Properties

Label 52.4.h
Level $52$
Weight $4$
Character orbit 52.h
Rep. character $\chi_{52}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 52.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(52, [\chi])\).

Total New Old
Modular forms 48 8 40
Cusp forms 36 8 28
Eisenstein series 12 0 12

Trace form

\( 8 q - 36 q^{7} - 70 q^{9} + 72 q^{11} + 62 q^{13} + 96 q^{15} + 88 q^{17} - 144 q^{19} - 20 q^{23} - 84 q^{25} - 432 q^{27} - 484 q^{29} + 1038 q^{33} + 40 q^{35} + 996 q^{37} - 236 q^{39} + 156 q^{41}+ \cdots - 3042 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(52, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
52.4.h.a 52.h 13.e $8$ $3.068$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 52.4.h.a \(0\) \(0\) \(0\) \(-36\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{5}q^{3}+(2-3\beta _{1}+\beta _{2}-\beta _{4})q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(52, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(52, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)