Properties

Label 513.2
Level 513
Weight 2
Dimension 7366
Nonzero newspaces 34
Newform subspaces 72
Sturm bound 38880
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 34 \)
Newform subspaces: \( 72 \)
Sturm bound: \(38880\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(513))\).

Total New Old
Modular forms 10260 7910 2350
Cusp forms 9181 7366 1815
Eisenstein series 1079 544 535

Trace form

\( 7366 q - 60 q^{2} - 96 q^{3} - 110 q^{4} - 66 q^{5} - 108 q^{6} - 112 q^{7} - 84 q^{8} - 108 q^{9} - 120 q^{10} - 78 q^{11} - 132 q^{12} - 124 q^{13} - 102 q^{14} - 126 q^{15} - 134 q^{16} - 90 q^{17} - 126 q^{18}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(513))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
513.2.a \(\chi_{513}(1, \cdot)\) 513.2.a.a 1 1
513.2.a.b 1
513.2.a.c 2
513.2.a.d 3
513.2.a.e 3
513.2.a.f 3
513.2.a.g 3
513.2.a.h 4
513.2.a.i 4
513.2.d \(\chi_{513}(512, \cdot)\) 513.2.d.a 2 1
513.2.d.b 12
513.2.d.c 12
513.2.e \(\chi_{513}(172, \cdot)\) 513.2.e.a 18 2
513.2.e.b 18
513.2.f \(\chi_{513}(163, \cdot)\) 513.2.f.a 2 2
513.2.f.b 2
513.2.f.c 2
513.2.f.d 2
513.2.f.e 8
513.2.f.f 12
513.2.f.g 12
513.2.f.h 12
513.2.g \(\chi_{513}(64, \cdot)\) 513.2.g.a 2 2
513.2.g.b 2
513.2.g.c 32
513.2.h \(\chi_{513}(235, \cdot)\) 513.2.h.a 2 2
513.2.h.b 2
513.2.h.c 32
513.2.k \(\chi_{513}(8, \cdot)\) 513.2.k.a 36 2
513.2.l \(\chi_{513}(170, \cdot)\) 513.2.l.a 36 2
513.2.m \(\chi_{513}(107, \cdot)\) 513.2.m.a 2 2
513.2.m.b 2
513.2.m.c 4
513.2.m.d 4
513.2.m.e 8
513.2.m.f 8
513.2.m.g 24
513.2.t \(\chi_{513}(179, \cdot)\) 513.2.t.a 36 2
513.2.u \(\chi_{513}(25, \cdot)\) 513.2.u.a 348 6
513.2.v \(\chi_{513}(196, \cdot)\) 513.2.v.a 348 6
513.2.w \(\chi_{513}(4, \cdot)\) 513.2.w.a 348 6
513.2.x \(\chi_{513}(43, \cdot)\) 513.2.x.a 348 6
513.2.y \(\chi_{513}(28, \cdot)\) 513.2.y.a 6 6
513.2.y.b 6
513.2.y.c 6
513.2.y.d 24
513.2.y.e 36
513.2.y.f 36
513.2.y.g 48
513.2.z \(\chi_{513}(226, \cdot)\) 513.2.z.a 108 6
513.2.ba \(\chi_{513}(58, \cdot)\) 513.2.ba.a 162 6
513.2.ba.b 162
513.2.bb \(\chi_{513}(106, \cdot)\) 513.2.bb.a 348 6
513.2.bc \(\chi_{513}(7, \cdot)\) 513.2.bc.a 348 6
513.2.bd \(\chi_{513}(73, \cdot)\) 513.2.bd.a 108 6
513.2.be \(\chi_{513}(139, \cdot)\) 513.2.be.a 348 6
513.2.bf \(\chi_{513}(61, \cdot)\) 513.2.bf.a 348 6
513.2.bi \(\chi_{513}(14, \cdot)\) 513.2.bi.a 348 6
513.2.bj \(\chi_{513}(41, \cdot)\) 513.2.bj.a 348 6
513.2.bk \(\chi_{513}(86, \cdot)\) 513.2.bk.a 348 6
513.2.bo \(\chi_{513}(71, \cdot)\) 513.2.bo.a 108 6
513.2.bp \(\chi_{513}(53, \cdot)\) 513.2.bp.a 6 6
513.2.bp.b 36
513.2.bp.c 36
513.2.bp.d 84
513.2.bu \(\chi_{513}(122, \cdot)\) 513.2.bu.a 348 6
513.2.bv \(\chi_{513}(50, \cdot)\) 513.2.bv.a 348 6
513.2.bw \(\chi_{513}(56, \cdot)\) 513.2.bw.a 348 6
513.2.cd \(\chi_{513}(116, \cdot)\) 513.2.cd.a 108 6
513.2.cg \(\chi_{513}(2, \cdot)\) 513.2.cg.a 348 6
513.2.ch \(\chi_{513}(167, \cdot)\) 513.2.ch.a 348 6
513.2.cp \(\chi_{513}(29, \cdot)\) 513.2.cp.a 348 6

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(513))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(513)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(171))\)\(^{\oplus 2}\)