pi\)
0.749936 + 0.661510i \(0.230084\pi\)
\(992\) 0 0
\(993\) 5811.38i 0.185719i
\(994\) 0 0
\(995\) 63763.3 36813.7i 2.03159 1.17294i
\(996\) 0 0
\(997\) −1942.47 3364.46i −0.0617038 0.106874i 0.833523 0.552484i \(-0.186320\pi\)
−0.895227 + 0.445610i \(0.852987\pi\)
\(998\) 0 0
\(999\) 15068.4 + 8699.75i 0.477220 + 0.275523i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.4.h.e.485.2 8
13.2 odd 12 676.4.e.h.653.3 16
13.3 even 3 52.4.h.a.49.2 yes 8
13.4 even 6 676.4.d.d.337.6 8
13.5 odd 4 676.4.e.h.529.3 16
13.6 odd 12 676.4.a.g.1.5 8
13.7 odd 12 676.4.a.g.1.6 8
13.8 odd 4 676.4.e.h.529.4 16
13.9 even 3 676.4.d.d.337.5 8
13.10 even 6 inner 676.4.h.e.361.2 8
13.11 odd 12 676.4.e.h.653.4 16
13.12 even 2 52.4.h.a.17.2 8
39.29 odd 6 468.4.t.g.361.4 8
39.38 odd 2 468.4.t.g.433.1 8
52.3 odd 6 208.4.w.c.49.3 8
52.51 odd 2 208.4.w.c.17.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.4.h.a.17.2 8 13.12 even 2
52.4.h.a.49.2 yes 8 13.3 even 3
208.4.w.c.17.3 8 52.51 odd 2
208.4.w.c.49.3 8 52.3 odd 6
468.4.t.g.361.4 8 39.29 odd 6
468.4.t.g.433.1 8 39.38 odd 2
676.4.a.g.1.5 8 13.6 odd 12
676.4.a.g.1.6 8 13.7 odd 12
676.4.d.d.337.5 8 13.9 even 3
676.4.d.d.337.6 8 13.4 even 6
676.4.e.h.529.3 16 13.5 odd 4
676.4.e.h.529.4 16 13.8 odd 4
676.4.e.h.653.3 16 13.2 odd 12
676.4.e.h.653.4 16 13.11 odd 12
676.4.h.e.361.2 8 13.10 even 6 inner
676.4.h.e.485.2 8 1.1 even 1 trivial