L(s) = 1 | + (0.152 + 0.866i)2-s + (1.15 − 0.419i)4-s + (2.37 + 0.866i)5-s + (1.32 − 2.29i)7-s + (1.41 + 2.45i)8-s + (−0.386 + 2.19i)10-s + (−0.205 − 0.356i)11-s + (−1.12 − 0.943i)13-s + (2.19 + 0.797i)14-s + (−0.0320 + 0.0269i)16-s + (−0.414 − 2.35i)17-s + (−4.29 − 0.725i)19-s + 3.10·20-s + (0.277 − 0.232i)22-s + (0.826 − 0.300i)23-s + ⋯ |
L(s) = 1 | + (0.107 + 0.612i)2-s + (0.576 − 0.209i)4-s + (1.06 + 0.387i)5-s + (0.501 − 0.868i)7-s + (0.501 + 0.868i)8-s + (−0.122 + 0.693i)10-s + (−0.0620 − 0.107i)11-s + (−0.311 − 0.261i)13-s + (0.585 + 0.213i)14-s + (−0.00802 + 0.00673i)16-s + (−0.100 − 0.570i)17-s + (−0.986 − 0.166i)19-s + 0.694·20-s + (0.0590 − 0.0495i)22-s + (0.172 − 0.0627i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.09519 + 0.587500i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09519 + 0.587500i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (4.29 + 0.725i)T \) |
good | 2 | \( 1 + (-0.152 - 0.866i)T + (-1.87 + 0.684i)T^{2} \) |
| 5 | \( 1 + (-2.37 - 0.866i)T + (3.83 + 3.21i)T^{2} \) |
| 7 | \( 1 + (-1.32 + 2.29i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.205 + 0.356i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.12 + 0.943i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (0.414 + 2.35i)T + (-15.9 + 5.81i)T^{2} \) |
| 23 | \( 1 + (-0.826 + 0.300i)T + (17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (1.06 - 6.01i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (-1.01 + 1.75i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 9.69T + 37T^{2} \) |
| 41 | \( 1 + (6.53 - 5.48i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (-10.6 - 3.86i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (1.47 - 8.34i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 + (-1.41 + 0.516i)T + (40.6 - 34.0i)T^{2} \) |
| 59 | \( 1 + (0.645 + 3.66i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-2.35 + 0.858i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (0.847 - 4.80i)T + (-62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (9.46 + 3.44i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 + (7.85 - 6.58i)T + (12.6 - 71.8i)T^{2} \) |
| 79 | \( 1 + (-12.4 + 10.4i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (-2.81 + 4.88i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.22 + 1.03i)T + (15.4 + 87.6i)T^{2} \) |
| 97 | \( 1 + (0.0175 + 0.0994i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67490125583950519231927058469, −10.39464934898602036575264609781, −9.211383069115441830423131954200, −8.027827458219887027250825007193, −7.15064341792253172653480029688, −6.46535076253209972803483814647, −5.52761470216390343653971272433, −4.57708650372588191247932159619, −2.82455724636598561898407783900, −1.63493508738948190195870748938,
1.79351819145545208793359704609, 2.35570202249088322673591176057, 3.91313051332869522459618681298, 5.22049032022758949956101588599, 6.08622416294914617606271793743, 7.08387089755753109301425802983, 8.333960633310838268859596411774, 9.114887990683385630779099847829, 10.14223846764569375973195245256, 10.74534538933578835374166401798