Properties

Label 2-513-19.16-c1-0-15
Degree $2$
Conductor $513$
Sign $-0.499 + 0.866i$
Analytic cond. $4.09632$
Root an. cond. $2.02393$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.03 − 0.866i)2-s + (−0.0320 − 0.181i)4-s + (0.152 − 0.866i)5-s + (0.733 + 1.27i)7-s + (−1.47 + 2.54i)8-s + (−0.907 + 0.761i)10-s + (2.61 − 4.52i)11-s + (4.58 + 1.66i)13-s + (0.343 − 1.94i)14-s + (3.37 − 1.22i)16-s + (−5.46 − 4.58i)17-s + (0.819 − 4.28i)19-s − 0.162·20-s + (−6.61 + 2.40i)22-s + (0.233 + 1.32i)23-s + ⋯
L(s)  = 1  + (−0.729 − 0.612i)2-s + (−0.0160 − 0.0909i)4-s + (0.0682 − 0.387i)5-s + (0.277 + 0.480i)7-s + (−0.520 + 0.901i)8-s + (−0.287 + 0.240i)10-s + (0.787 − 1.36i)11-s + (1.27 + 0.462i)13-s + (0.0917 − 0.520i)14-s + (0.844 − 0.307i)16-s + (−1.32 − 1.11i)17-s + (0.187 − 0.982i)19-s − 0.0363·20-s + (−1.41 + 0.513i)22-s + (0.0487 + 0.276i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.499 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(513\)    =    \(3^{3} \cdot 19\)
Sign: $-0.499 + 0.866i$
Analytic conductor: \(4.09632\)
Root analytic conductor: \(2.02393\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{513} (244, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 513,\ (\ :1/2),\ -0.499 + 0.866i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.467595 - 0.809288i\)
\(L(\frac12)\) \(\approx\) \(0.467595 - 0.809288i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 + (-0.819 + 4.28i)T \)
good2 \( 1 + (1.03 + 0.866i)T + (0.347 + 1.96i)T^{2} \)
5 \( 1 + (-0.152 + 0.866i)T + (-4.69 - 1.71i)T^{2} \)
7 \( 1 + (-0.733 - 1.27i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-2.61 + 4.52i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-4.58 - 1.66i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (5.46 + 4.58i)T + (2.95 + 16.7i)T^{2} \)
23 \( 1 + (-0.233 - 1.32i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (2.17 - 1.82i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (4.17 + 7.23i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 12.0T + 37T^{2} \)
41 \( 1 + (-4.81 + 1.75i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (0.594 - 3.37i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (-3.05 + 2.56i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + (1.47 + 8.34i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (-3.28 - 2.75i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.64 + 9.33i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (2.03 - 1.70i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (2.19 - 12.4i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (1.09 - 0.400i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-5.81 + 2.11i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (0.520 + 0.902i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-11.9 - 4.35i)T + (68.1 + 57.2i)T^{2} \)
97 \( 1 + (-8.88 - 7.45i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92014577325210156439199757701, −9.417140759644508866649843021920, −8.870582419307496730899573203261, −8.573606193124555358202354960894, −6.93378838054558889308737873545, −5.89755596967531438308326532174, −4.99567681757440920485967792768, −3.50673148798642380163943310142, −2.09858154399756657008171822011, −0.76562849454090666710299234265, 1.59698637144374982198387079113, 3.52615863949110641001212365483, 4.36348643799765671040574427881, 6.05879938435922550092777509776, 6.82244695591826589416106432603, 7.53286712900591522867129146668, 8.584620863169138976304016532708, 9.105099267192320768228584072496, 10.37779568021297460668418795007, 10.76564686888626601059780660375

Graph of the $Z$-function along the critical line