L(s) = 1 | + (−1.03 − 0.866i)2-s + (−0.0320 − 0.181i)4-s + (0.152 − 0.866i)5-s + (0.733 + 1.27i)7-s + (−1.47 + 2.54i)8-s + (−0.907 + 0.761i)10-s + (2.61 − 4.52i)11-s + (4.58 + 1.66i)13-s + (0.343 − 1.94i)14-s + (3.37 − 1.22i)16-s + (−5.46 − 4.58i)17-s + (0.819 − 4.28i)19-s − 0.162·20-s + (−6.61 + 2.40i)22-s + (0.233 + 1.32i)23-s + ⋯ |
L(s) = 1 | + (−0.729 − 0.612i)2-s + (−0.0160 − 0.0909i)4-s + (0.0682 − 0.387i)5-s + (0.277 + 0.480i)7-s + (−0.520 + 0.901i)8-s + (−0.287 + 0.240i)10-s + (0.787 − 1.36i)11-s + (1.27 + 0.462i)13-s + (0.0917 − 0.520i)14-s + (0.844 − 0.307i)16-s + (−1.32 − 1.11i)17-s + (0.187 − 0.982i)19-s − 0.0363·20-s + (−1.41 + 0.513i)22-s + (0.0487 + 0.276i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.499 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.467595 - 0.809288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.467595 - 0.809288i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-0.819 + 4.28i)T \) |
good | 2 | \( 1 + (1.03 + 0.866i)T + (0.347 + 1.96i)T^{2} \) |
| 5 | \( 1 + (-0.152 + 0.866i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (-0.733 - 1.27i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.61 + 4.52i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.58 - 1.66i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (5.46 + 4.58i)T + (2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (-0.233 - 1.32i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (2.17 - 1.82i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (4.17 + 7.23i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 12.0T + 37T^{2} \) |
| 41 | \( 1 + (-4.81 + 1.75i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (0.594 - 3.37i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-3.05 + 2.56i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (1.47 + 8.34i)T + (-49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-3.28 - 2.75i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (1.64 + 9.33i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (2.03 - 1.70i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (2.19 - 12.4i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (1.09 - 0.400i)T + (55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (-5.81 + 2.11i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (0.520 + 0.902i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-11.9 - 4.35i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-8.88 - 7.45i)T + (16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92014577325210156439199757701, −9.417140759644508866649843021920, −8.870582419307496730899573203261, −8.573606193124555358202354960894, −6.93378838054558889308737873545, −5.89755596967531438308326532174, −4.99567681757440920485967792768, −3.50673148798642380163943310142, −2.09858154399756657008171822011, −0.76562849454090666710299234265,
1.59698637144374982198387079113, 3.52615863949110641001212365483, 4.36348643799765671040574427881, 6.05879938435922550092777509776, 6.82244695591826589416106432603, 7.53286712900591522867129146668, 8.584620863169138976304016532708, 9.105099267192320768228584072496, 10.37779568021297460668418795007, 10.76564686888626601059780660375