Properties

Label 513.2.y.c
Level $513$
Weight $2$
Character orbit 513.y
Analytic conductor $4.096$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(28,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.y (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,9,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{18}^{5} + \zeta_{18}^{3} + \cdots + \zeta_{18}) q^{2} + (\zeta_{18}^{4} + \zeta_{18}^{3} + \cdots + 1) q^{4} + (\zeta_{18}^{4} + \zeta_{18}^{3} + \cdots - \zeta_{18}) q^{5} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + \cdots + 3) q^{7}+ \cdots + ( - 13 \zeta_{18}^{5} - 12 \zeta_{18}^{4} + \cdots + 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} + 3 q^{5} + 9 q^{7} + 6 q^{8} - 9 q^{10} + 9 q^{11} + 6 q^{13} + 24 q^{14} + 9 q^{16} - 24 q^{17} - 12 q^{19} - 6 q^{20} - 9 q^{22} + 6 q^{23} + 9 q^{25} - 12 q^{26} + 42 q^{28}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(\zeta_{18}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−0.173648 0.984808i
−0.173648 + 0.984808i
−0.766044 + 0.642788i
−0.766044 0.642788i
0.939693 0.342020i
0.939693 + 0.342020i
0.152704 + 0.866025i 0 1.15270 0.419550i 2.37939 + 0.866025i 0 1.32635 2.29731i 1.41875 + 2.45734i 0 −0.386659 + 2.19285i
55.1 0.152704 0.866025i 0 1.15270 + 0.419550i 2.37939 0.866025i 0 1.32635 + 2.29731i 1.41875 2.45734i 0 −0.386659 2.19285i
82.1 −1.03209 + 0.866025i 0 −0.0320889 + 0.181985i 0.152704 + 0.866025i 0 0.733956 1.27125i −1.47178 2.54920i 0 −0.907604 0.761570i
244.1 −1.03209 0.866025i 0 −0.0320889 0.181985i 0.152704 0.866025i 0 0.733956 + 1.27125i −1.47178 + 2.54920i 0 −0.907604 + 0.761570i
271.1 2.37939 0.866025i 0 3.37939 2.83564i −1.03209 0.866025i 0 2.43969 + 4.22567i 3.05303 5.28801i 0 −3.20574 1.16679i
460.1 2.37939 + 0.866025i 0 3.37939 + 2.83564i −1.03209 + 0.866025i 0 2.43969 4.22567i 3.05303 + 5.28801i 0 −3.20574 + 1.16679i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 28.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 513.2.y.c yes 6
3.b odd 2 1 513.2.y.a 6
19.e even 9 1 inner 513.2.y.c yes 6
19.e even 9 1 9747.2.a.u 3
19.f odd 18 1 9747.2.a.bb 3
57.j even 18 1 9747.2.a.v 3
57.l odd 18 1 513.2.y.a 6
57.l odd 18 1 9747.2.a.bd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
513.2.y.a 6 3.b odd 2 1
513.2.y.a 6 57.l odd 18 1
513.2.y.c yes 6 1.a even 1 1 trivial
513.2.y.c yes 6 19.e even 9 1 inner
9747.2.a.u 3 19.e even 9 1
9747.2.a.v 3 57.j even 18 1
9747.2.a.bb 3 19.f odd 18 1
9747.2.a.bd 3 57.l odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 3T_{2}^{5} + 3T_{2}^{3} + 9T_{2}^{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(513, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} - 9 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$11$ \( T^{6} - 9 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{6} - 6 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$17$ \( T^{6} + 24 T^{5} + \cdots + 12321 \) Copy content Toggle raw display
$19$ \( T^{6} + 12 T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{6} + 12 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$31$ \( T^{6} + 57 T^{4} + \cdots + 11449 \) Copy content Toggle raw display
$37$ \( (T^{3} + 27 T^{2} + \cdots + 613)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 6 T^{5} + \cdots + 103041 \) Copy content Toggle raw display
$43$ \( T^{6} - 15 T^{5} + \cdots + 16129 \) Copy content Toggle raw display
$47$ \( T^{6} - 6 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$53$ \( T^{6} - 6 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$59$ \( T^{6} - 12 T^{5} + \cdots + 3249 \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} + \cdots + 5041 \) Copy content Toggle raw display
$67$ \( T^{6} + 3 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$71$ \( T^{6} + 24 T^{5} + \cdots + 3249 \) Copy content Toggle raw display
$73$ \( T^{6} + 21 T^{5} + \cdots + 11449 \) Copy content Toggle raw display
$79$ \( T^{6} - 33 T^{5} + \cdots + 1014049 \) Copy content Toggle raw display
$83$ \( T^{6} + 27 T^{4} + \cdots + 729 \) Copy content Toggle raw display
$89$ \( T^{6} - 15 T^{5} + \cdots + 145161 \) Copy content Toggle raw display
$97$ \( T^{6} - 45 T^{5} + \cdots + 289 \) Copy content Toggle raw display
show more
show less