Defining parameters
| Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 52.h (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(28\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(52, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 48 | 8 | 40 |
| Cusp forms | 36 | 8 | 28 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(52, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 52.4.h.a | $8$ | $3.068$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-36\) | \(q-\beta _{5}q^{3}+(2-3\beta _{1}+\beta _{2}-\beta _{4})q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(52, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(52, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)