Properties

Label 676.4.a.g.1.6
Level $676$
Weight $4$
Character 676.1
Self dual yes
Analytic conductor $39.885$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [676,4,Mod(1,676)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("676.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(676, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 676.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8852911639\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 114x^{6} - 224x^{5} + 3123x^{4} + 10080x^{3} - 7598x^{2} - 46368x - 33663 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-6.81371\) of defining polynomial
Character \(\chi\) \(=\) 676.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28694 q^{3} +15.8968 q^{5} +1.18417 q^{7} -25.3438 q^{9} +38.9119 q^{11} +20.4582 q^{15} -36.9203 q^{17} +42.9418 q^{19} +1.52395 q^{21} +203.934 q^{23} +127.707 q^{25} -67.3632 q^{27} +58.9916 q^{29} -77.3896 q^{31} +50.0772 q^{33} +18.8244 q^{35} +258.294 q^{37} -169.607 q^{41} +366.335 q^{43} -402.884 q^{45} +249.834 q^{47} -341.598 q^{49} -47.5141 q^{51} +157.459 q^{53} +618.574 q^{55} +55.2634 q^{57} -672.229 q^{59} +580.251 q^{61} -30.0113 q^{63} -180.869 q^{67} +262.451 q^{69} -519.611 q^{71} +982.663 q^{73} +164.351 q^{75} +46.0782 q^{77} -1265.85 q^{79} +597.590 q^{81} -1026.42 q^{83} -586.913 q^{85} +75.9185 q^{87} +1485.05 q^{89} -99.5956 q^{93} +682.635 q^{95} -350.236 q^{97} -986.176 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 140 q^{9} + 176 q^{17} - 40 q^{23} + 84 q^{25} - 432 q^{27} + 968 q^{29} - 80 q^{35} + 1008 q^{43} + 1844 q^{49} + 1808 q^{51} - 1164 q^{53} + 2256 q^{55} + 2448 q^{61} + 3476 q^{69} + 2896 q^{75}+ \cdots + 4800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.28694 0.247671 0.123836 0.992303i \(-0.460480\pi\)
0.123836 + 0.992303i \(0.460480\pi\)
\(4\) 0 0
\(5\) 15.8968 1.42185 0.710925 0.703268i \(-0.248276\pi\)
0.710925 + 0.703268i \(0.248276\pi\)
\(6\) 0 0
\(7\) 1.18417 0.0639389 0.0319695 0.999489i \(-0.489822\pi\)
0.0319695 + 0.999489i \(0.489822\pi\)
\(8\) 0 0
\(9\) −25.3438 −0.938659
\(10\) 0 0
\(11\) 38.9119 1.06658 0.533290 0.845932i \(-0.320955\pi\)
0.533290 + 0.845932i \(0.320955\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 20.4582 0.352151
\(16\) 0 0
\(17\) −36.9203 −0.526734 −0.263367 0.964696i \(-0.584833\pi\)
−0.263367 + 0.964696i \(0.584833\pi\)
\(18\) 0 0
\(19\) 42.9418 0.518501 0.259250 0.965810i \(-0.416525\pi\)
0.259250 + 0.965810i \(0.416525\pi\)
\(20\) 0 0
\(21\) 1.52395 0.0158358
\(22\) 0 0
\(23\) 203.934 1.84884 0.924418 0.381380i \(-0.124551\pi\)
0.924418 + 0.381380i \(0.124551\pi\)
\(24\) 0 0
\(25\) 127.707 1.02166
\(26\) 0 0
\(27\) −67.3632 −0.480150
\(28\) 0 0
\(29\) 58.9916 0.377740 0.188870 0.982002i \(-0.439518\pi\)
0.188870 + 0.982002i \(0.439518\pi\)
\(30\) 0 0
\(31\) −77.3896 −0.448374 −0.224187 0.974546i \(-0.571973\pi\)
−0.224187 + 0.974546i \(0.571973\pi\)
\(32\) 0 0
\(33\) 50.0772 0.264161
\(34\) 0 0
\(35\) 18.8244 0.0909116
\(36\) 0 0
\(37\) 258.294 1.14765 0.573827 0.818976i \(-0.305458\pi\)
0.573827 + 0.818976i \(0.305458\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −169.607 −0.646052 −0.323026 0.946390i \(-0.604700\pi\)
−0.323026 + 0.946390i \(0.604700\pi\)
\(42\) 0 0
\(43\) 366.335 1.29920 0.649600 0.760276i \(-0.274937\pi\)
0.649600 + 0.760276i \(0.274937\pi\)
\(44\) 0 0
\(45\) −402.884 −1.33463
\(46\) 0 0
\(47\) 249.834 0.775362 0.387681 0.921794i \(-0.373276\pi\)
0.387681 + 0.921794i \(0.373276\pi\)
\(48\) 0 0
\(49\) −341.598 −0.995912
\(50\) 0 0
\(51\) −47.5141 −0.130457
\(52\) 0 0
\(53\) 157.459 0.408087 0.204044 0.978962i \(-0.434592\pi\)
0.204044 + 0.978962i \(0.434592\pi\)
\(54\) 0 0
\(55\) 618.574 1.51652
\(56\) 0 0
\(57\) 55.2634 0.128418
\(58\) 0 0
\(59\) −672.229 −1.48334 −0.741668 0.670768i \(-0.765965\pi\)
−0.741668 + 0.670768i \(0.765965\pi\)
\(60\) 0 0
\(61\) 580.251 1.21793 0.608963 0.793199i \(-0.291586\pi\)
0.608963 + 0.793199i \(0.291586\pi\)
\(62\) 0 0
\(63\) −30.0113 −0.0600169
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −180.869 −0.329800 −0.164900 0.986310i \(-0.552730\pi\)
−0.164900 + 0.986310i \(0.552730\pi\)
\(68\) 0 0
\(69\) 262.451 0.457904
\(70\) 0 0
\(71\) −519.611 −0.868541 −0.434271 0.900782i \(-0.642994\pi\)
−0.434271 + 0.900782i \(0.642994\pi\)
\(72\) 0 0
\(73\) 982.663 1.57551 0.787753 0.615991i \(-0.211244\pi\)
0.787753 + 0.615991i \(0.211244\pi\)
\(74\) 0 0
\(75\) 164.351 0.253035
\(76\) 0 0
\(77\) 46.0782 0.0681960
\(78\) 0 0
\(79\) −1265.85 −1.80278 −0.901388 0.433013i \(-0.857450\pi\)
−0.901388 + 0.433013i \(0.857450\pi\)
\(80\) 0 0
\(81\) 597.590 0.819740
\(82\) 0 0
\(83\) −1026.42 −1.35740 −0.678702 0.734414i \(-0.737457\pi\)
−0.678702 + 0.734414i \(0.737457\pi\)
\(84\) 0 0
\(85\) −586.913 −0.748937
\(86\) 0 0
\(87\) 75.9185 0.0935553
\(88\) 0 0
\(89\) 1485.05 1.76871 0.884355 0.466816i \(-0.154599\pi\)
0.884355 + 0.466816i \(0.154599\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −99.5956 −0.111049
\(94\) 0 0
\(95\) 682.635 0.737231
\(96\) 0 0
\(97\) −350.236 −0.366609 −0.183305 0.983056i \(-0.558679\pi\)
−0.183305 + 0.983056i \(0.558679\pi\)
\(98\) 0 0
\(99\) −986.176 −1.00116
\(100\) 0 0
\(101\) 1431.71 1.41050 0.705248 0.708961i \(-0.250836\pi\)
0.705248 + 0.708961i \(0.250836\pi\)
\(102\) 0 0
\(103\) 1492.10 1.42739 0.713695 0.700456i \(-0.247020\pi\)
0.713695 + 0.700456i \(0.247020\pi\)
\(104\) 0 0
\(105\) 24.2258 0.0225162
\(106\) 0 0
\(107\) 1161.82 1.04969 0.524847 0.851197i \(-0.324123\pi\)
0.524847 + 0.851197i \(0.324123\pi\)
\(108\) 0 0
\(109\) 1599.05 1.40515 0.702574 0.711611i \(-0.252034\pi\)
0.702574 + 0.711611i \(0.252034\pi\)
\(110\) 0 0
\(111\) 332.408 0.284241
\(112\) 0 0
\(113\) 374.714 0.311948 0.155974 0.987761i \(-0.450148\pi\)
0.155974 + 0.987761i \(0.450148\pi\)
\(114\) 0 0
\(115\) 3241.90 2.62877
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −43.7197 −0.0336788
\(120\) 0 0
\(121\) 183.138 0.137595
\(122\) 0 0
\(123\) −218.273 −0.160009
\(124\) 0 0
\(125\) 43.0377 0.0307952
\(126\) 0 0
\(127\) 649.296 0.453667 0.226833 0.973934i \(-0.427163\pi\)
0.226833 + 0.973934i \(0.427163\pi\)
\(128\) 0 0
\(129\) 471.450 0.321774
\(130\) 0 0
\(131\) −612.966 −0.408818 −0.204409 0.978886i \(-0.565527\pi\)
−0.204409 + 0.978886i \(0.565527\pi\)
\(132\) 0 0
\(133\) 50.8502 0.0331524
\(134\) 0 0
\(135\) −1070.86 −0.682702
\(136\) 0 0
\(137\) −208.801 −0.130212 −0.0651062 0.997878i \(-0.520739\pi\)
−0.0651062 + 0.997878i \(0.520739\pi\)
\(138\) 0 0
\(139\) −369.589 −0.225526 −0.112763 0.993622i \(-0.535970\pi\)
−0.112763 + 0.993622i \(0.535970\pi\)
\(140\) 0 0
\(141\) 321.521 0.192035
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 937.775 0.537090
\(146\) 0 0
\(147\) −439.615 −0.246659
\(148\) 0 0
\(149\) −990.203 −0.544433 −0.272217 0.962236i \(-0.587757\pi\)
−0.272217 + 0.962236i \(0.587757\pi\)
\(150\) 0 0
\(151\) 2855.12 1.53872 0.769360 0.638816i \(-0.220575\pi\)
0.769360 + 0.638816i \(0.220575\pi\)
\(152\) 0 0
\(153\) 935.700 0.494424
\(154\) 0 0
\(155\) −1230.24 −0.637520
\(156\) 0 0
\(157\) −947.845 −0.481823 −0.240912 0.970547i \(-0.577446\pi\)
−0.240912 + 0.970547i \(0.577446\pi\)
\(158\) 0 0
\(159\) 202.640 0.101071
\(160\) 0 0
\(161\) 241.492 0.118213
\(162\) 0 0
\(163\) −2690.70 −1.29296 −0.646479 0.762932i \(-0.723759\pi\)
−0.646479 + 0.762932i \(0.723759\pi\)
\(164\) 0 0
\(165\) 796.066 0.375598
\(166\) 0 0
\(167\) −1805.83 −0.836760 −0.418380 0.908272i \(-0.637402\pi\)
−0.418380 + 0.908272i \(0.637402\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −1088.31 −0.486695
\(172\) 0 0
\(173\) 354.043 0.155592 0.0777959 0.996969i \(-0.475212\pi\)
0.0777959 + 0.996969i \(0.475212\pi\)
\(174\) 0 0
\(175\) 151.227 0.0653238
\(176\) 0 0
\(177\) −865.117 −0.367380
\(178\) 0 0
\(179\) −2594.18 −1.08323 −0.541615 0.840627i \(-0.682187\pi\)
−0.541615 + 0.840627i \(0.682187\pi\)
\(180\) 0 0
\(181\) 2338.97 0.960522 0.480261 0.877126i \(-0.340542\pi\)
0.480261 + 0.877126i \(0.340542\pi\)
\(182\) 0 0
\(183\) 746.747 0.301645
\(184\) 0 0
\(185\) 4106.04 1.63179
\(186\) 0 0
\(187\) −1436.64 −0.561805
\(188\) 0 0
\(189\) −79.7692 −0.0307003
\(190\) 0 0
\(191\) 30.6008 0.0115927 0.00579633 0.999983i \(-0.498155\pi\)
0.00579633 + 0.999983i \(0.498155\pi\)
\(192\) 0 0
\(193\) −3042.05 −1.13457 −0.567283 0.823523i \(-0.692005\pi\)
−0.567283 + 0.823523i \(0.692005\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4170.80 −1.50841 −0.754205 0.656639i \(-0.771978\pi\)
−0.754205 + 0.656639i \(0.771978\pi\)
\(198\) 0 0
\(199\) 4631.60 1.64988 0.824938 0.565223i \(-0.191210\pi\)
0.824938 + 0.565223i \(0.191210\pi\)
\(200\) 0 0
\(201\) −232.767 −0.0816820
\(202\) 0 0
\(203\) 69.8558 0.0241523
\(204\) 0 0
\(205\) −2696.20 −0.918590
\(206\) 0 0
\(207\) −5168.47 −1.73543
\(208\) 0 0
\(209\) 1670.95 0.553023
\(210\) 0 0
\(211\) −5403.64 −1.76304 −0.881522 0.472143i \(-0.843480\pi\)
−0.881522 + 0.472143i \(0.843480\pi\)
\(212\) 0 0
\(213\) −668.707 −0.215113
\(214\) 0 0
\(215\) 5823.54 1.84727
\(216\) 0 0
\(217\) −91.6421 −0.0286685
\(218\) 0 0
\(219\) 1264.63 0.390208
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4988.09 1.49788 0.748941 0.662637i \(-0.230563\pi\)
0.748941 + 0.662637i \(0.230563\pi\)
\(224\) 0 0
\(225\) −3236.59 −0.958989
\(226\) 0 0
\(227\) −2536.58 −0.741667 −0.370834 0.928699i \(-0.620928\pi\)
−0.370834 + 0.928699i \(0.620928\pi\)
\(228\) 0 0
\(229\) −747.558 −0.215721 −0.107860 0.994166i \(-0.534400\pi\)
−0.107860 + 0.994166i \(0.534400\pi\)
\(230\) 0 0
\(231\) 59.2997 0.0168902
\(232\) 0 0
\(233\) 1661.81 0.467248 0.233624 0.972327i \(-0.424942\pi\)
0.233624 + 0.972327i \(0.424942\pi\)
\(234\) 0 0
\(235\) 3971.55 1.10245
\(236\) 0 0
\(237\) −1629.07 −0.446496
\(238\) 0 0
\(239\) 1995.23 0.540002 0.270001 0.962860i \(-0.412976\pi\)
0.270001 + 0.962860i \(0.412976\pi\)
\(240\) 0 0
\(241\) −1304.22 −0.348598 −0.174299 0.984693i \(-0.555766\pi\)
−0.174299 + 0.984693i \(0.555766\pi\)
\(242\) 0 0
\(243\) 2587.87 0.683176
\(244\) 0 0
\(245\) −5430.30 −1.41604
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1320.94 −0.336190
\(250\) 0 0
\(251\) −5057.63 −1.27185 −0.635926 0.771750i \(-0.719381\pi\)
−0.635926 + 0.771750i \(0.719381\pi\)
\(252\) 0 0
\(253\) 7935.48 1.97193
\(254\) 0 0
\(255\) −755.321 −0.185490
\(256\) 0 0
\(257\) 4451.31 1.08041 0.540204 0.841534i \(-0.318347\pi\)
0.540204 + 0.841534i \(0.318347\pi\)
\(258\) 0 0
\(259\) 305.863 0.0733798
\(260\) 0 0
\(261\) −1495.07 −0.354569
\(262\) 0 0
\(263\) −4575.88 −1.07286 −0.536428 0.843946i \(-0.680227\pi\)
−0.536428 + 0.843946i \(0.680227\pi\)
\(264\) 0 0
\(265\) 2503.09 0.580239
\(266\) 0 0
\(267\) 1911.17 0.438058
\(268\) 0 0
\(269\) −5411.32 −1.22652 −0.613260 0.789881i \(-0.710142\pi\)
−0.613260 + 0.789881i \(0.710142\pi\)
\(270\) 0 0
\(271\) −372.296 −0.0834516 −0.0417258 0.999129i \(-0.513286\pi\)
−0.0417258 + 0.999129i \(0.513286\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4969.34 1.08968
\(276\) 0 0
\(277\) −5907.85 −1.28147 −0.640737 0.767761i \(-0.721371\pi\)
−0.640737 + 0.767761i \(0.721371\pi\)
\(278\) 0 0
\(279\) 1961.35 0.420870
\(280\) 0 0
\(281\) −3598.50 −0.763946 −0.381973 0.924174i \(-0.624755\pi\)
−0.381973 + 0.924174i \(0.624755\pi\)
\(282\) 0 0
\(283\) −3413.30 −0.716960 −0.358480 0.933537i \(-0.616705\pi\)
−0.358480 + 0.933537i \(0.616705\pi\)
\(284\) 0 0
\(285\) 878.509 0.182591
\(286\) 0 0
\(287\) −200.843 −0.0413079
\(288\) 0 0
\(289\) −3549.89 −0.722551
\(290\) 0 0
\(291\) −450.732 −0.0907985
\(292\) 0 0
\(293\) 1127.82 0.224873 0.112436 0.993659i \(-0.464135\pi\)
0.112436 + 0.993659i \(0.464135\pi\)
\(294\) 0 0
\(295\) −10686.3 −2.10908
\(296\) 0 0
\(297\) −2621.23 −0.512119
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 433.801 0.0830694
\(302\) 0 0
\(303\) 1842.52 0.349339
\(304\) 0 0
\(305\) 9224.11 1.73171
\(306\) 0 0
\(307\) −7338.57 −1.36428 −0.682141 0.731221i \(-0.738951\pi\)
−0.682141 + 0.731221i \(0.738951\pi\)
\(308\) 0 0
\(309\) 1920.24 0.353524
\(310\) 0 0
\(311\) −7550.86 −1.37675 −0.688376 0.725354i \(-0.741676\pi\)
−0.688376 + 0.725354i \(0.741676\pi\)
\(312\) 0 0
\(313\) −1262.18 −0.227932 −0.113966 0.993485i \(-0.536356\pi\)
−0.113966 + 0.993485i \(0.536356\pi\)
\(314\) 0 0
\(315\) −477.082 −0.0853350
\(316\) 0 0
\(317\) 4085.51 0.723865 0.361933 0.932204i \(-0.382117\pi\)
0.361933 + 0.932204i \(0.382117\pi\)
\(318\) 0 0
\(319\) 2295.48 0.402890
\(320\) 0 0
\(321\) 1495.19 0.259979
\(322\) 0 0
\(323\) −1585.42 −0.273112
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2057.88 0.348015
\(328\) 0 0
\(329\) 295.845 0.0495758
\(330\) 0 0
\(331\) −4515.66 −0.749859 −0.374930 0.927053i \(-0.622333\pi\)
−0.374930 + 0.927053i \(0.622333\pi\)
\(332\) 0 0
\(333\) −6546.14 −1.07726
\(334\) 0 0
\(335\) −2875.23 −0.468927
\(336\) 0 0
\(337\) 123.448 0.0199545 0.00997723 0.999950i \(-0.496824\pi\)
0.00997723 + 0.999950i \(0.496824\pi\)
\(338\) 0 0
\(339\) 482.233 0.0772605
\(340\) 0 0
\(341\) −3011.38 −0.478227
\(342\) 0 0
\(343\) −810.677 −0.127616
\(344\) 0 0
\(345\) 4172.12 0.651070
\(346\) 0 0
\(347\) 2452.90 0.379478 0.189739 0.981835i \(-0.439236\pi\)
0.189739 + 0.981835i \(0.439236\pi\)
\(348\) 0 0
\(349\) −8778.28 −1.34639 −0.673196 0.739464i \(-0.735079\pi\)
−0.673196 + 0.739464i \(0.735079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3920.87 −0.591180 −0.295590 0.955315i \(-0.595516\pi\)
−0.295590 + 0.955315i \(0.595516\pi\)
\(354\) 0 0
\(355\) −8260.13 −1.23494
\(356\) 0 0
\(357\) −56.2646 −0.00834128
\(358\) 0 0
\(359\) 9182.02 1.34988 0.674942 0.737870i \(-0.264168\pi\)
0.674942 + 0.737870i \(0.264168\pi\)
\(360\) 0 0
\(361\) −5015.00 −0.731157
\(362\) 0 0
\(363\) 235.688 0.0340782
\(364\) 0 0
\(365\) 15621.2 2.24013
\(366\) 0 0
\(367\) −8415.78 −1.19700 −0.598502 0.801121i \(-0.704237\pi\)
−0.598502 + 0.801121i \(0.704237\pi\)
\(368\) 0 0
\(369\) 4298.48 0.606423
\(370\) 0 0
\(371\) 186.457 0.0260927
\(372\) 0 0
\(373\) 12424.4 1.72470 0.862350 0.506313i \(-0.168992\pi\)
0.862350 + 0.506313i \(0.168992\pi\)
\(374\) 0 0
\(375\) 55.3868 0.00762710
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1197.13 −0.162249 −0.0811246 0.996704i \(-0.525851\pi\)
−0.0811246 + 0.996704i \(0.525851\pi\)
\(380\) 0 0
\(381\) 835.603 0.112360
\(382\) 0 0
\(383\) 898.733 0.119904 0.0599519 0.998201i \(-0.480905\pi\)
0.0599519 + 0.998201i \(0.480905\pi\)
\(384\) 0 0
\(385\) 732.494 0.0969646
\(386\) 0 0
\(387\) −9284.32 −1.21951
\(388\) 0 0
\(389\) 1927.09 0.251175 0.125588 0.992083i \(-0.459918\pi\)
0.125588 + 0.992083i \(0.459918\pi\)
\(390\) 0 0
\(391\) −7529.31 −0.973846
\(392\) 0 0
\(393\) −788.850 −0.101252
\(394\) 0 0
\(395\) −20122.9 −2.56328
\(396\) 0 0
\(397\) 2171.32 0.274497 0.137248 0.990537i \(-0.456174\pi\)
0.137248 + 0.990537i \(0.456174\pi\)
\(398\) 0 0
\(399\) 65.4410 0.00821090
\(400\) 0 0
\(401\) −10451.7 −1.30158 −0.650789 0.759259i \(-0.725562\pi\)
−0.650789 + 0.759259i \(0.725562\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 9499.75 1.16555
\(406\) 0 0
\(407\) 10050.7 1.22407
\(408\) 0 0
\(409\) −4319.91 −0.522263 −0.261132 0.965303i \(-0.584096\pi\)
−0.261132 + 0.965303i \(0.584096\pi\)
\(410\) 0 0
\(411\) −268.714 −0.0322499
\(412\) 0 0
\(413\) −796.031 −0.0948429
\(414\) 0 0
\(415\) −16316.8 −1.93002
\(416\) 0 0
\(417\) −475.639 −0.0558564
\(418\) 0 0
\(419\) −2143.72 −0.249946 −0.124973 0.992160i \(-0.539884\pi\)
−0.124973 + 0.992160i \(0.539884\pi\)
\(420\) 0 0
\(421\) 11308.5 1.30912 0.654561 0.756009i \(-0.272853\pi\)
0.654561 + 0.756009i \(0.272853\pi\)
\(422\) 0 0
\(423\) −6331.74 −0.727801
\(424\) 0 0
\(425\) −4714.99 −0.538143
\(426\) 0 0
\(427\) 687.113 0.0778729
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8276.70 −0.924999 −0.462499 0.886620i \(-0.653047\pi\)
−0.462499 + 0.886620i \(0.653047\pi\)
\(432\) 0 0
\(433\) 313.808 0.0348283 0.0174142 0.999848i \(-0.494457\pi\)
0.0174142 + 0.999848i \(0.494457\pi\)
\(434\) 0 0
\(435\) 1206.86 0.133022
\(436\) 0 0
\(437\) 8757.30 0.958623
\(438\) 0 0
\(439\) 4798.46 0.521681 0.260840 0.965382i \(-0.416000\pi\)
0.260840 + 0.965382i \(0.416000\pi\)
\(440\) 0 0
\(441\) 8657.38 0.934822
\(442\) 0 0
\(443\) −871.652 −0.0934841 −0.0467420 0.998907i \(-0.514884\pi\)
−0.0467420 + 0.998907i \(0.514884\pi\)
\(444\) 0 0
\(445\) 23607.5 2.51484
\(446\) 0 0
\(447\) −1274.33 −0.134840
\(448\) 0 0
\(449\) −7970.06 −0.837707 −0.418853 0.908054i \(-0.637568\pi\)
−0.418853 + 0.908054i \(0.637568\pi\)
\(450\) 0 0
\(451\) −6599.73 −0.689067
\(452\) 0 0
\(453\) 3674.37 0.381097
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9041.34 −0.925462 −0.462731 0.886499i \(-0.653130\pi\)
−0.462731 + 0.886499i \(0.653130\pi\)
\(458\) 0 0
\(459\) 2487.07 0.252912
\(460\) 0 0
\(461\) −2296.87 −0.232052 −0.116026 0.993246i \(-0.537016\pi\)
−0.116026 + 0.993246i \(0.537016\pi\)
\(462\) 0 0
\(463\) −10243.3 −1.02817 −0.514087 0.857738i \(-0.671869\pi\)
−0.514087 + 0.857738i \(0.671869\pi\)
\(464\) 0 0
\(465\) −1583.25 −0.157895
\(466\) 0 0
\(467\) 11561.2 1.14558 0.572792 0.819701i \(-0.305860\pi\)
0.572792 + 0.819701i \(0.305860\pi\)
\(468\) 0 0
\(469\) −214.178 −0.0210871
\(470\) 0 0
\(471\) −1219.82 −0.119334
\(472\) 0 0
\(473\) 14254.8 1.38570
\(474\) 0 0
\(475\) 5483.98 0.529731
\(476\) 0 0
\(477\) −3990.60 −0.383055
\(478\) 0 0
\(479\) 4008.98 0.382412 0.191206 0.981550i \(-0.438760\pi\)
0.191206 + 0.981550i \(0.438760\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 310.785 0.0292779
\(484\) 0 0
\(485\) −5567.62 −0.521263
\(486\) 0 0
\(487\) 2963.97 0.275791 0.137896 0.990447i \(-0.455966\pi\)
0.137896 + 0.990447i \(0.455966\pi\)
\(488\) 0 0
\(489\) −3462.77 −0.320228
\(490\) 0 0
\(491\) 17955.2 1.65032 0.825160 0.564900i \(-0.191085\pi\)
0.825160 + 0.564900i \(0.191085\pi\)
\(492\) 0 0
\(493\) −2177.99 −0.198969
\(494\) 0 0
\(495\) −15677.0 −1.42349
\(496\) 0 0
\(497\) −615.305 −0.0555336
\(498\) 0 0
\(499\) −15327.6 −1.37507 −0.687533 0.726153i \(-0.741306\pi\)
−0.687533 + 0.726153i \(0.741306\pi\)
\(500\) 0 0
\(501\) −2323.98 −0.207241
\(502\) 0 0
\(503\) −12826.7 −1.13701 −0.568505 0.822680i \(-0.692478\pi\)
−0.568505 + 0.822680i \(0.692478\pi\)
\(504\) 0 0
\(505\) 22759.5 2.00551
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2405.07 0.209436 0.104718 0.994502i \(-0.466606\pi\)
0.104718 + 0.994502i \(0.466606\pi\)
\(510\) 0 0
\(511\) 1163.64 0.100736
\(512\) 0 0
\(513\) −2892.69 −0.248958
\(514\) 0 0
\(515\) 23719.6 2.02954
\(516\) 0 0
\(517\) 9721.52 0.826986
\(518\) 0 0
\(519\) 455.631 0.0385356
\(520\) 0 0
\(521\) 13258.4 1.11490 0.557450 0.830210i \(-0.311780\pi\)
0.557450 + 0.830210i \(0.311780\pi\)
\(522\) 0 0
\(523\) 4514.94 0.377484 0.188742 0.982027i \(-0.439559\pi\)
0.188742 + 0.982027i \(0.439559\pi\)
\(524\) 0 0
\(525\) 194.619 0.0161788
\(526\) 0 0
\(527\) 2857.24 0.236174
\(528\) 0 0
\(529\) 29422.2 2.41820
\(530\) 0 0
\(531\) 17036.8 1.39235
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 18469.2 1.49251
\(536\) 0 0
\(537\) −3338.55 −0.268285
\(538\) 0 0
\(539\) −13292.2 −1.06222
\(540\) 0 0
\(541\) −7456.65 −0.592581 −0.296291 0.955098i \(-0.595750\pi\)
−0.296291 + 0.955098i \(0.595750\pi\)
\(542\) 0 0
\(543\) 3010.11 0.237894
\(544\) 0 0
\(545\) 25419.7 1.99791
\(546\) 0 0
\(547\) −6132.43 −0.479349 −0.239674 0.970853i \(-0.577041\pi\)
−0.239674 + 0.970853i \(0.577041\pi\)
\(548\) 0 0
\(549\) −14705.8 −1.14322
\(550\) 0 0
\(551\) 2533.20 0.195859
\(552\) 0 0
\(553\) −1498.98 −0.115268
\(554\) 0 0
\(555\) 5284.21 0.404148
\(556\) 0 0
\(557\) 10428.8 0.793327 0.396664 0.917964i \(-0.370168\pi\)
0.396664 + 0.917964i \(0.370168\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1848.87 −0.139143
\(562\) 0 0
\(563\) 22784.5 1.70560 0.852801 0.522236i \(-0.174902\pi\)
0.852801 + 0.522236i \(0.174902\pi\)
\(564\) 0 0
\(565\) 5956.74 0.443543
\(566\) 0 0
\(567\) 707.646 0.0524133
\(568\) 0 0
\(569\) 12879.5 0.948922 0.474461 0.880276i \(-0.342643\pi\)
0.474461 + 0.880276i \(0.342643\pi\)
\(570\) 0 0
\(571\) −6071.36 −0.444971 −0.222485 0.974936i \(-0.571417\pi\)
−0.222485 + 0.974936i \(0.571417\pi\)
\(572\) 0 0
\(573\) 39.3813 0.00287117
\(574\) 0 0
\(575\) 26043.9 1.88888
\(576\) 0 0
\(577\) −2429.06 −0.175257 −0.0876283 0.996153i \(-0.527929\pi\)
−0.0876283 + 0.996153i \(0.527929\pi\)
\(578\) 0 0
\(579\) −3914.92 −0.280999
\(580\) 0 0
\(581\) −1215.45 −0.0867909
\(582\) 0 0
\(583\) 6127.02 0.435258
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14624.2 −1.02829 −0.514144 0.857704i \(-0.671890\pi\)
−0.514144 + 0.857704i \(0.671890\pi\)
\(588\) 0 0
\(589\) −3323.25 −0.232482
\(590\) 0 0
\(591\) −5367.55 −0.373590
\(592\) 0 0
\(593\) 15282.4 1.05830 0.529149 0.848529i \(-0.322511\pi\)
0.529149 + 0.848529i \(0.322511\pi\)
\(594\) 0 0
\(595\) −695.003 −0.0478863
\(596\) 0 0
\(597\) 5960.58 0.408627
\(598\) 0 0
\(599\) −11067.6 −0.754940 −0.377470 0.926022i \(-0.623206\pi\)
−0.377470 + 0.926022i \(0.623206\pi\)
\(600\) 0 0
\(601\) 18287.2 1.24118 0.620590 0.784135i \(-0.286893\pi\)
0.620590 + 0.784135i \(0.286893\pi\)
\(602\) 0 0
\(603\) 4583.90 0.309570
\(604\) 0 0
\(605\) 2911.31 0.195639
\(606\) 0 0
\(607\) 2762.58 0.184728 0.0923638 0.995725i \(-0.470558\pi\)
0.0923638 + 0.995725i \(0.470558\pi\)
\(608\) 0 0
\(609\) 89.9000 0.00598183
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −26080.1 −1.71837 −0.859187 0.511661i \(-0.829030\pi\)
−0.859187 + 0.511661i \(0.829030\pi\)
\(614\) 0 0
\(615\) −3469.84 −0.227508
\(616\) 0 0
\(617\) −9169.83 −0.598320 −0.299160 0.954203i \(-0.596706\pi\)
−0.299160 + 0.954203i \(0.596706\pi\)
\(618\) 0 0
\(619\) −17765.0 −1.15353 −0.576767 0.816909i \(-0.695686\pi\)
−0.576767 + 0.816909i \(0.695686\pi\)
\(620\) 0 0
\(621\) −13737.7 −0.887719
\(622\) 0 0
\(623\) 1758.55 0.113089
\(624\) 0 0
\(625\) −15279.3 −0.977872
\(626\) 0 0
\(627\) 2150.40 0.136968
\(628\) 0 0
\(629\) −9536.28 −0.604509
\(630\) 0 0
\(631\) −29148.9 −1.83898 −0.919492 0.393110i \(-0.871399\pi\)
−0.919492 + 0.393110i \(0.871399\pi\)
\(632\) 0 0
\(633\) −6954.15 −0.436655
\(634\) 0 0
\(635\) 10321.7 0.645046
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 13168.9 0.815264
\(640\) 0 0
\(641\) 24613.4 1.51665 0.758323 0.651879i \(-0.226019\pi\)
0.758323 + 0.651879i \(0.226019\pi\)
\(642\) 0 0
\(643\) −27133.6 −1.66414 −0.832071 0.554668i \(-0.812845\pi\)
−0.832071 + 0.554668i \(0.812845\pi\)
\(644\) 0 0
\(645\) 7494.54 0.457515
\(646\) 0 0
\(647\) −23734.3 −1.44218 −0.721092 0.692839i \(-0.756360\pi\)
−0.721092 + 0.692839i \(0.756360\pi\)
\(648\) 0 0
\(649\) −26157.7 −1.58210
\(650\) 0 0
\(651\) −117.938 −0.00710037
\(652\) 0 0
\(653\) 19376.4 1.16119 0.580596 0.814192i \(-0.302819\pi\)
0.580596 + 0.814192i \(0.302819\pi\)
\(654\) 0 0
\(655\) −9744.19 −0.581278
\(656\) 0 0
\(657\) −24904.4 −1.47886
\(658\) 0 0
\(659\) 11271.6 0.666279 0.333139 0.942878i \(-0.391892\pi\)
0.333139 + 0.942878i \(0.391892\pi\)
\(660\) 0 0
\(661\) −8384.13 −0.493351 −0.246675 0.969098i \(-0.579338\pi\)
−0.246675 + 0.969098i \(0.579338\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 808.353 0.0471377
\(666\) 0 0
\(667\) 12030.4 0.698379
\(668\) 0 0
\(669\) 6419.37 0.370982
\(670\) 0 0
\(671\) 22578.7 1.29902
\(672\) 0 0
\(673\) 5407.30 0.309712 0.154856 0.987937i \(-0.450509\pi\)
0.154856 + 0.987937i \(0.450509\pi\)
\(674\) 0 0
\(675\) −8602.77 −0.490549
\(676\) 0 0
\(677\) −10090.8 −0.572854 −0.286427 0.958102i \(-0.592468\pi\)
−0.286427 + 0.958102i \(0.592468\pi\)
\(678\) 0 0
\(679\) −414.737 −0.0234406
\(680\) 0 0
\(681\) −3264.41 −0.183690
\(682\) 0 0
\(683\) 13234.6 0.741444 0.370722 0.928744i \(-0.379110\pi\)
0.370722 + 0.928744i \(0.379110\pi\)
\(684\) 0 0
\(685\) −3319.27 −0.185143
\(686\) 0 0
\(687\) −962.061 −0.0534278
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2778.75 0.152979 0.0764895 0.997070i \(-0.475629\pi\)
0.0764895 + 0.997070i \(0.475629\pi\)
\(692\) 0 0
\(693\) −1167.80 −0.0640128
\(694\) 0 0
\(695\) −5875.28 −0.320665
\(696\) 0 0
\(697\) 6261.93 0.340298
\(698\) 0 0
\(699\) 2138.65 0.115724
\(700\) 0 0
\(701\) 19737.6 1.06345 0.531725 0.846917i \(-0.321544\pi\)
0.531725 + 0.846917i \(0.321544\pi\)
\(702\) 0 0
\(703\) 11091.6 0.595060
\(704\) 0 0
\(705\) 5111.14 0.273045
\(706\) 0 0
\(707\) 1695.38 0.0901856
\(708\) 0 0
\(709\) −6053.73 −0.320667 −0.160333 0.987063i \(-0.551257\pi\)
−0.160333 + 0.987063i \(0.551257\pi\)
\(710\) 0 0
\(711\) 32081.4 1.69219
\(712\) 0 0
\(713\) −15782.4 −0.828969
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2567.73 0.133743
\(718\) 0 0
\(719\) −13757.6 −0.713590 −0.356795 0.934183i \(-0.616131\pi\)
−0.356795 + 0.934183i \(0.616131\pi\)
\(720\) 0 0
\(721\) 1766.90 0.0912658
\(722\) 0 0
\(723\) −1678.45 −0.0863377
\(724\) 0 0
\(725\) 7533.66 0.385921
\(726\) 0 0
\(727\) 18384.8 0.937903 0.468951 0.883224i \(-0.344632\pi\)
0.468951 + 0.883224i \(0.344632\pi\)
\(728\) 0 0
\(729\) −12804.5 −0.650537
\(730\) 0 0
\(731\) −13525.2 −0.684333
\(732\) 0 0
\(733\) 7848.53 0.395487 0.197744 0.980254i \(-0.436639\pi\)
0.197744 + 0.980254i \(0.436639\pi\)
\(734\) 0 0
\(735\) −6988.46 −0.350712
\(736\) 0 0
\(737\) −7037.95 −0.351759
\(738\) 0 0
\(739\) 16080.1 0.800430 0.400215 0.916421i \(-0.368935\pi\)
0.400215 + 0.916421i \(0.368935\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9383.70 −0.463331 −0.231665 0.972796i \(-0.574417\pi\)
−0.231665 + 0.972796i \(0.574417\pi\)
\(744\) 0 0
\(745\) −15741.0 −0.774103
\(746\) 0 0
\(747\) 26013.4 1.27414
\(748\) 0 0
\(749\) 1375.79 0.0671163
\(750\) 0 0
\(751\) −8110.58 −0.394087 −0.197043 0.980395i \(-0.563134\pi\)
−0.197043 + 0.980395i \(0.563134\pi\)
\(752\) 0 0
\(753\) −6508.85 −0.315001
\(754\) 0 0
\(755\) 45387.3 2.18783
\(756\) 0 0
\(757\) −25980.7 −1.24740 −0.623701 0.781663i \(-0.714372\pi\)
−0.623701 + 0.781663i \(0.714372\pi\)
\(758\) 0 0
\(759\) 10212.5 0.488391
\(760\) 0 0
\(761\) 30759.0 1.46520 0.732598 0.680662i \(-0.238308\pi\)
0.732598 + 0.680662i \(0.238308\pi\)
\(762\) 0 0
\(763\) 1893.54 0.0898437
\(764\) 0 0
\(765\) 14874.6 0.702997
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 18655.4 0.874814 0.437407 0.899264i \(-0.355897\pi\)
0.437407 + 0.899264i \(0.355897\pi\)
\(770\) 0 0
\(771\) 5728.56 0.267586
\(772\) 0 0
\(773\) −16955.2 −0.788920 −0.394460 0.918913i \(-0.629068\pi\)
−0.394460 + 0.918913i \(0.629068\pi\)
\(774\) 0 0
\(775\) −9883.22 −0.458085
\(776\) 0 0
\(777\) 393.626 0.0181741
\(778\) 0 0
\(779\) −7283.22 −0.334979
\(780\) 0 0
\(781\) −20219.1 −0.926370
\(782\) 0 0
\(783\) −3973.86 −0.181372
\(784\) 0 0
\(785\) −15067.7 −0.685081
\(786\) 0 0
\(787\) 27338.4 1.23826 0.619129 0.785289i \(-0.287486\pi\)
0.619129 + 0.785289i \(0.287486\pi\)
\(788\) 0 0
\(789\) −5888.87 −0.265715
\(790\) 0 0
\(791\) 443.723 0.0199456
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 3221.31 0.143709
\(796\) 0 0
\(797\) 17372.2 0.772090 0.386045 0.922480i \(-0.373841\pi\)
0.386045 + 0.922480i \(0.373841\pi\)
\(798\) 0 0
\(799\) −9223.94 −0.408410
\(800\) 0 0
\(801\) −37636.8 −1.66021
\(802\) 0 0
\(803\) 38237.3 1.68041
\(804\) 0 0
\(805\) 3838.94 0.168081
\(806\) 0 0
\(807\) −6964.03 −0.303774
\(808\) 0 0
\(809\) 25492.6 1.10788 0.553939 0.832557i \(-0.313124\pi\)
0.553939 + 0.832557i \(0.313124\pi\)
\(810\) 0 0
\(811\) 7742.96 0.335255 0.167628 0.985850i \(-0.446389\pi\)
0.167628 + 0.985850i \(0.446389\pi\)
\(812\) 0 0
\(813\) −479.122 −0.0206686
\(814\) 0 0
\(815\) −42773.5 −1.83839
\(816\) 0 0
\(817\) 15731.1 0.673636
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13490.6 −0.573476 −0.286738 0.958009i \(-0.592571\pi\)
−0.286738 + 0.958009i \(0.592571\pi\)
\(822\) 0 0
\(823\) −33100.3 −1.40195 −0.700975 0.713186i \(-0.747252\pi\)
−0.700975 + 0.713186i \(0.747252\pi\)
\(824\) 0 0
\(825\) 6395.23 0.269883
\(826\) 0 0
\(827\) 5211.34 0.219125 0.109562 0.993980i \(-0.465055\pi\)
0.109562 + 0.993980i \(0.465055\pi\)
\(828\) 0 0
\(829\) 14099.9 0.590725 0.295363 0.955385i \(-0.404560\pi\)
0.295363 + 0.955385i \(0.404560\pi\)
\(830\) 0 0
\(831\) −7603.03 −0.317384
\(832\) 0 0
\(833\) 12611.9 0.524581
\(834\) 0 0
\(835\) −28706.8 −1.18975
\(836\) 0 0
\(837\) 5213.21 0.215287
\(838\) 0 0
\(839\) −7315.45 −0.301022 −0.150511 0.988608i \(-0.548092\pi\)
−0.150511 + 0.988608i \(0.548092\pi\)
\(840\) 0 0
\(841\) −20909.0 −0.857313
\(842\) 0 0
\(843\) −4631.05 −0.189207
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 216.866 0.00879765
\(848\) 0 0
\(849\) −4392.70 −0.177570
\(850\) 0 0
\(851\) 52674.9 2.12183
\(852\) 0 0
\(853\) −24221.1 −0.972234 −0.486117 0.873894i \(-0.661587\pi\)
−0.486117 + 0.873894i \(0.661587\pi\)
\(854\) 0 0
\(855\) −17300.6 −0.692008
\(856\) 0 0
\(857\) 9191.63 0.366371 0.183186 0.983078i \(-0.441359\pi\)
0.183186 + 0.983078i \(0.441359\pi\)
\(858\) 0 0
\(859\) −1899.06 −0.0754309 −0.0377155 0.999289i \(-0.512008\pi\)
−0.0377155 + 0.999289i \(0.512008\pi\)
\(860\) 0 0
\(861\) −258.472 −0.0102308
\(862\) 0 0
\(863\) 18688.4 0.737149 0.368574 0.929598i \(-0.379846\pi\)
0.368574 + 0.929598i \(0.379846\pi\)
\(864\) 0 0
\(865\) 5628.14 0.221228
\(866\) 0 0
\(867\) −4568.49 −0.178955
\(868\) 0 0
\(869\) −49256.7 −1.92281
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8876.31 0.344121
\(874\) 0 0
\(875\) 50.9637 0.00196902
\(876\) 0 0
\(877\) 30018.6 1.15582 0.577910 0.816100i \(-0.303868\pi\)
0.577910 + 0.816100i \(0.303868\pi\)
\(878\) 0 0
\(879\) 1451.43 0.0556945
\(880\) 0 0
\(881\) 11938.3 0.456539 0.228270 0.973598i \(-0.426693\pi\)
0.228270 + 0.973598i \(0.426693\pi\)
\(882\) 0 0
\(883\) 22169.9 0.844933 0.422467 0.906379i \(-0.361164\pi\)
0.422467 + 0.906379i \(0.361164\pi\)
\(884\) 0 0
\(885\) −13752.6 −0.522359
\(886\) 0 0
\(887\) −728.777 −0.0275873 −0.0137936 0.999905i \(-0.504391\pi\)
−0.0137936 + 0.999905i \(0.504391\pi\)
\(888\) 0 0
\(889\) 768.874 0.0290070
\(890\) 0 0
\(891\) 23253.4 0.874318
\(892\) 0 0
\(893\) 10728.3 0.402026
\(894\) 0 0
\(895\) −41239.1 −1.54019
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4565.33 −0.169369
\(900\) 0 0
\(901\) −5813.42 −0.214954
\(902\) 0 0
\(903\) 558.275 0.0205739
\(904\) 0 0
\(905\) 37182.1 1.36572
\(906\) 0 0
\(907\) −39131.3 −1.43256 −0.716280 0.697813i \(-0.754157\pi\)
−0.716280 + 0.697813i \(0.754157\pi\)
\(908\) 0 0
\(909\) −36284.9 −1.32397
\(910\) 0 0
\(911\) 40955.0 1.48946 0.744730 0.667366i \(-0.232578\pi\)
0.744730 + 0.667366i \(0.232578\pi\)
\(912\) 0 0
\(913\) −39940.1 −1.44778
\(914\) 0 0
\(915\) 11870.9 0.428895
\(916\) 0 0
\(917\) −725.854 −0.0261394
\(918\) 0 0
\(919\) −12567.8 −0.451114 −0.225557 0.974230i \(-0.572420\pi\)
−0.225557 + 0.974230i \(0.572420\pi\)
\(920\) 0 0
\(921\) −9444.28 −0.337893
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 32986.0 1.17251
\(926\) 0 0
\(927\) −37815.5 −1.33983
\(928\) 0 0
\(929\) −9858.84 −0.348179 −0.174089 0.984730i \(-0.555698\pi\)
−0.174089 + 0.984730i \(0.555698\pi\)
\(930\) 0 0
\(931\) −14668.8 −0.516381
\(932\) 0 0
\(933\) −9717.49 −0.340982
\(934\) 0 0
\(935\) −22837.9 −0.798802
\(936\) 0 0
\(937\) 14064.4 0.490355 0.245177 0.969478i \(-0.421154\pi\)
0.245177 + 0.969478i \(0.421154\pi\)
\(938\) 0 0
\(939\) −1624.35 −0.0564523
\(940\) 0 0
\(941\) −37759.0 −1.30808 −0.654042 0.756458i \(-0.726928\pi\)
−0.654042 + 0.756458i \(0.726928\pi\)
\(942\) 0 0
\(943\) −34588.7 −1.19444
\(944\) 0 0
\(945\) −1268.07 −0.0436512
\(946\) 0 0
\(947\) −42748.0 −1.46687 −0.733433 0.679761i \(-0.762083\pi\)
−0.733433 + 0.679761i \(0.762083\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 5257.80 0.179281
\(952\) 0 0
\(953\) −29589.2 −1.00576 −0.502879 0.864357i \(-0.667726\pi\)
−0.502879 + 0.864357i \(0.667726\pi\)
\(954\) 0 0
\(955\) 486.454 0.0164830
\(956\) 0 0
\(957\) 2954.13 0.0997843
\(958\) 0 0
\(959\) −247.255 −0.00832565
\(960\) 0 0
\(961\) −23801.9 −0.798961
\(962\) 0 0
\(963\) −29444.9 −0.985305
\(964\) 0 0
\(965\) −48358.7 −1.61318
\(966\) 0 0
\(967\) 7140.75 0.237468 0.118734 0.992926i \(-0.462117\pi\)
0.118734 + 0.992926i \(0.462117\pi\)
\(968\) 0 0
\(969\) −2040.34 −0.0676420
\(970\) 0 0
\(971\) 34866.5 1.15234 0.576169 0.817331i \(-0.304547\pi\)
0.576169 + 0.817331i \(0.304547\pi\)
\(972\) 0 0
\(973\) −437.655 −0.0144199
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32240.8 −1.05576 −0.527878 0.849320i \(-0.677012\pi\)
−0.527878 + 0.849320i \(0.677012\pi\)
\(978\) 0 0
\(979\) 57786.2 1.88647
\(980\) 0 0
\(981\) −40526.0 −1.31896
\(982\) 0 0
\(983\) 16467.0 0.534298 0.267149 0.963655i \(-0.413918\pi\)
0.267149 + 0.963655i \(0.413918\pi\)
\(984\) 0 0
\(985\) −66302.2 −2.14473
\(986\) 0 0
\(987\) 380.734 0.0122785
\(988\) 0 0
\(989\) 74708.3 2.40201
\(990\) 0 0
\(991\) 12348.7 0.395833 0.197916 0.980219i \(-0.436583\pi\)
0.197916 + 0.980219i \(0.436583\pi\)
\(992\) 0 0
\(993\) −5811.38 −0.185719
\(994\) 0 0
\(995\) 73627.5 2.34588
\(996\) 0 0
\(997\) 3884.94 0.123408 0.0617038 0.998095i \(-0.480347\pi\)
0.0617038 + 0.998095i \(0.480347\pi\)
\(998\) 0 0
\(999\) −17399.5 −0.551047
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.4.a.g.1.6 8
13.2 odd 12 676.4.h.e.485.2 8
13.3 even 3 676.4.e.h.529.4 16
13.4 even 6 676.4.e.h.653.3 16
13.5 odd 4 676.4.d.d.337.5 8
13.6 odd 12 52.4.h.a.49.2 yes 8
13.7 odd 12 676.4.h.e.361.2 8
13.8 odd 4 676.4.d.d.337.6 8
13.9 even 3 676.4.e.h.653.4 16
13.10 even 6 676.4.e.h.529.3 16
13.11 odd 12 52.4.h.a.17.2 8
13.12 even 2 inner 676.4.a.g.1.5 8
39.11 even 12 468.4.t.g.433.1 8
39.32 even 12 468.4.t.g.361.4 8
52.11 even 12 208.4.w.c.17.3 8
52.19 even 12 208.4.w.c.49.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.4.h.a.17.2 8 13.11 odd 12
52.4.h.a.49.2 yes 8 13.6 odd 12
208.4.w.c.17.3 8 52.11 even 12
208.4.w.c.49.3 8 52.19 even 12
468.4.t.g.361.4 8 39.32 even 12
468.4.t.g.433.1 8 39.11 even 12
676.4.a.g.1.5 8 13.12 even 2 inner
676.4.a.g.1.6 8 1.1 even 1 trivial
676.4.d.d.337.5 8 13.5 odd 4
676.4.d.d.337.6 8 13.8 odd 4
676.4.e.h.529.3 16 13.10 even 6
676.4.e.h.529.4 16 13.3 even 3
676.4.e.h.653.3 16 13.4 even 6
676.4.e.h.653.4 16 13.9 even 3
676.4.h.e.361.2 8 13.7 odd 12
676.4.h.e.485.2 8 13.2 odd 12