Properties

Label 513.2.y.c.28.1
Level $513$
Weight $2$
Character 513.28
Analytic conductor $4.096$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(28,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.y (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,9,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 28.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 513.28
Dual form 513.2.y.c.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.152704 + 0.866025i) q^{2} +(1.15270 - 0.419550i) q^{4} +(2.37939 + 0.866025i) q^{5} +(1.32635 - 2.29731i) q^{7} +(1.41875 + 2.45734i) q^{8} +(-0.386659 + 2.19285i) q^{10} +(-0.205737 - 0.356347i) q^{11} +(-1.12449 - 0.943555i) q^{13} +(2.19207 + 0.797847i) q^{14} +(-0.0320889 + 0.0269258i) q^{16} +(-0.414878 - 2.35289i) q^{17} +(-4.29813 - 0.725293i) q^{19} +3.10607 q^{20} +(0.277189 - 0.232589i) q^{22} +(0.826352 - 0.300767i) q^{23} +(1.08125 + 0.907278i) q^{25} +(0.645430 - 1.11792i) q^{26} +(0.565055 - 3.20459i) q^{28} +(-1.06031 + 6.01330i) q^{29} +(1.01114 - 1.75135i) q^{31} +(4.31908 + 3.62414i) q^{32} +(1.97431 - 0.718589i) q^{34} +(5.14543 - 4.31753i) q^{35} -9.69459 q^{37} +(-0.0282185 - 3.83305i) q^{38} +(1.24763 + 7.07564i) q^{40} +(-6.53596 + 5.48432i) q^{41} +(10.6099 + 3.86170i) q^{43} +(-0.386659 - 0.324446i) q^{44} +(0.386659 + 0.669713i) q^{46} +(-1.47178 + 8.34689i) q^{47} +(-0.0184183 - 0.0319015i) q^{49} +(-0.620615 + 1.07494i) q^{50} +(-1.69207 - 0.615862i) q^{52} +(1.41875 - 0.516382i) q^{53} +(-0.180922 - 1.02606i) q^{55} +7.52704 q^{56} -5.36959 q^{58} +(-0.645430 - 3.66041i) q^{59} +(2.35844 - 0.858402i) q^{61} +(1.67112 + 0.608239i) q^{62} +(-2.52094 + 4.36640i) q^{64} +(-1.85844 - 3.21891i) q^{65} +(-0.847296 + 4.80526i) q^{67} +(-1.46538 - 2.53812i) q^{68} +(4.52481 + 3.79677i) q^{70} +(-9.46451 - 3.44480i) q^{71} +(-7.85117 + 6.58791i) q^{73} +(-1.48040 - 8.39576i) q^{74} +(-5.25877 + 0.967233i) q^{76} -1.09152 q^{77} +(12.4251 - 10.4259i) q^{79} +(-0.0996702 + 0.0362770i) q^{80} +(-5.74763 - 4.82283i) q^{82} +(2.81908 - 4.88279i) q^{83} +(1.05051 - 5.95772i) q^{85} +(-1.72416 + 9.77817i) q^{86} +(0.583778 - 1.01113i) q^{88} +(-1.22803 - 1.03044i) q^{89} +(-3.65910 + 1.33180i) q^{91} +(0.826352 - 0.693392i) q^{92} -7.45336 q^{94} +(-9.59879 - 5.44804i) q^{95} +(-0.0175410 - 0.0994798i) q^{97} +(0.0248149 - 0.0208222i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} + 3 q^{5} + 9 q^{7} + 6 q^{8} - 9 q^{10} + 9 q^{11} + 6 q^{13} + 24 q^{14} + 9 q^{16} - 24 q^{17} - 12 q^{19} - 6 q^{20} - 9 q^{22} + 6 q^{23} + 9 q^{25} - 12 q^{26} + 42 q^{28}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.152704 + 0.866025i 0.107978 + 0.612372i 0.989989 + 0.141144i \(0.0450781\pi\)
−0.882011 + 0.471228i \(0.843811\pi\)
\(3\) 0 0
\(4\) 1.15270 0.419550i 0.576352 0.209775i
\(5\) 2.37939 + 0.866025i 1.06409 + 0.387298i 0.813965 0.580914i \(-0.197305\pi\)
0.250129 + 0.968213i \(0.419527\pi\)
\(6\) 0 0
\(7\) 1.32635 2.29731i 0.501314 0.868301i −0.498685 0.866783i \(-0.666184\pi\)
0.999999 0.00151779i \(-0.000483127\pi\)
\(8\) 1.41875 + 2.45734i 0.501603 + 0.868802i
\(9\) 0 0
\(10\) −0.386659 + 2.19285i −0.122272 + 0.693441i
\(11\) −0.205737 0.356347i −0.0620321 0.107443i 0.833342 0.552758i \(-0.186425\pi\)
−0.895374 + 0.445316i \(0.853091\pi\)
\(12\) 0 0
\(13\) −1.12449 0.943555i −0.311876 0.261695i 0.473391 0.880852i \(-0.343030\pi\)
−0.785267 + 0.619157i \(0.787474\pi\)
\(14\) 2.19207 + 0.797847i 0.585854 + 0.213234i
\(15\) 0 0
\(16\) −0.0320889 + 0.0269258i −0.00802222 + 0.00673144i
\(17\) −0.414878 2.35289i −0.100623 0.570659i −0.992879 0.119130i \(-0.961990\pi\)
0.892256 0.451530i \(-0.149121\pi\)
\(18\) 0 0
\(19\) −4.29813 0.725293i −0.986059 0.166394i
\(20\) 3.10607 0.694538
\(21\) 0 0
\(22\) 0.277189 0.232589i 0.0590968 0.0495881i
\(23\) 0.826352 0.300767i 0.172306 0.0627144i −0.254427 0.967092i \(-0.581887\pi\)
0.426733 + 0.904378i \(0.359664\pi\)
\(24\) 0 0
\(25\) 1.08125 + 0.907278i 0.216250 + 0.181456i
\(26\) 0.645430 1.11792i 0.126579 0.219242i
\(27\) 0 0
\(28\) 0.565055 3.20459i 0.106785 0.605610i
\(29\) −1.06031 + 6.01330i −0.196894 + 1.11664i 0.712801 + 0.701366i \(0.247426\pi\)
−0.909695 + 0.415276i \(0.863685\pi\)
\(30\) 0 0
\(31\) 1.01114 1.75135i 0.181607 0.314552i −0.760821 0.648962i \(-0.775203\pi\)
0.942428 + 0.334409i \(0.108537\pi\)
\(32\) 4.31908 + 3.62414i 0.763512 + 0.640663i
\(33\) 0 0
\(34\) 1.97431 0.718589i 0.338591 0.123237i
\(35\) 5.14543 4.31753i 0.869736 0.729795i
\(36\) 0 0
\(37\) −9.69459 −1.59378 −0.796891 0.604124i \(-0.793523\pi\)
−0.796891 + 0.604124i \(0.793523\pi\)
\(38\) −0.0282185 3.83305i −0.00457764 0.621802i
\(39\) 0 0
\(40\) 1.24763 + 7.07564i 0.197267 + 1.11876i
\(41\) −6.53596 + 5.48432i −1.02075 + 0.856507i −0.989721 0.143012i \(-0.954321\pi\)
−0.0310243 + 0.999519i \(0.509877\pi\)
\(42\) 0 0
\(43\) 10.6099 + 3.86170i 1.61800 + 0.588904i 0.983000 0.183608i \(-0.0587776\pi\)
0.635001 + 0.772512i \(0.281000\pi\)
\(44\) −0.386659 0.324446i −0.0582911 0.0489120i
\(45\) 0 0
\(46\) 0.386659 + 0.669713i 0.0570098 + 0.0987439i
\(47\) −1.47178 + 8.34689i −0.214681 + 1.21752i 0.666777 + 0.745257i \(0.267673\pi\)
−0.881458 + 0.472261i \(0.843438\pi\)
\(48\) 0 0
\(49\) −0.0184183 0.0319015i −0.00263119 0.00455735i
\(50\) −0.620615 + 1.07494i −0.0877682 + 0.152019i
\(51\) 0 0
\(52\) −1.69207 0.615862i −0.234647 0.0854047i
\(53\) 1.41875 0.516382i 0.194880 0.0709305i −0.242736 0.970092i \(-0.578045\pi\)
0.437616 + 0.899162i \(0.355823\pi\)
\(54\) 0 0
\(55\) −0.180922 1.02606i −0.0243955 0.138354i
\(56\) 7.52704 1.00584
\(57\) 0 0
\(58\) −5.36959 −0.705061
\(59\) −0.645430 3.66041i −0.0840278 0.476545i −0.997562 0.0697837i \(-0.977769\pi\)
0.913534 0.406762i \(-0.133342\pi\)
\(60\) 0 0
\(61\) 2.35844 0.858402i 0.301967 0.109907i −0.186593 0.982437i \(-0.559744\pi\)
0.488560 + 0.872530i \(0.337522\pi\)
\(62\) 1.67112 + 0.608239i 0.212233 + 0.0772464i
\(63\) 0 0
\(64\) −2.52094 + 4.36640i −0.315118 + 0.545801i
\(65\) −1.85844 3.21891i −0.230511 0.399257i
\(66\) 0 0
\(67\) −0.847296 + 4.80526i −0.103514 + 0.587056i 0.888290 + 0.459283i \(0.151894\pi\)
−0.991804 + 0.127772i \(0.959217\pi\)
\(68\) −1.46538 2.53812i −0.177704 0.307792i
\(69\) 0 0
\(70\) 4.52481 + 3.79677i 0.540819 + 0.453801i
\(71\) −9.46451 3.44480i −1.12323 0.408822i −0.287400 0.957811i \(-0.592791\pi\)
−0.835830 + 0.548988i \(0.815013\pi\)
\(72\) 0 0
\(73\) −7.85117 + 6.58791i −0.918910 + 0.771057i −0.973793 0.227436i \(-0.926966\pi\)
0.0548834 + 0.998493i \(0.482521\pi\)
\(74\) −1.48040 8.39576i −0.172093 0.975988i
\(75\) 0 0
\(76\) −5.25877 + 0.967233i −0.603222 + 0.110949i
\(77\) −1.09152 −0.124390
\(78\) 0 0
\(79\) 12.4251 10.4259i 1.39794 1.17301i 0.435932 0.899979i \(-0.356419\pi\)
0.962006 0.273030i \(-0.0880258\pi\)
\(80\) −0.0996702 + 0.0362770i −0.0111435 + 0.00405589i
\(81\) 0 0
\(82\) −5.74763 4.82283i −0.634719 0.532593i
\(83\) 2.81908 4.88279i 0.309434 0.535955i −0.668805 0.743438i \(-0.733194\pi\)
0.978239 + 0.207483i \(0.0665271\pi\)
\(84\) 0 0
\(85\) 1.05051 5.95772i 0.113944 0.646206i
\(86\) −1.72416 + 9.77817i −0.185920 + 1.05441i
\(87\) 0 0
\(88\) 0.583778 1.01113i 0.0622310 0.107787i
\(89\) −1.22803 1.03044i −0.130170 0.109226i 0.575378 0.817888i \(-0.304855\pi\)
−0.705549 + 0.708662i \(0.749299\pi\)
\(90\) 0 0
\(91\) −3.65910 + 1.33180i −0.383578 + 0.139611i
\(92\) 0.826352 0.693392i 0.0861531 0.0722911i
\(93\) 0 0
\(94\) −7.45336 −0.768756
\(95\) −9.59879 5.44804i −0.984815 0.558958i
\(96\) 0 0
\(97\) −0.0175410 0.0994798i −0.00178102 0.0101006i 0.983904 0.178696i \(-0.0571879\pi\)
−0.985685 + 0.168596i \(0.946077\pi\)
\(98\) 0.0248149 0.0208222i 0.00250669 0.00210336i
\(99\) 0 0
\(100\) 1.62701 + 0.592184i 0.162701 + 0.0592184i
\(101\) −7.99273 6.70669i −0.795306 0.667341i 0.151747 0.988419i \(-0.451510\pi\)
−0.947053 + 0.321078i \(0.895955\pi\)
\(102\) 0 0
\(103\) −3.58512 6.20961i −0.353253 0.611851i 0.633565 0.773690i \(-0.281591\pi\)
−0.986817 + 0.161838i \(0.948258\pi\)
\(104\) 0.723278 4.10191i 0.0709232 0.402226i
\(105\) 0 0
\(106\) 0.663848 + 1.14982i 0.0644786 + 0.111680i
\(107\) −6.43629 + 11.1480i −0.622220 + 1.07772i 0.366852 + 0.930279i \(0.380436\pi\)
−0.989072 + 0.147437i \(0.952898\pi\)
\(108\) 0 0
\(109\) 12.0103 + 4.37138i 1.15037 + 0.418702i 0.845650 0.533738i \(-0.179213\pi\)
0.304725 + 0.952440i \(0.401435\pi\)
\(110\) 0.860967 0.313366i 0.0820900 0.0298783i
\(111\) 0 0
\(112\) 0.0192957 + 0.109431i 0.00182327 + 0.0103403i
\(113\) −11.0077 −1.03552 −0.517761 0.855526i \(-0.673234\pi\)
−0.517761 + 0.855526i \(0.673234\pi\)
\(114\) 0 0
\(115\) 2.22668 0.207639
\(116\) 1.30066 + 7.37641i 0.120763 + 0.684882i
\(117\) 0 0
\(118\) 3.07145 1.11792i 0.282750 0.102913i
\(119\) −5.95558 2.16766i −0.545948 0.198709i
\(120\) 0 0
\(121\) 5.41534 9.37965i 0.492304 0.852696i
\(122\) 1.10354 + 1.91139i 0.0999099 + 0.173049i
\(123\) 0 0
\(124\) 0.430770 2.44302i 0.0386843 0.219389i
\(125\) −4.54323 7.86911i −0.406359 0.703835i
\(126\) 0 0
\(127\) −4.24897 3.56531i −0.377035 0.316370i 0.434502 0.900671i \(-0.356924\pi\)
−0.811537 + 0.584301i \(0.801369\pi\)
\(128\) 6.42989 + 2.34029i 0.568328 + 0.206854i
\(129\) 0 0
\(130\) 2.50387 2.10100i 0.219604 0.184270i
\(131\) −3.40167 19.2919i −0.297206 1.68554i −0.658100 0.752930i \(-0.728640\pi\)
0.360895 0.932607i \(-0.382471\pi\)
\(132\) 0 0
\(133\) −7.36706 + 8.91215i −0.638805 + 0.772781i
\(134\) −4.29086 −0.370674
\(135\) 0 0
\(136\) 5.19325 4.35765i 0.445317 0.373666i
\(137\) −18.1395 + 6.60224i −1.54976 + 0.564067i −0.968362 0.249550i \(-0.919717\pi\)
−0.581400 + 0.813618i \(0.697495\pi\)
\(138\) 0 0
\(139\) 2.43448 + 2.04277i 0.206490 + 0.173265i 0.740168 0.672422i \(-0.234746\pi\)
−0.533678 + 0.845688i \(0.679191\pi\)
\(140\) 4.11974 7.13559i 0.348181 0.603068i
\(141\) 0 0
\(142\) 1.53802 8.72254i 0.129068 0.731979i
\(143\) −0.104885 + 0.594831i −0.00877091 + 0.0497423i
\(144\) 0 0
\(145\) −7.73055 + 13.3897i −0.641987 + 1.11195i
\(146\) −6.90420 5.79331i −0.571396 0.479458i
\(147\) 0 0
\(148\) −11.1750 + 4.06736i −0.918579 + 0.334335i
\(149\) 8.05097 6.75557i 0.659561 0.553438i −0.250394 0.968144i \(-0.580560\pi\)
0.909955 + 0.414706i \(0.136116\pi\)
\(150\) 0 0
\(151\) 9.59627 0.780933 0.390467 0.920617i \(-0.372314\pi\)
0.390467 + 0.920617i \(0.372314\pi\)
\(152\) −4.31567 11.5910i −0.350047 0.940154i
\(153\) 0 0
\(154\) −0.166679 0.945283i −0.0134314 0.0761731i
\(155\) 3.92262 3.29147i 0.315072 0.264377i
\(156\) 0 0
\(157\) 14.4547 + 5.26108i 1.15361 + 0.419880i 0.846811 0.531894i \(-0.178519\pi\)
0.306800 + 0.951774i \(0.400742\pi\)
\(158\) 10.9265 + 9.16841i 0.869265 + 0.729400i
\(159\) 0 0
\(160\) 7.13816 + 12.3636i 0.564321 + 0.977432i
\(161\) 0.405078 2.29731i 0.0319246 0.181053i
\(162\) 0 0
\(163\) −9.19846 15.9322i −0.720479 1.24791i −0.960808 0.277215i \(-0.910589\pi\)
0.240329 0.970692i \(-0.422745\pi\)
\(164\) −5.23308 + 9.06396i −0.408635 + 0.707776i
\(165\) 0 0
\(166\) 4.65910 + 1.69577i 0.361616 + 0.131618i
\(167\) 21.5141 7.83051i 1.66481 0.605943i 0.673706 0.739000i \(-0.264702\pi\)
0.991108 + 0.133057i \(0.0424794\pi\)
\(168\) 0 0
\(169\) −1.88326 10.6805i −0.144866 0.821575i
\(170\) 5.31996 0.408022
\(171\) 0 0
\(172\) 13.8503 1.05607
\(173\) 1.88026 + 10.6635i 0.142954 + 0.810731i 0.968987 + 0.247110i \(0.0794809\pi\)
−0.826034 + 0.563621i \(0.809408\pi\)
\(174\) 0 0
\(175\) 3.51842 1.28060i 0.265967 0.0968042i
\(176\) 0.0161968 + 0.00589515i 0.00122088 + 0.000444364i
\(177\) 0 0
\(178\) 0.704860 1.22085i 0.0528315 0.0915068i
\(179\) 3.27719 + 5.67626i 0.244949 + 0.424263i 0.962117 0.272636i \(-0.0878956\pi\)
−0.717169 + 0.696900i \(0.754562\pi\)
\(180\) 0 0
\(181\) 0.973126 5.51887i 0.0723319 0.410214i −0.927046 0.374947i \(-0.877661\pi\)
0.999378 0.0352669i \(-0.0112281\pi\)
\(182\) −1.71213 2.96550i −0.126912 0.219818i
\(183\) 0 0
\(184\) 1.91147 + 1.60392i 0.140916 + 0.118242i
\(185\) −23.0672 8.39576i −1.69593 0.617269i
\(186\) 0 0
\(187\) −0.753089 + 0.631917i −0.0550713 + 0.0462103i
\(188\) 1.80541 + 10.2390i 0.131673 + 0.746754i
\(189\) 0 0
\(190\) 3.25237 9.14473i 0.235952 0.663429i
\(191\) 3.26857 0.236505 0.118253 0.992984i \(-0.462271\pi\)
0.118253 + 0.992984i \(0.462271\pi\)
\(192\) 0 0
\(193\) −1.22075 + 1.02433i −0.0878716 + 0.0737331i −0.685665 0.727917i \(-0.740489\pi\)
0.597794 + 0.801650i \(0.296044\pi\)
\(194\) 0.0834734 0.0303818i 0.00599304 0.00218129i
\(195\) 0 0
\(196\) −0.0346151 0.0290455i −0.00247251 0.00207468i
\(197\) −10.6343 + 18.4191i −0.757661 + 1.31231i 0.186379 + 0.982478i \(0.440325\pi\)
−0.944040 + 0.329830i \(0.893009\pi\)
\(198\) 0 0
\(199\) −3.09580 + 17.5572i −0.219455 + 1.24459i 0.653550 + 0.756883i \(0.273279\pi\)
−0.873006 + 0.487710i \(0.837832\pi\)
\(200\) −0.695470 + 3.94421i −0.0491772 + 0.278898i
\(201\) 0 0
\(202\) 4.58765 7.94604i 0.322786 0.559081i
\(203\) 12.4081 + 10.4116i 0.870876 + 0.730752i
\(204\) 0 0
\(205\) −20.3011 + 7.38901i −1.41789 + 0.516071i
\(206\) 4.83022 4.05304i 0.336538 0.282389i
\(207\) 0 0
\(208\) 0.0614894 0.00426352
\(209\) 0.625829 + 1.68085i 0.0432895 + 0.116267i
\(210\) 0 0
\(211\) 3.66132 + 20.7644i 0.252056 + 1.42948i 0.803518 + 0.595280i \(0.202959\pi\)
−0.551463 + 0.834200i \(0.685930\pi\)
\(212\) 1.41875 1.19047i 0.0974400 0.0817619i
\(213\) 0 0
\(214\) −10.6373 3.87165i −0.727149 0.264661i
\(215\) 21.9008 + 18.3770i 1.49362 + 1.25330i
\(216\) 0 0
\(217\) −2.68227 4.64582i −0.182084 0.315379i
\(218\) −1.95171 + 11.0687i −0.132187 + 0.749668i
\(219\) 0 0
\(220\) −0.639033 1.10684i −0.0430836 0.0746230i
\(221\) −1.75356 + 3.03725i −0.117957 + 0.204307i
\(222\) 0 0
\(223\) −18.5351 6.74622i −1.24120 0.451760i −0.363782 0.931484i \(-0.618515\pi\)
−0.877419 + 0.479724i \(0.840737\pi\)
\(224\) 14.0544 5.11538i 0.939048 0.341785i
\(225\) 0 0
\(226\) −1.68092 9.53298i −0.111813 0.634125i
\(227\) 26.4020 1.75236 0.876180 0.481983i \(-0.160083\pi\)
0.876180 + 0.481983i \(0.160083\pi\)
\(228\) 0 0
\(229\) −5.87164 −0.388009 −0.194005 0.981001i \(-0.562148\pi\)
−0.194005 + 0.981001i \(0.562148\pi\)
\(230\) 0.340022 + 1.92836i 0.0224204 + 0.127152i
\(231\) 0 0
\(232\) −16.2811 + 5.92582i −1.06890 + 0.389049i
\(233\) −24.4209 8.88847i −1.59986 0.582303i −0.620464 0.784235i \(-0.713056\pi\)
−0.979400 + 0.201932i \(0.935278\pi\)
\(234\) 0 0
\(235\) −10.7306 + 18.5859i −0.699984 + 1.21241i
\(236\) −2.27972 3.94858i −0.148397 0.257031i
\(237\) 0 0
\(238\) 0.967805 5.48870i 0.0627335 0.355779i
\(239\) 4.18479 + 7.24827i 0.270692 + 0.468852i 0.969039 0.246907i \(-0.0794143\pi\)
−0.698347 + 0.715759i \(0.746081\pi\)
\(240\) 0 0
\(241\) −8.33409 6.99313i −0.536846 0.450467i 0.333612 0.942711i \(-0.391733\pi\)
−0.870458 + 0.492243i \(0.836177\pi\)
\(242\) 8.94996 + 3.25752i 0.575325 + 0.209401i
\(243\) 0 0
\(244\) 2.35844 1.97897i 0.150984 0.126690i
\(245\) −0.0161968 0.0918566i −0.00103478 0.00586850i
\(246\) 0 0
\(247\) 4.14883 + 4.87111i 0.263984 + 0.309941i
\(248\) 5.73824 0.364378
\(249\) 0 0
\(250\) 6.12108 5.13620i 0.387131 0.324842i
\(251\) 5.82547 2.12030i 0.367701 0.133832i −0.151560 0.988448i \(-0.548430\pi\)
0.519261 + 0.854616i \(0.326207\pi\)
\(252\) 0 0
\(253\) −0.277189 0.232589i −0.0174267 0.0146227i
\(254\) 2.43882 4.22415i 0.153025 0.265047i
\(255\) 0 0
\(256\) −2.79591 + 15.8564i −0.174744 + 0.991025i
\(257\) −2.93835 + 16.6642i −0.183289 + 1.03948i 0.744845 + 0.667238i \(0.232524\pi\)
−0.928134 + 0.372247i \(0.878588\pi\)
\(258\) 0 0
\(259\) −12.8584 + 22.2715i −0.798985 + 1.38388i
\(260\) −3.49273 2.93075i −0.216610 0.181757i
\(261\) 0 0
\(262\) 16.1878 5.89187i 1.00008 0.364001i
\(263\) 11.1853 9.38555i 0.689713 0.578738i −0.229114 0.973400i \(-0.573583\pi\)
0.918826 + 0.394662i \(0.129138\pi\)
\(264\) 0 0
\(265\) 3.82295 0.234842
\(266\) −8.84312 5.01914i −0.542207 0.307743i
\(267\) 0 0
\(268\) 1.03936 + 5.89452i 0.0634892 + 0.360065i
\(269\) 13.2194 11.0924i 0.806002 0.676316i −0.143648 0.989629i \(-0.545883\pi\)
0.949650 + 0.313313i \(0.101439\pi\)
\(270\) 0 0
\(271\) 4.35117 + 1.58370i 0.264315 + 0.0962026i 0.470778 0.882252i \(-0.343973\pi\)
−0.206464 + 0.978454i \(0.566195\pi\)
\(272\) 0.0766663 + 0.0643307i 0.00464858 + 0.00390062i
\(273\) 0 0
\(274\) −8.48767 14.7011i −0.512759 0.888125i
\(275\) 0.100852 0.571962i 0.00608162 0.0344906i
\(276\) 0 0
\(277\) 2.36184 + 4.09083i 0.141909 + 0.245794i 0.928216 0.372043i \(-0.121342\pi\)
−0.786306 + 0.617837i \(0.788009\pi\)
\(278\) −1.39734 + 2.42026i −0.0838067 + 0.145157i
\(279\) 0 0
\(280\) 17.9097 + 6.51860i 1.07031 + 0.389561i
\(281\) 30.6819 11.1673i 1.83033 0.666184i 0.837527 0.546397i \(-0.184001\pi\)
0.992800 0.119788i \(-0.0382213\pi\)
\(282\) 0 0
\(283\) −1.69846 9.63246i −0.100963 0.572590i −0.992756 0.120147i \(-0.961663\pi\)
0.891793 0.452444i \(-0.149448\pi\)
\(284\) −12.3550 −0.733137
\(285\) 0 0
\(286\) −0.531155 −0.0314079
\(287\) 3.93020 + 22.2893i 0.231992 + 1.31569i
\(288\) 0 0
\(289\) 10.6108 3.86202i 0.624166 0.227178i
\(290\) −12.7763 4.65020i −0.750251 0.273069i
\(291\) 0 0
\(292\) −6.28611 + 10.8879i −0.367867 + 0.637164i
\(293\) −2.06758 3.58116i −0.120789 0.209213i 0.799290 0.600946i \(-0.205209\pi\)
−0.920079 + 0.391732i \(0.871876\pi\)
\(294\) 0 0
\(295\) 1.63429 9.26849i 0.0951518 0.539633i
\(296\) −13.7542 23.8229i −0.799446 1.38468i
\(297\) 0 0
\(298\) 7.07991 + 5.94075i 0.410128 + 0.344138i
\(299\) −1.21301 0.441500i −0.0701502 0.0255326i
\(300\) 0 0
\(301\) 22.9440 19.2523i 1.32247 1.10969i
\(302\) 1.46538 + 8.31061i 0.0843234 + 0.478222i
\(303\) 0 0
\(304\) 0.157451 0.0924567i 0.00903046 0.00530276i
\(305\) 6.35504 0.363888
\(306\) 0 0
\(307\) −4.76991 + 4.00243i −0.272233 + 0.228431i −0.768676 0.639639i \(-0.779084\pi\)
0.496442 + 0.868070i \(0.334639\pi\)
\(308\) −1.25820 + 0.457947i −0.0716925 + 0.0260939i
\(309\) 0 0
\(310\) 3.44949 + 2.89447i 0.195918 + 0.164395i
\(311\) 1.29426 2.24173i 0.0733909 0.127117i −0.826994 0.562210i \(-0.809951\pi\)
0.900385 + 0.435093i \(0.143285\pi\)
\(312\) 0 0
\(313\) −3.58971 + 20.3582i −0.202902 + 1.15072i 0.697804 + 0.716288i \(0.254160\pi\)
−0.900707 + 0.434428i \(0.856951\pi\)
\(314\) −2.34895 + 13.3215i −0.132559 + 0.751777i
\(315\) 0 0
\(316\) 9.94831 17.2310i 0.559636 0.969318i
\(317\) 6.99866 + 5.87257i 0.393084 + 0.329836i 0.817813 0.575484i \(-0.195186\pi\)
−0.424729 + 0.905320i \(0.639631\pi\)
\(318\) 0 0
\(319\) 2.36097 0.859322i 0.132189 0.0481128i
\(320\) −9.77972 + 8.20616i −0.546703 + 0.458738i
\(321\) 0 0
\(322\) 2.05138 0.114319
\(323\) 0.0766663 + 10.4139i 0.00426583 + 0.579447i
\(324\) 0 0
\(325\) −0.359785 2.04044i −0.0199573 0.113183i
\(326\) 12.3931 10.3990i 0.686388 0.575948i
\(327\) 0 0
\(328\) −22.7497 8.28023i −1.25614 0.457199i
\(329\) 17.2233 + 14.4520i 0.949550 + 0.796767i
\(330\) 0 0
\(331\) −8.04710 13.9380i −0.442309 0.766101i 0.555552 0.831482i \(-0.312507\pi\)
−0.997860 + 0.0653807i \(0.979174\pi\)
\(332\) 1.20099 6.81115i 0.0659129 0.373810i
\(333\) 0 0
\(334\) 10.0667 + 17.4360i 0.550826 + 0.954058i
\(335\) −6.17752 + 10.6998i −0.337514 + 0.584591i
\(336\) 0 0
\(337\) 19.2071 + 6.99081i 1.04628 + 0.380813i 0.807256 0.590201i \(-0.200952\pi\)
0.239020 + 0.971015i \(0.423174\pi\)
\(338\) 8.96198 3.26189i 0.487468 0.177424i
\(339\) 0 0
\(340\) −1.28864 7.30823i −0.0698862 0.396344i
\(341\) −0.832119 −0.0450618
\(342\) 0 0
\(343\) 18.4712 0.997352
\(344\) 5.56330 + 31.5510i 0.299953 + 1.70112i
\(345\) 0 0
\(346\) −8.94774 + 3.25671i −0.481033 + 0.175082i
\(347\) 20.7528 + 7.55342i 1.11407 + 0.405489i 0.832485 0.554047i \(-0.186917\pi\)
0.281586 + 0.959536i \(0.409140\pi\)
\(348\) 0 0
\(349\) 9.26264 16.0434i 0.495818 0.858782i −0.504171 0.863604i \(-0.668202\pi\)
0.999988 + 0.00482248i \(0.00153505\pi\)
\(350\) 1.64631 + 2.85149i 0.0879988 + 0.152418i
\(351\) 0 0
\(352\) 0.402856 2.28471i 0.0214723 0.121775i
\(353\) −15.5544 26.9410i −0.827876 1.43392i −0.899701 0.436506i \(-0.856216\pi\)
0.0718253 0.997417i \(-0.477118\pi\)
\(354\) 0 0
\(355\) −19.5364 16.3930i −1.03689 0.870051i
\(356\) −1.84787 0.672569i −0.0979369 0.0356461i
\(357\) 0 0
\(358\) −4.41534 + 3.70491i −0.233358 + 0.195811i
\(359\) −2.95218 16.7427i −0.155810 0.883643i −0.958041 0.286630i \(-0.907465\pi\)
0.802231 0.597013i \(-0.203646\pi\)
\(360\) 0 0
\(361\) 17.9479 + 6.23481i 0.944626 + 0.328148i
\(362\) 4.92808 0.259014
\(363\) 0 0
\(364\) −3.65910 + 3.07035i −0.191789 + 0.160930i
\(365\) −24.3862 + 8.87587i −1.27643 + 0.464584i
\(366\) 0 0
\(367\) 17.6138 + 14.7797i 0.919433 + 0.771496i 0.973890 0.227020i \(-0.0728983\pi\)
−0.0544568 + 0.998516i \(0.517343\pi\)
\(368\) −0.0184183 + 0.0319015i −0.000960121 + 0.00166298i
\(369\) 0 0
\(370\) 3.74850 21.2588i 0.194875 1.10519i
\(371\) 0.695470 3.94421i 0.0361070 0.204773i
\(372\) 0 0
\(373\) −1.71348 + 2.96783i −0.0887205 + 0.153668i −0.906971 0.421194i \(-0.861611\pi\)
0.818250 + 0.574863i \(0.194944\pi\)
\(374\) −0.662255 0.555698i −0.0342444 0.0287345i
\(375\) 0 0
\(376\) −22.5993 + 8.22546i −1.16547 + 0.424196i
\(377\) 6.86618 5.76141i 0.353626 0.296728i
\(378\) 0 0
\(379\) −12.1898 −0.626150 −0.313075 0.949728i \(-0.601359\pi\)
−0.313075 + 0.949728i \(0.601359\pi\)
\(380\) −13.3503 2.25281i −0.684855 0.115567i
\(381\) 0 0
\(382\) 0.499123 + 2.83067i 0.0255373 + 0.144829i
\(383\) −7.09492 + 5.95335i −0.362534 + 0.304202i −0.805800 0.592188i \(-0.798264\pi\)
0.443266 + 0.896390i \(0.353820\pi\)
\(384\) 0 0
\(385\) −2.59714 0.945283i −0.132363 0.0481761i
\(386\) −1.07351 0.900783i −0.0546403 0.0458486i
\(387\) 0 0
\(388\) −0.0619563 0.107311i −0.00314535 0.00544791i
\(389\) −6.33363 + 35.9198i −0.321128 + 1.82120i 0.214469 + 0.976731i \(0.431198\pi\)
−0.535596 + 0.844474i \(0.679913\pi\)
\(390\) 0 0
\(391\) −1.05051 1.81953i −0.0531264 0.0920177i
\(392\) 0.0522619 0.0905203i 0.00263962 0.00457196i
\(393\) 0 0
\(394\) −17.5753 6.39689i −0.885432 0.322271i
\(395\) 38.5933 14.0468i 1.94184 0.706772i
\(396\) 0 0
\(397\) −2.72075 15.4302i −0.136551 0.774417i −0.973767 0.227546i \(-0.926930\pi\)
0.837217 0.546871i \(-0.184181\pi\)
\(398\) −15.6777 −0.785851
\(399\) 0 0
\(400\) −0.0591253 −0.00295627
\(401\) −1.60426 9.09819i −0.0801127 0.454342i −0.998305 0.0582059i \(-0.981462\pi\)
0.918192 0.396136i \(-0.129649\pi\)
\(402\) 0 0
\(403\) −2.78952 + 1.01530i −0.138956 + 0.0505757i
\(404\) −12.0270 4.37748i −0.598367 0.217788i
\(405\) 0 0
\(406\) −7.12196 + 12.3356i −0.353457 + 0.612205i
\(407\) 1.99454 + 3.45464i 0.0988655 + 0.171240i
\(408\) 0 0
\(409\) 2.77972 15.7645i 0.137448 0.779507i −0.835676 0.549223i \(-0.814924\pi\)
0.973124 0.230283i \(-0.0739653\pi\)
\(410\) −9.49912 16.4530i −0.469128 0.812554i
\(411\) 0 0
\(412\) −6.73783 5.65371i −0.331949 0.278538i
\(413\) −9.26517 3.37225i −0.455909 0.165937i
\(414\) 0 0
\(415\) 10.9363 9.17664i 0.536841 0.450463i
\(416\) −1.43717 8.15058i −0.0704629 0.399615i
\(417\) 0 0
\(418\) −1.36009 + 0.798656i −0.0665242 + 0.0390635i
\(419\) 20.9828 1.02508 0.512538 0.858665i \(-0.328706\pi\)
0.512538 + 0.858665i \(0.328706\pi\)
\(420\) 0 0
\(421\) −15.2365 + 12.7849i −0.742581 + 0.623099i −0.933529 0.358501i \(-0.883288\pi\)
0.190949 + 0.981600i \(0.438844\pi\)
\(422\) −17.4234 + 6.34160i −0.848157 + 0.308704i
\(423\) 0 0
\(424\) 3.28177 + 2.75374i 0.159377 + 0.133733i
\(425\) 1.68614 2.92047i 0.0817896 0.141664i
\(426\) 0 0
\(427\) 1.15611 6.55661i 0.0559479 0.317297i
\(428\) −2.74200 + 15.5507i −0.132540 + 0.751670i
\(429\) 0 0
\(430\) −12.5706 + 21.7729i −0.606207 + 1.04998i
\(431\) −29.0292 24.3584i −1.39829 1.17330i −0.961854 0.273563i \(-0.911798\pi\)
−0.436431 0.899738i \(-0.643758\pi\)
\(432\) 0 0
\(433\) −1.89780 + 0.690744i −0.0912026 + 0.0331950i −0.387218 0.921988i \(-0.626564\pi\)
0.296016 + 0.955183i \(0.404342\pi\)
\(434\) 3.61381 3.03234i 0.173468 0.145557i
\(435\) 0 0
\(436\) 15.6783 0.750854
\(437\) −3.76991 + 0.693392i −0.180339 + 0.0331694i
\(438\) 0 0
\(439\) −5.44356 30.8720i −0.259807 1.47344i −0.783425 0.621486i \(-0.786529\pi\)
0.523618 0.851953i \(-0.324582\pi\)
\(440\) 2.26470 1.90031i 0.107965 0.0905937i
\(441\) 0 0
\(442\) −2.89811 1.05483i −0.137849 0.0501729i
\(443\) 13.5196 + 11.3443i 0.642336 + 0.538984i 0.904734 0.425976i \(-0.140069\pi\)
−0.262399 + 0.964959i \(0.584514\pi\)
\(444\) 0 0
\(445\) −2.02956 3.51531i −0.0962105 0.166641i
\(446\) 3.01202 17.0820i 0.142623 0.808857i
\(447\) 0 0
\(448\) 6.68732 + 11.5828i 0.315946 + 0.547235i
\(449\) 6.13429 10.6249i 0.289495 0.501420i −0.684194 0.729300i \(-0.739846\pi\)
0.973689 + 0.227880i \(0.0731794\pi\)
\(450\) 0 0
\(451\) 3.29901 + 1.20074i 0.155344 + 0.0565407i
\(452\) −12.6887 + 4.61830i −0.596825 + 0.217226i
\(453\) 0 0
\(454\) 4.03168 + 22.8648i 0.189216 + 1.07310i
\(455\) −9.85978 −0.462234
\(456\) 0 0
\(457\) 19.1875 0.897552 0.448776 0.893644i \(-0.351860\pi\)
0.448776 + 0.893644i \(0.351860\pi\)
\(458\) −0.896622 5.08499i −0.0418964 0.237606i
\(459\) 0 0
\(460\) 2.56670 0.934204i 0.119673 0.0435575i
\(461\) −37.0933 13.5009i −1.72761 0.628798i −0.729153 0.684351i \(-0.760086\pi\)
−0.998456 + 0.0555528i \(0.982308\pi\)
\(462\) 0 0
\(463\) −7.09286 + 12.2852i −0.329633 + 0.570942i −0.982439 0.186584i \(-0.940258\pi\)
0.652806 + 0.757525i \(0.273592\pi\)
\(464\) −0.127889 0.221510i −0.00593708 0.0102833i
\(465\) 0 0
\(466\) 3.96848 22.5064i 0.183836 1.04259i
\(467\) −14.8935 25.7963i −0.689190 1.19371i −0.972100 0.234566i \(-0.924633\pi\)
0.282910 0.959146i \(-0.408700\pi\)
\(468\) 0 0
\(469\) 9.91534 + 8.31996i 0.457848 + 0.384180i
\(470\) −17.7344 6.45480i −0.818028 0.297738i
\(471\) 0 0
\(472\) 8.07919 6.77925i 0.371875 0.312040i
\(473\) −0.806751 4.57531i −0.0370945 0.210373i
\(474\) 0 0
\(475\) −3.98932 4.68383i −0.183043 0.214909i
\(476\) −7.77446 −0.356342
\(477\) 0 0
\(478\) −5.63816 + 4.73097i −0.257883 + 0.216390i
\(479\) 0.368241 0.134029i 0.0168254 0.00612393i −0.333594 0.942717i \(-0.608261\pi\)
0.350419 + 0.936593i \(0.386039\pi\)
\(480\) 0 0
\(481\) 10.9014 + 9.14738i 0.497062 + 0.417085i
\(482\) 4.78359 8.28541i 0.217886 0.377390i
\(483\) 0 0
\(484\) 2.30706 13.0840i 0.104866 0.594726i
\(485\) 0.0444153 0.251892i 0.00201679 0.0114378i
\(486\) 0 0
\(487\) 12.1163 20.9861i 0.549043 0.950971i −0.449297 0.893383i \(-0.648325\pi\)
0.998340 0.0575887i \(-0.0183412\pi\)
\(488\) 5.45542 + 4.57764i 0.246955 + 0.207220i
\(489\) 0 0
\(490\) 0.0770768 0.0280537i 0.00348198 0.00126734i
\(491\) 26.1052 21.9049i 1.17811 0.988552i 0.178121 0.984009i \(-0.442998\pi\)
0.999990 0.00454368i \(-0.00144630\pi\)
\(492\) 0 0
\(493\) 14.5885 0.657034
\(494\) −3.58496 + 4.33683i −0.161295 + 0.195123i
\(495\) 0 0
\(496\) 0.0147100 + 0.0834248i 0.000660501 + 0.00374589i
\(497\) −20.4670 + 17.1739i −0.918072 + 0.770354i
\(498\) 0 0
\(499\) 27.7215 + 10.0898i 1.24099 + 0.451682i 0.877346 0.479858i \(-0.159312\pi\)
0.363640 + 0.931540i \(0.381534\pi\)
\(500\) −8.53849 7.16464i −0.381853 0.320412i
\(501\) 0 0
\(502\) 2.72580 + 4.72123i 0.121659 + 0.210719i
\(503\) −4.04870 + 22.9613i −0.180522 + 1.02379i 0.751052 + 0.660243i \(0.229547\pi\)
−0.931574 + 0.363551i \(0.881564\pi\)
\(504\) 0 0
\(505\) −13.2096 22.8797i −0.587820 1.01813i
\(506\) 0.159100 0.275570i 0.00707287 0.0122506i
\(507\) 0 0
\(508\) −6.39363 2.32709i −0.283671 0.103248i
\(509\) −6.16132 + 2.24254i −0.273096 + 0.0993987i −0.474938 0.880019i \(-0.657529\pi\)
0.201842 + 0.979418i \(0.435307\pi\)
\(510\) 0 0
\(511\) 4.72106 + 26.7744i 0.208847 + 1.18443i
\(512\) −0.473897 −0.0209435
\(513\) 0 0
\(514\) −14.8803 −0.656343
\(515\) −3.15270 17.8799i −0.138925 0.787881i
\(516\) 0 0
\(517\) 3.27719 1.19280i 0.144131 0.0524592i
\(518\) −21.2512 7.73480i −0.933724 0.339848i
\(519\) 0 0
\(520\) 5.27332 9.13366i 0.231250 0.400537i
\(521\) −6.23055 10.7916i −0.272965 0.472790i 0.696654 0.717407i \(-0.254671\pi\)
−0.969620 + 0.244617i \(0.921338\pi\)
\(522\) 0 0
\(523\) −4.67483 + 26.5123i −0.204416 + 1.15930i 0.693940 + 0.720033i \(0.255873\pi\)
−0.898356 + 0.439268i \(0.855238\pi\)
\(524\) −12.0150 20.8106i −0.524878 0.909116i
\(525\) 0 0
\(526\) 9.83615 + 8.25351i 0.428877 + 0.359870i
\(527\) −4.54024 1.65251i −0.197776 0.0719846i
\(528\) 0 0
\(529\) −17.0266 + 14.2870i −0.740288 + 0.621175i
\(530\) 0.583778 + 3.31077i 0.0253577 + 0.143811i
\(531\) 0 0
\(532\) −4.75295 + 13.3639i −0.206066 + 0.579399i
\(533\) 12.5243 0.542490
\(534\) 0 0
\(535\) −24.9688 + 20.9513i −1.07950 + 0.905806i
\(536\) −13.0103 + 4.73535i −0.561958 + 0.204536i
\(537\) 0 0
\(538\) 11.6250 + 9.75449i 0.501187 + 0.420546i
\(539\) −0.00757866 + 0.0131266i −0.000326436 + 0.000565404i
\(540\) 0 0
\(541\) −4.69506 + 26.6270i −0.201856 + 1.14478i 0.700454 + 0.713698i \(0.252981\pi\)
−0.902310 + 0.431087i \(0.858130\pi\)
\(542\) −0.707081 + 4.01006i −0.0303717 + 0.172247i
\(543\) 0 0
\(544\) 6.73530 11.6659i 0.288774 0.500171i
\(545\) 24.7913 + 20.8024i 1.06194 + 0.891077i
\(546\) 0 0
\(547\) 0.416527 0.151603i 0.0178094 0.00648209i −0.333100 0.942891i \(-0.608095\pi\)
0.350909 + 0.936409i \(0.385872\pi\)
\(548\) −18.1395 + 15.2208i −0.774881 + 0.650202i
\(549\) 0 0
\(550\) 0.510734 0.0217778
\(551\) 8.91875 25.0769i 0.379951 1.06831i
\(552\) 0 0
\(553\) −7.47148 42.3729i −0.317720 1.80188i
\(554\) −3.18210 + 2.67010i −0.135195 + 0.113442i
\(555\) 0 0
\(556\) 3.66328 + 1.33332i 0.155357 + 0.0565455i
\(557\) 21.8248 + 18.3131i 0.924745 + 0.775953i 0.974866 0.222790i \(-0.0715165\pi\)
−0.0501217 + 0.998743i \(0.515961\pi\)
\(558\) 0 0
\(559\) −8.28699 14.3535i −0.350502 0.607088i
\(560\) −0.0488583 + 0.277089i −0.00206464 + 0.0117092i
\(561\) 0 0
\(562\) 14.3564 + 24.8660i 0.605587 + 1.04891i
\(563\) −0.992259 + 1.71864i −0.0418187 + 0.0724322i −0.886177 0.463347i \(-0.846649\pi\)
0.844358 + 0.535779i \(0.179982\pi\)
\(564\) 0 0
\(565\) −26.1917 9.53298i −1.10189 0.401056i
\(566\) 8.08260 2.94182i 0.339737 0.123654i
\(567\) 0 0
\(568\) −4.96270 28.1449i −0.208230 1.18093i
\(569\) −11.7638 −0.493165 −0.246583 0.969122i \(-0.579308\pi\)
−0.246583 + 0.969122i \(0.579308\pi\)
\(570\) 0 0
\(571\) 3.64227 0.152424 0.0762122 0.997092i \(-0.475717\pi\)
0.0762122 + 0.997092i \(0.475717\pi\)
\(572\) 0.128660 + 0.729669i 0.00537956 + 0.0305090i
\(573\) 0 0
\(574\) −18.7029 + 6.80730i −0.780644 + 0.284131i
\(575\) 1.16637 + 0.424525i 0.0486412 + 0.0177039i
\(576\) 0 0
\(577\) −14.6591 + 25.3903i −0.610266 + 1.05701i 0.380929 + 0.924604i \(0.375604\pi\)
−0.991195 + 0.132408i \(0.957729\pi\)
\(578\) 4.96492 + 8.59949i 0.206513 + 0.357692i
\(579\) 0 0
\(580\) −3.29339 + 18.6777i −0.136750 + 0.775550i
\(581\) −7.47818 12.9526i −0.310247 0.537364i
\(582\) 0 0
\(583\) −0.475900 0.399328i −0.0197098 0.0165385i
\(584\) −27.3276 9.94643i −1.13082 0.411586i
\(585\) 0 0
\(586\) 2.78564 2.33743i 0.115074 0.0965585i
\(587\) 1.18701 + 6.73189i 0.0489933 + 0.277855i 0.999456 0.0329842i \(-0.0105011\pi\)
−0.950463 + 0.310839i \(0.899390\pi\)
\(588\) 0 0
\(589\) −5.61628 + 6.79417i −0.231415 + 0.279949i
\(590\) 8.27631 0.340730
\(591\) 0 0
\(592\) 0.311089 0.261034i 0.0127857 0.0107284i
\(593\) −11.3880 + 4.14489i −0.467649 + 0.170210i −0.565087 0.825031i \(-0.691157\pi\)
0.0974379 + 0.995242i \(0.468935\pi\)
\(594\) 0 0
\(595\) −12.2934 10.3154i −0.503980 0.422889i
\(596\) 6.44609 11.1650i 0.264042 0.457334i
\(597\) 0 0
\(598\) 0.197119 1.11792i 0.00806079 0.0457150i
\(599\) −5.09358 + 28.8871i −0.208118 + 1.18030i 0.684339 + 0.729164i \(0.260091\pi\)
−0.892457 + 0.451132i \(0.851020\pi\)
\(600\) 0 0
\(601\) 0.410130 0.710366i 0.0167295 0.0289764i −0.857539 0.514418i \(-0.828008\pi\)
0.874269 + 0.485442i \(0.161341\pi\)
\(602\) 20.1766 + 16.9302i 0.822339 + 0.690024i
\(603\) 0 0
\(604\) 11.0617 4.02611i 0.450092 0.163820i
\(605\) 21.0082 17.6280i 0.854105 0.716679i
\(606\) 0 0
\(607\) −32.5654 −1.32179 −0.660895 0.750479i \(-0.729823\pi\)
−0.660895 + 0.750479i \(0.729823\pi\)
\(608\) −15.9354 18.7096i −0.646266 0.758775i
\(609\) 0 0
\(610\) 0.970437 + 5.50362i 0.0392919 + 0.222835i
\(611\) 9.53074 7.99724i 0.385573 0.323534i
\(612\) 0 0
\(613\) −7.50134 2.73027i −0.302976 0.110274i 0.186058 0.982539i \(-0.440429\pi\)
−0.489035 + 0.872264i \(0.662651\pi\)
\(614\) −4.19459 3.51968i −0.169280 0.142043i
\(615\) 0 0
\(616\) −1.54859 2.68224i −0.0623945 0.108070i
\(617\) −7.03390 + 39.8912i −0.283174 + 1.60596i 0.428561 + 0.903513i \(0.359021\pi\)
−0.711735 + 0.702448i \(0.752090\pi\)
\(618\) 0 0
\(619\) 5.70368 + 9.87906i 0.229250 + 0.397073i 0.957586 0.288147i \(-0.0930393\pi\)
−0.728336 + 0.685220i \(0.759706\pi\)
\(620\) 3.14068 5.43982i 0.126133 0.218468i
\(621\) 0 0
\(622\) 2.13903 + 0.778544i 0.0857674 + 0.0312168i
\(623\) −3.99602 + 1.45443i −0.160097 + 0.0582707i
\(624\) 0 0
\(625\) −5.22075 29.6084i −0.208830 1.18433i
\(626\) −18.1789 −0.726576
\(627\) 0 0
\(628\) 18.8693 0.752966
\(629\) 4.02207 + 22.8103i 0.160370 + 0.909506i
\(630\) 0 0
\(631\) −1.01202 + 0.368346i −0.0402879 + 0.0146636i −0.362086 0.932145i \(-0.617935\pi\)
0.321798 + 0.946808i \(0.395713\pi\)
\(632\) 43.2483 + 15.7411i 1.72032 + 0.626146i
\(633\) 0 0
\(634\) −4.01707 + 6.95778i −0.159538 + 0.276329i
\(635\) −7.02229 12.1630i −0.278671 0.482672i
\(636\) 0 0
\(637\) −0.00938966 + 0.0532514i −0.000372032 + 0.00210990i
\(638\) 1.10472 + 1.91344i 0.0437364 + 0.0757536i
\(639\) 0 0
\(640\) 13.2724 + 11.1369i 0.524639 + 0.440225i
\(641\) −4.39393 1.59926i −0.173550 0.0631670i 0.253784 0.967261i \(-0.418325\pi\)
−0.427334 + 0.904094i \(0.640547\pi\)
\(642\) 0 0
\(643\) −17.3255 + 14.5378i −0.683250 + 0.573315i −0.916954 0.398993i \(-0.869360\pi\)
0.233704 + 0.972308i \(0.424915\pi\)
\(644\) −0.496901 2.81807i −0.0195806 0.111047i
\(645\) 0 0
\(646\) −9.00703 + 1.65664i −0.354377 + 0.0651797i
\(647\) 22.0479 0.866791 0.433396 0.901204i \(-0.357315\pi\)
0.433396 + 0.901204i \(0.357315\pi\)
\(648\) 0 0
\(649\) −1.17159 + 0.983080i −0.0459889 + 0.0385893i
\(650\) 1.71213 0.623166i 0.0671554 0.0244426i
\(651\) 0 0
\(652\) −17.2875 14.5059i −0.677029 0.568095i
\(653\) 19.4898 33.7573i 0.762694 1.32103i −0.178763 0.983892i \(-0.557209\pi\)
0.941457 0.337133i \(-0.109457\pi\)
\(654\) 0 0
\(655\) 8.61334 48.8487i 0.336551 1.90868i
\(656\) 0.0620621 0.351972i 0.00242312 0.0137422i
\(657\) 0 0
\(658\) −9.88578 + 17.1227i −0.385388 + 0.667511i
\(659\) 12.0981 + 10.1515i 0.471274 + 0.395446i 0.847259 0.531180i \(-0.178251\pi\)
−0.375985 + 0.926626i \(0.622696\pi\)
\(660\) 0 0
\(661\) 38.5419 14.0281i 1.49911 0.545631i 0.543278 0.839553i \(-0.317183\pi\)
0.955829 + 0.293922i \(0.0949606\pi\)
\(662\) 10.8418 9.09738i 0.421380 0.353580i
\(663\) 0 0
\(664\) 15.9982 0.620852
\(665\) −25.2472 + 14.8254i −0.979045 + 0.574903i
\(666\) 0 0
\(667\) 0.932419 + 5.28801i 0.0361034 + 0.204753i
\(668\) 21.5141 18.0525i 0.832407 0.698472i
\(669\) 0 0
\(670\) −10.2096 3.71599i −0.394432 0.143561i
\(671\) −0.791108 0.663818i −0.0305404 0.0256264i
\(672\) 0 0
\(673\) 15.1446 + 26.2311i 0.583780 + 1.01114i 0.995026 + 0.0996119i \(0.0317601\pi\)
−0.411247 + 0.911524i \(0.634907\pi\)
\(674\) −3.12122 + 17.7013i −0.120225 + 0.681830i
\(675\) 0 0
\(676\) −6.65183 11.5213i −0.255839 0.443127i
\(677\) −1.35710 + 2.35056i −0.0521575 + 0.0903394i −0.890925 0.454150i \(-0.849943\pi\)
0.838768 + 0.544489i \(0.183276\pi\)
\(678\) 0 0
\(679\) −0.251801 0.0916481i −0.00966324 0.00351713i
\(680\) 16.1306 5.87105i 0.618579 0.225144i
\(681\) 0 0
\(682\) −0.127068 0.720637i −0.00486567 0.0275946i
\(683\) 32.8803 1.25813 0.629065 0.777353i \(-0.283438\pi\)
0.629065 + 0.777353i \(0.283438\pi\)
\(684\) 0 0
\(685\) −48.8786 −1.86755
\(686\) 2.82062 + 15.9965i 0.107692 + 0.610751i
\(687\) 0 0
\(688\) −0.444440 + 0.161763i −0.0169441 + 0.00616716i
\(689\) −2.08260 0.758003i −0.0793406 0.0288776i
\(690\) 0 0
\(691\) 22.7010 39.3193i 0.863586 1.49578i −0.00485771 0.999988i \(-0.501546\pi\)
0.868444 0.495787i \(-0.165120\pi\)
\(692\) 6.64125 + 11.5030i 0.252463 + 0.437278i
\(693\) 0 0
\(694\) −3.37242 + 19.1259i −0.128015 + 0.726010i
\(695\) 4.02347 + 6.96886i 0.152619 + 0.264344i
\(696\) 0 0
\(697\) 15.6156 + 13.1031i 0.591484 + 0.496314i
\(698\) 15.3084 + 5.57180i 0.579431 + 0.210896i
\(699\) 0 0
\(700\) 3.51842 2.95230i 0.132984 0.111587i
\(701\) 0.281364 + 1.59569i 0.0106270 + 0.0602685i 0.989660 0.143433i \(-0.0458140\pi\)
−0.979033 + 0.203701i \(0.934703\pi\)
\(702\) 0 0
\(703\) 41.6687 + 7.03142i 1.57156 + 0.265195i
\(704\) 2.07461 0.0781897
\(705\) 0 0
\(706\) 20.9564 17.5845i 0.788703 0.661800i
\(707\) −26.0085 + 9.46632i −0.978151 + 0.356018i
\(708\) 0 0
\(709\) 27.7652 + 23.2977i 1.04274 + 0.874965i 0.992312 0.123763i \(-0.0394961\pi\)
0.0504309 + 0.998728i \(0.483941\pi\)
\(710\) 11.2135 19.4223i 0.420834 0.728906i
\(711\) 0 0
\(712\) 0.789876 4.47961i 0.0296019 0.167881i
\(713\) 0.308811 1.75135i 0.0115651 0.0655887i
\(714\) 0 0
\(715\) −0.764700 + 1.32450i −0.0285982 + 0.0495335i
\(716\) 6.15910 + 5.16810i 0.230176 + 0.193141i
\(717\) 0 0
\(718\) 14.0488 5.11333i 0.524295 0.190828i
\(719\) 4.76676 3.99979i 0.177770 0.149167i −0.549561 0.835454i \(-0.685205\pi\)
0.727331 + 0.686287i \(0.240761\pi\)
\(720\) 0 0
\(721\) −19.0205 −0.708362
\(722\) −2.65880 + 16.4954i −0.0989501 + 0.613896i
\(723\) 0 0
\(724\) −1.19372 6.76990i −0.0443641 0.251601i
\(725\) −6.60220 + 5.53990i −0.245199 + 0.205747i
\(726\) 0 0
\(727\) −15.2255 5.54163i −0.564683 0.205528i 0.0438755 0.999037i \(-0.486030\pi\)
−0.608558 + 0.793509i \(0.708252\pi\)
\(728\) −8.46404 7.10217i −0.313698 0.263224i
\(729\) 0 0
\(730\) −11.4106 19.7637i −0.422325 0.731489i
\(731\) 4.68433 26.5661i 0.173256 0.982584i
\(732\) 0 0
\(733\) −9.85251 17.0650i −0.363911 0.630312i 0.624690 0.780873i \(-0.285225\pi\)
−0.988601 + 0.150561i \(0.951892\pi\)
\(734\) −10.1099 + 17.5109i −0.373165 + 0.646340i
\(735\) 0 0
\(736\) 4.65910 + 1.69577i 0.171737 + 0.0625071i
\(737\) 1.88666 0.686688i 0.0694960 0.0252945i
\(738\) 0 0
\(739\) 3.34049 + 18.9449i 0.122882 + 0.696898i 0.982543 + 0.186034i \(0.0595634\pi\)
−0.859661 + 0.510864i \(0.829326\pi\)
\(740\) −30.1121 −1.10694
\(741\) 0 0
\(742\) 3.52198 0.129296
\(743\) 2.61293 + 14.8187i 0.0958591 + 0.543644i 0.994481 + 0.104920i \(0.0334585\pi\)
−0.898622 + 0.438725i \(0.855430\pi\)
\(744\) 0 0
\(745\) 25.0069 9.10175i 0.916181 0.333462i
\(746\) −2.83187 1.03072i −0.103682 0.0377372i
\(747\) 0 0
\(748\) −0.602968 + 1.04437i −0.0220467 + 0.0381860i
\(749\) 17.0736 + 29.5723i 0.623855 + 1.08055i
\(750\) 0 0
\(751\) −4.74469 + 26.9085i −0.173136 + 0.981904i 0.767137 + 0.641483i \(0.221681\pi\)
−0.940273 + 0.340421i \(0.889430\pi\)
\(752\) −0.177519 0.307471i −0.00647344 0.0112123i
\(753\) 0 0
\(754\) 6.03802 + 5.06650i 0.219892 + 0.184511i
\(755\) 22.8332 + 8.31061i 0.830986 + 0.302454i
\(756\) 0 0
\(757\) −5.61128 + 4.70842i −0.203945 + 0.171131i −0.739040 0.673662i \(-0.764720\pi\)
0.535094 + 0.844792i \(0.320276\pi\)
\(758\) −1.86143 10.5567i −0.0676103 0.383437i
\(759\) 0 0
\(760\) −0.230552 31.3169i −0.00836300 1.13598i
\(761\) 23.1830 0.840384 0.420192 0.907435i \(-0.361963\pi\)
0.420192 + 0.907435i \(0.361963\pi\)
\(762\) 0 0
\(763\) 25.9722 21.7933i 0.940259 0.788971i
\(764\) 3.76769 1.37133i 0.136310 0.0496129i
\(765\) 0 0
\(766\) −6.23917 5.23529i −0.225430 0.189159i
\(767\) −2.72803 + 4.72508i −0.0985033 + 0.170613i
\(768\) 0 0
\(769\) −0.775845 + 4.40003i −0.0279777 + 0.158669i −0.995596 0.0937492i \(-0.970115\pi\)
0.967618 + 0.252418i \(0.0812259\pi\)
\(770\) 0.422046 2.39354i 0.0152095 0.0862572i
\(771\) 0 0
\(772\) −0.977407 + 1.69292i −0.0351776 + 0.0609294i
\(773\) −3.04782 2.55742i −0.109622 0.0919841i 0.586329 0.810073i \(-0.300573\pi\)
−0.695951 + 0.718089i \(0.745017\pi\)
\(774\) 0 0
\(775\) 2.68227 0.976265i 0.0963499 0.0350685i
\(776\) 0.219570 0.184241i 0.00788210 0.00661386i
\(777\) 0 0
\(778\) −32.0746 −1.14993
\(779\) 32.0702 18.8319i 1.14903 0.674721i
\(780\) 0 0
\(781\) 0.719656 + 4.08137i 0.0257513 + 0.146043i
\(782\) 1.41534 1.18762i 0.0506126 0.0424690i
\(783\) 0 0
\(784\) 0.00144999 0.000527755i 5.17855e−5 1.88484e-5i
\(785\) 29.8371 + 25.0363i 1.06493 + 0.893583i
\(786\) 0 0
\(787\) 16.6866 + 28.9020i 0.594813 + 1.03025i 0.993573 + 0.113191i \(0.0361073\pi\)
−0.398760 + 0.917055i \(0.630559\pi\)
\(788\) −4.53044 + 25.6934i −0.161390 + 0.915290i
\(789\) 0 0
\(790\) 18.0582 + 31.2778i 0.642484 + 1.11281i
\(791\) −14.6001 + 25.2882i −0.519121 + 0.899144i
\(792\) 0 0
\(793\) −3.46198 1.26006i −0.122939 0.0447460i
\(794\) 12.9474 4.71248i 0.459487 0.167240i
\(795\) 0 0
\(796\) 3.79756 + 21.5370i 0.134601 + 0.763360i
\(797\) 3.56036 0.126115 0.0630573 0.998010i \(-0.479915\pi\)
0.0630573 + 0.998010i \(0.479915\pi\)
\(798\) 0 0
\(799\) 20.2499 0.716390
\(800\) 1.38191 + 7.83721i 0.0488579 + 0.277087i
\(801\) 0 0
\(802\) 7.63429 2.77865i 0.269576 0.0981176i
\(803\) 3.96286 + 1.44236i 0.139846 + 0.0508999i
\(804\) 0 0
\(805\) 2.95336 5.11538i 0.104092 0.180293i
\(806\) −1.30525 2.26075i −0.0459753 0.0796316i
\(807\) 0 0
\(808\) 5.14099 29.1560i 0.180859 1.02570i
\(809\) 19.2476 + 33.3379i 0.676710 + 1.17210i 0.975966 + 0.217924i \(0.0699285\pi\)
−0.299255 + 0.954173i \(0.596738\pi\)
\(810\) 0 0
\(811\) −9.88713 8.29628i −0.347184 0.291322i 0.452474 0.891778i \(-0.350541\pi\)
−0.799658 + 0.600456i \(0.794986\pi\)
\(812\) 18.6710 + 6.79569i 0.655224 + 0.238482i
\(813\) 0 0
\(814\) −2.68723 + 2.25486i −0.0941874 + 0.0790327i
\(815\) −8.08899 45.8750i −0.283345 1.60693i
\(816\) 0 0
\(817\) −42.8021 24.2934i −1.49745 0.849919i
\(818\) 14.0770 0.492190
\(819\) 0 0
\(820\) −20.3011 + 17.0347i −0.708946 + 0.594876i
\(821\) −40.7301 + 14.8246i −1.42149 + 0.517381i −0.934480 0.356015i \(-0.884135\pi\)
−0.487011 + 0.873396i \(0.661913\pi\)
\(822\) 0 0
\(823\) −10.3452 8.68068i −0.360612 0.302590i 0.444422 0.895817i \(-0.353409\pi\)
−0.805035 + 0.593228i \(0.797853\pi\)
\(824\) 10.1728 17.6198i 0.354385 0.613813i
\(825\) 0 0
\(826\) 1.50563 8.53882i 0.0523874 0.297104i
\(827\) −2.89012 + 16.3907i −0.100499 + 0.569960i 0.892424 + 0.451199i \(0.149003\pi\)
−0.992923 + 0.118761i \(0.962108\pi\)
\(828\) 0 0
\(829\) 24.4334 42.3198i 0.848605 1.46983i −0.0338476 0.999427i \(-0.510776\pi\)
0.882453 0.470401i \(-0.155891\pi\)
\(830\) 9.61721 + 8.06980i 0.333818 + 0.280107i
\(831\) 0 0
\(832\) 6.95471 2.53131i 0.241111 0.0877573i
\(833\) −0.0674192 + 0.0565714i −0.00233594 + 0.00196008i
\(834\) 0 0
\(835\) 57.9718 2.00620
\(836\) 1.42659 + 1.67495i 0.0493398 + 0.0579294i
\(837\) 0 0
\(838\) 3.20414 + 18.1716i 0.110685 + 0.627728i
\(839\) −27.7401 + 23.2767i −0.957695 + 0.803601i −0.980577 0.196137i \(-0.937160\pi\)
0.0228818 + 0.999738i \(0.492716\pi\)
\(840\) 0 0
\(841\) −7.78446 2.83331i −0.268430 0.0977004i
\(842\) −13.3987 11.2429i −0.461751 0.387455i
\(843\) 0 0
\(844\) 12.9321 + 22.3991i 0.445142 + 0.771008i
\(845\) 4.76857 27.0439i 0.164044 0.930339i
\(846\) 0 0
\(847\) −14.3653 24.8814i −0.493598 0.854936i
\(848\) −0.0316221 + 0.0547710i −0.00108591 + 0.00188084i
\(849\) 0 0
\(850\) 2.78668 + 1.01427i 0.0955825 + 0.0347892i
\(851\) −8.01114 + 2.91582i −0.274618 + 0.0999530i
\(852\) 0 0
\(853\) 8.79369 + 49.8715i 0.301090 + 1.70757i 0.641360 + 0.767240i \(0.278370\pi\)
−0.340270 + 0.940328i \(0.610519\pi\)
\(854\) 5.85473 0.200345
\(855\) 0 0
\(856\) −36.5259 −1.24843
\(857\) −7.66849 43.4902i −0.261951 1.48560i −0.777580 0.628784i \(-0.783553\pi\)
0.515629 0.856812i \(-0.327558\pi\)
\(858\) 0 0
\(859\) 4.35457 1.58493i 0.148576 0.0540772i −0.266662 0.963790i \(-0.585921\pi\)
0.415238 + 0.909713i \(0.363698\pi\)
\(860\) 32.9552 + 11.9947i 1.12376 + 0.409016i
\(861\) 0 0
\(862\) 16.6621 28.8596i 0.567513 0.982962i
\(863\) −23.1202 40.0454i −0.787021 1.36316i −0.927784 0.373117i \(-0.878289\pi\)
0.140763 0.990043i \(-0.455044\pi\)
\(864\) 0 0
\(865\) −4.76099 + 27.0009i −0.161879 + 0.918059i
\(866\) −0.888003 1.53807i −0.0301756 0.0522656i
\(867\) 0 0
\(868\) −5.04101 4.22991i −0.171103 0.143573i
\(869\) −6.27156 2.28266i −0.212748 0.0774340i
\(870\) 0 0
\(871\) 5.48680 4.60397i 0.185913 0.156000i
\(872\) 6.29756 + 35.7152i 0.213262 + 1.20947i
\(873\) 0 0
\(874\) −1.17617 3.15896i −0.0397847 0.106853i
\(875\) −24.1037 −0.814854
\(876\) 0 0
\(877\) −16.0646 + 13.4798i −0.542465 + 0.455182i −0.872380 0.488829i \(-0.837424\pi\)
0.329915 + 0.944011i \(0.392980\pi\)
\(878\) 25.9047 9.42853i 0.874240 0.318197i
\(879\) 0 0
\(880\) 0.0334331 + 0.0280537i 0.00112703 + 0.000945689i
\(881\) −8.69800 + 15.0654i −0.293043 + 0.507565i −0.974528 0.224267i \(-0.928001\pi\)
0.681485 + 0.731832i \(0.261335\pi\)
\(882\) 0 0
\(883\) 2.73190 15.4934i 0.0919356 0.521393i −0.903708 0.428150i \(-0.859166\pi\)
0.995643 0.0932430i \(-0.0297233\pi\)
\(884\) −0.747053 + 4.23675i −0.0251261 + 0.142497i
\(885\) 0 0
\(886\) −7.75995 + 13.4406i −0.260701 + 0.451547i
\(887\) 17.7044 + 14.8557i 0.594455 + 0.498807i 0.889658 0.456627i \(-0.150943\pi\)
−0.295203 + 0.955435i \(0.595387\pi\)
\(888\) 0 0
\(889\) −13.8262 + 5.03234i −0.463717 + 0.168779i
\(890\) 2.73442 2.29445i 0.0916580 0.0769102i
\(891\) 0 0
\(892\) −24.1958 −0.810136
\(893\) 12.3799 34.8086i 0.414276 1.16482i
\(894\) 0 0
\(895\) 2.88191 + 16.3441i 0.0963317 + 0.546324i
\(896\) 13.9047 11.6674i 0.464522 0.389781i
\(897\) 0 0
\(898\) 10.1382 + 3.68999i 0.338315 + 0.123136i
\(899\) 9.45929 + 7.93729i 0.315485 + 0.264723i
\(900\) 0 0
\(901\) −1.80360 3.12392i −0.0600865 0.104073i
\(902\) −0.536102 + 3.04038i −0.0178502 + 0.101234i
\(903\) 0 0
\(904\) −15.6172 27.0498i −0.519421 0.899663i
\(905\) 7.09492 12.2888i 0.235843 0.408492i
\(906\) 0 0
\(907\) −17.4662 6.35716i −0.579954 0.211086i 0.0353511 0.999375i \(-0.488745\pi\)
−0.615305 + 0.788289i \(0.710967\pi\)
\(908\) 30.4337 11.0769i 1.00998 0.367601i
\(909\) 0 0
\(910\) −1.50563 8.53882i −0.0499110 0.283059i
\(911\) −4.35410 −0.144258 −0.0721289 0.997395i \(-0.522979\pi\)
−0.0721289 + 0.997395i \(0.522979\pi\)
\(912\) 0 0
\(913\) −2.31996 −0.0767793
\(914\) 2.93000 + 16.6168i 0.0969157 + 0.549636i
\(915\) 0 0
\(916\) −6.76827 + 2.46345i −0.223630 + 0.0813946i
\(917\) −48.8312 17.7731i −1.61255 0.586919i
\(918\) 0 0
\(919\) 3.91488 6.78077i 0.129140 0.223677i −0.794204 0.607652i \(-0.792112\pi\)
0.923344 + 0.383975i \(0.125445\pi\)
\(920\) 3.15910 + 5.47172i 0.104152 + 0.180397i
\(921\) 0 0
\(922\) 6.02781 34.1854i 0.198515 1.12584i
\(923\) 7.39234 + 12.8039i 0.243322 + 0.421446i
\(924\) 0 0
\(925\) −10.4823 8.79569i −0.344656 0.289201i
\(926\) −11.7224 4.26660i −0.385222 0.140209i
\(927\) 0 0
\(928\) −26.3726 + 22.1292i −0.865722 + 0.726427i
\(929\) −0.423496 2.40176i −0.0138944 0.0787993i 0.977072 0.212909i \(-0.0682937\pi\)
−0.990967 + 0.134109i \(0.957183\pi\)
\(930\) 0 0
\(931\) 0.0560265 + 0.150475i 0.00183619 + 0.00493163i
\(932\) −31.8792 −1.04424
\(933\) 0 0
\(934\) 20.0660 16.8374i 0.656579 0.550935i
\(935\) −2.33915 + 0.851379i −0.0764982 + 0.0278431i
\(936\) 0 0
\(937\) −34.5522 28.9927i −1.12877 0.947150i −0.129756 0.991546i \(-0.541419\pi\)
−0.999014 + 0.0443957i \(0.985864\pi\)
\(938\) −5.69119 + 9.85743i −0.185824 + 0.321856i
\(939\) 0 0
\(940\) −4.57145 + 25.9260i −0.149104 + 0.845613i
\(941\) 9.45290 53.6100i 0.308156 1.74764i −0.300111 0.953904i \(-0.597024\pi\)
0.608266 0.793733i \(-0.291865\pi\)
\(942\) 0 0
\(943\) −3.75150 + 6.49778i −0.122166 + 0.211597i
\(944\) 0.119271 + 0.100080i 0.00388193 + 0.00325732i
\(945\) 0 0
\(946\) 3.83915 1.39733i 0.124821 0.0454313i
\(947\) 8.22487 6.90149i 0.267272 0.224268i −0.499295 0.866432i \(-0.666408\pi\)
0.766567 + 0.642164i \(0.221963\pi\)
\(948\) 0 0
\(949\) 15.0446 0.488368
\(950\) 3.44713 4.17009i 0.111840 0.135296i
\(951\) 0 0
\(952\) −3.12280 17.7103i −0.101211 0.573993i
\(953\) −7.21760 + 6.05628i −0.233801 + 0.196182i −0.752159 0.658981i \(-0.770988\pi\)
0.518359 + 0.855163i \(0.326543\pi\)
\(954\) 0 0
\(955\) 7.77719 + 2.83067i 0.251664 + 0.0915982i
\(956\) 7.86484 + 6.59938i 0.254367 + 0.213439i
\(957\) 0 0
\(958\) 0.172304 + 0.298439i 0.00556689 + 0.00964214i
\(959\) −8.89198 + 50.4289i −0.287137 + 1.62843i
\(960\) 0 0
\(961\) 13.4552 + 23.3050i 0.434038 + 0.751776i
\(962\) −6.25718 + 10.8378i −0.201740 + 0.349423i
\(963\) 0 0
\(964\) −12.5407 4.56444i −0.403909 0.147011i
\(965\) −3.79174 + 1.38008i −0.122060 + 0.0444263i
\(966\) 0 0
\(967\) 4.75847 + 26.9866i 0.153022 + 0.867831i 0.960572 + 0.278031i \(0.0896820\pi\)
−0.807550 + 0.589799i \(0.799207\pi\)
\(968\) 30.7320 0.987765
\(969\) 0 0
\(970\) 0.224927 0.00722197
\(971\) −3.48932 19.7889i −0.111978 0.635057i −0.988202 0.153154i \(-0.951057\pi\)
0.876225 0.481903i \(-0.160054\pi\)
\(972\) 0 0
\(973\) 7.92185 2.88332i 0.253963 0.0924349i
\(974\) 20.0247 + 7.28840i 0.641633 + 0.233535i
\(975\) 0 0
\(976\) −0.0525666 + 0.0910480i −0.00168262 + 0.00291438i
\(977\) 7.06371 + 12.2347i 0.225988 + 0.391423i 0.956615 0.291354i \(-0.0941056\pi\)
−0.730627 + 0.682776i \(0.760772\pi\)
\(978\) 0 0
\(979\) −0.114542 + 0.649602i −0.00366079 + 0.0207614i
\(980\) −0.0572085 0.0990880i −0.00182746 0.00316525i
\(981\) 0 0
\(982\) 22.9565 + 19.2628i 0.732572 + 0.614701i
\(983\) −31.2494 11.3739i −0.996702 0.362770i −0.208390 0.978046i \(-0.566822\pi\)
−0.788312 + 0.615276i \(0.789045\pi\)
\(984\) 0 0
\(985\) −41.2545 + 34.6166i −1.31448 + 1.10298i
\(986\) 2.22772 + 12.6340i 0.0709451 + 0.402350i
\(987\) 0 0
\(988\) 6.82605 + 3.87430i 0.217165 + 0.123258i
\(989\) 9.92902 0.315724
\(990\) 0 0
\(991\) −20.7324 + 17.3965i −0.658585 + 0.552619i −0.909662 0.415348i \(-0.863660\pi\)
0.251077 + 0.967967i \(0.419215\pi\)
\(992\) 10.7144 3.89971i 0.340181 0.123816i
\(993\) 0 0
\(994\) −17.9984 15.1025i −0.570875 0.479021i
\(995\) −22.5710 + 39.0942i −0.715550 + 1.23937i
\(996\) 0 0
\(997\) −9.46467 + 53.6768i −0.299749 + 1.69996i 0.347497 + 0.937681i \(0.387032\pi\)
−0.647247 + 0.762281i \(0.724080\pi\)
\(998\) −4.50485 + 25.5483i −0.142599 + 0.808717i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.y.c.28.1 yes 6
3.2 odd 2 513.2.y.a.28.1 6
19.6 even 9 9747.2.a.u.1.3 3
19.13 odd 18 9747.2.a.bb.1.1 3
19.17 even 9 inner 513.2.y.c.55.1 yes 6
57.17 odd 18 513.2.y.a.55.1 yes 6
57.32 even 18 9747.2.a.v.1.3 3
57.44 odd 18 9747.2.a.bd.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.y.a.28.1 6 3.2 odd 2
513.2.y.a.55.1 yes 6 57.17 odd 18
513.2.y.c.28.1 yes 6 1.1 even 1 trivial
513.2.y.c.55.1 yes 6 19.17 even 9 inner
9747.2.a.u.1.3 3 19.6 even 9
9747.2.a.v.1.3 3 57.32 even 18
9747.2.a.bb.1.1 3 19.13 odd 18
9747.2.a.bd.1.1 3 57.44 odd 18