Properties

Label 513.2.y.c.244.1
Level $513$
Weight $2$
Character 513.244
Analytic conductor $4.096$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(28,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.y (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,9,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 244.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 513.244
Dual form 513.2.y.c.82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03209 - 0.866025i) q^{2} +(-0.0320889 - 0.181985i) q^{4} +(0.152704 - 0.866025i) q^{5} +(0.733956 + 1.27125i) q^{7} +(-1.47178 + 2.54920i) q^{8} +(-0.907604 + 0.761570i) q^{10} +(2.61334 - 4.52644i) q^{11} +(4.58512 + 1.66885i) q^{13} +(0.343426 - 1.94767i) q^{14} +(3.37939 - 1.23000i) q^{16} +(-5.46064 - 4.58202i) q^{17} +(0.819078 - 4.28125i) q^{19} -0.162504 q^{20} +(-6.61721 + 2.40847i) q^{22} +(0.233956 + 1.32683i) q^{23} +(3.97178 + 1.44561i) q^{25} +(-3.28699 - 5.69323i) q^{26} +(0.207796 - 0.174362i) q^{28} +(-2.17365 + 1.82391i) q^{29} +(-4.17752 - 7.23567i) q^{31} +(0.979055 + 0.356347i) q^{32} +(1.66772 + 9.45810i) q^{34} +(1.21301 - 0.441500i) q^{35} -12.0642 q^{37} +(-4.55303 + 3.70929i) q^{38} +(1.98293 + 1.66387i) q^{40} +(4.81180 - 1.75135i) q^{41} +(-0.594922 + 3.37397i) q^{43} +(-0.907604 - 0.330341i) q^{44} +(0.907604 - 1.57202i) q^{46} +(3.05303 - 2.56180i) q^{47} +(2.42262 - 4.19610i) q^{49} +(-2.84730 - 4.93166i) q^{50} +(0.156574 - 0.887975i) q^{52} +(-1.47178 - 8.34689i) q^{53} +(-3.52094 - 2.95442i) q^{55} -4.32089 q^{56} +3.82295 q^{58} +(3.28699 + 2.75811i) q^{59} +(-1.64543 - 9.33170i) q^{61} +(-1.95471 + 11.0857i) q^{62} +(-4.29813 - 7.44459i) q^{64} +(2.14543 - 3.71599i) q^{65} +(-2.03209 + 1.70513i) q^{67} +(-0.658633 + 1.14079i) q^{68} +(-1.63429 - 0.594831i) q^{70} +(-2.19207 + 12.4318i) q^{71} +(-1.09967 + 0.400247i) q^{73} +(12.4513 + 10.4479i) q^{74} +(-0.805407 - 0.0116794i) q^{76} +7.67230 q^{77} +(5.81655 - 2.11705i) q^{79} +(-0.549163 - 3.11446i) q^{80} +(-6.48293 - 2.35959i) q^{82} +(-0.520945 - 0.902302i) q^{83} +(-4.80200 + 4.02936i) q^{85} +(3.53596 - 2.96702i) q^{86} +(7.69253 + 13.3239i) q^{88} +(11.9684 + 4.35613i) q^{89} +(1.24376 + 7.05369i) q^{91} +(0.233956 - 0.0851529i) q^{92} -5.36959 q^{94} +(-3.58260 - 1.36310i) q^{95} +(8.88919 + 7.45891i) q^{97} +(-6.13429 + 2.23270i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} + 3 q^{5} + 9 q^{7} + 6 q^{8} - 9 q^{10} + 9 q^{11} + 6 q^{13} + 24 q^{14} + 9 q^{16} - 24 q^{17} - 12 q^{19} - 6 q^{20} - 9 q^{22} + 6 q^{23} + 9 q^{25} - 12 q^{26} + 42 q^{28}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03209 0.866025i −0.729797 0.612372i 0.200279 0.979739i \(-0.435815\pi\)
−0.930076 + 0.367366i \(0.880260\pi\)
\(3\) 0 0
\(4\) −0.0320889 0.181985i −0.0160444 0.0909926i
\(5\) 0.152704 0.866025i 0.0682911 0.387298i −0.931435 0.363907i \(-0.881443\pi\)
0.999726 0.0233912i \(-0.00744633\pi\)
\(6\) 0 0
\(7\) 0.733956 + 1.27125i 0.277409 + 0.480487i 0.970740 0.240133i \(-0.0771909\pi\)
−0.693331 + 0.720619i \(0.743858\pi\)
\(8\) −1.47178 + 2.54920i −0.520353 + 0.901278i
\(9\) 0 0
\(10\) −0.907604 + 0.761570i −0.287010 + 0.240830i
\(11\) 2.61334 4.52644i 0.787952 1.36477i −0.139268 0.990255i \(-0.544475\pi\)
0.927220 0.374518i \(-0.122192\pi\)
\(12\) 0 0
\(13\) 4.58512 + 1.66885i 1.27168 + 0.462855i 0.887673 0.460473i \(-0.152320\pi\)
0.384011 + 0.923329i \(0.374543\pi\)
\(14\) 0.343426 1.94767i 0.0917844 0.520535i
\(15\) 0 0
\(16\) 3.37939 1.23000i 0.844846 0.307499i
\(17\) −5.46064 4.58202i −1.32440 1.11130i −0.985352 0.170533i \(-0.945451\pi\)
−0.339047 0.940769i \(-0.610105\pi\)
\(18\) 0 0
\(19\) 0.819078 4.28125i 0.187909 0.982186i
\(20\) −0.162504 −0.0363370
\(21\) 0 0
\(22\) −6.61721 + 2.40847i −1.41079 + 0.513487i
\(23\) 0.233956 + 1.32683i 0.0487831 + 0.276663i 0.999436 0.0335952i \(-0.0106957\pi\)
−0.950652 + 0.310258i \(0.899585\pi\)
\(24\) 0 0
\(25\) 3.97178 + 1.44561i 0.794356 + 0.289122i
\(26\) −3.28699 5.69323i −0.644632 1.11653i
\(27\) 0 0
\(28\) 0.207796 0.174362i 0.0392698 0.0329513i
\(29\) −2.17365 + 1.82391i −0.403636 + 0.338691i −0.821897 0.569636i \(-0.807084\pi\)
0.418261 + 0.908327i \(0.362640\pi\)
\(30\) 0 0
\(31\) −4.17752 7.23567i −0.750304 1.29957i −0.947675 0.319237i \(-0.896574\pi\)
0.197371 0.980329i \(-0.436760\pi\)
\(32\) 0.979055 + 0.356347i 0.173074 + 0.0629939i
\(33\) 0 0
\(34\) 1.66772 + 9.45810i 0.286011 + 1.62205i
\(35\) 1.21301 0.441500i 0.205036 0.0746271i
\(36\) 0 0
\(37\) −12.0642 −1.98334 −0.991669 0.128810i \(-0.958884\pi\)
−0.991669 + 0.128810i \(0.958884\pi\)
\(38\) −4.55303 + 3.70929i −0.738600 + 0.601726i
\(39\) 0 0
\(40\) 1.98293 + 1.66387i 0.313528 + 0.263081i
\(41\) 4.81180 1.75135i 0.751478 0.273515i 0.0622502 0.998061i \(-0.480172\pi\)
0.689227 + 0.724545i \(0.257950\pi\)
\(42\) 0 0
\(43\) −0.594922 + 3.37397i −0.0907248 + 0.514526i 0.905249 + 0.424881i \(0.139684\pi\)
−0.995974 + 0.0896446i \(0.971427\pi\)
\(44\) −0.907604 0.330341i −0.136826 0.0498007i
\(45\) 0 0
\(46\) 0.907604 1.57202i 0.133819 0.231781i
\(47\) 3.05303 2.56180i 0.445331 0.373677i −0.392369 0.919808i \(-0.628344\pi\)
0.837700 + 0.546131i \(0.183900\pi\)
\(48\) 0 0
\(49\) 2.42262 4.19610i 0.346088 0.599443i
\(50\) −2.84730 4.93166i −0.402669 0.697442i
\(51\) 0 0
\(52\) 0.156574 0.887975i 0.0217129 0.123140i
\(53\) −1.47178 8.34689i −0.202165 1.14653i −0.901839 0.432072i \(-0.857783\pi\)
0.699675 0.714462i \(-0.253328\pi\)
\(54\) 0 0
\(55\) −3.52094 2.95442i −0.474764 0.398374i
\(56\) −4.32089 −0.577403
\(57\) 0 0
\(58\) 3.82295 0.501978
\(59\) 3.28699 + 2.75811i 0.427930 + 0.359075i 0.831170 0.556019i \(-0.187672\pi\)
−0.403240 + 0.915094i \(0.632116\pi\)
\(60\) 0 0
\(61\) −1.64543 9.33170i −0.210676 1.19480i −0.888255 0.459351i \(-0.848082\pi\)
0.677579 0.735450i \(-0.263029\pi\)
\(62\) −1.95471 + 11.0857i −0.248248 + 1.40788i
\(63\) 0 0
\(64\) −4.29813 7.44459i −0.537267 0.930573i
\(65\) 2.14543 3.71599i 0.266108 0.460912i
\(66\) 0 0
\(67\) −2.03209 + 1.70513i −0.248259 + 0.208314i −0.758422 0.651763i \(-0.774029\pi\)
0.510163 + 0.860078i \(0.329585\pi\)
\(68\) −0.658633 + 1.14079i −0.0798710 + 0.138341i
\(69\) 0 0
\(70\) −1.63429 0.594831i −0.195334 0.0710959i
\(71\) −2.19207 + 12.4318i −0.260150 + 1.47539i 0.522347 + 0.852733i \(0.325056\pi\)
−0.782498 + 0.622654i \(0.786055\pi\)
\(72\) 0 0
\(73\) −1.09967 + 0.400247i −0.128707 + 0.0468454i −0.405571 0.914064i \(-0.632927\pi\)
0.276864 + 0.960909i \(0.410705\pi\)
\(74\) 12.4513 + 10.4479i 1.44743 + 1.21454i
\(75\) 0 0
\(76\) −0.805407 0.0116794i −0.0923866 0.00133972i
\(77\) 7.67230 0.874340
\(78\) 0 0
\(79\) 5.81655 2.11705i 0.654413 0.238187i 0.00659074 0.999978i \(-0.497902\pi\)
0.647822 + 0.761791i \(0.275680\pi\)
\(80\) −0.549163 3.11446i −0.0613983 0.348207i
\(81\) 0 0
\(82\) −6.48293 2.35959i −0.715919 0.260573i
\(83\) −0.520945 0.902302i −0.0571811 0.0990406i 0.836018 0.548702i \(-0.184878\pi\)
−0.893199 + 0.449662i \(0.851545\pi\)
\(84\) 0 0
\(85\) −4.80200 + 4.02936i −0.520850 + 0.437045i
\(86\) 3.53596 2.96702i 0.381292 0.319942i
\(87\) 0 0
\(88\) 7.69253 + 13.3239i 0.820027 + 1.42033i
\(89\) 11.9684 + 4.35613i 1.26865 + 0.461749i 0.886661 0.462420i \(-0.153019\pi\)
0.381984 + 0.924169i \(0.375241\pi\)
\(90\) 0 0
\(91\) 1.24376 + 7.05369i 0.130381 + 0.739428i
\(92\) 0.233956 0.0851529i 0.0243916 0.00887780i
\(93\) 0 0
\(94\) −5.36959 −0.553830
\(95\) −3.58260 1.36310i −0.367567 0.139852i
\(96\) 0 0
\(97\) 8.88919 + 7.45891i 0.902560 + 0.757338i 0.970689 0.240339i \(-0.0772585\pi\)
−0.0681291 + 0.997677i \(0.521703\pi\)
\(98\) −6.13429 + 2.23270i −0.619656 + 0.225536i
\(99\) 0 0
\(100\) 0.135630 0.769193i 0.0135630 0.0769193i
\(101\) −5.24510 1.90906i −0.521907 0.189959i 0.0676142 0.997712i \(-0.478461\pi\)
−0.589521 + 0.807753i \(0.700684\pi\)
\(102\) 0 0
\(103\) 1.46064 2.52990i 0.143921 0.249278i −0.785049 0.619434i \(-0.787362\pi\)
0.928970 + 0.370155i \(0.120696\pi\)
\(104\) −11.0025 + 9.23222i −1.07889 + 0.905293i
\(105\) 0 0
\(106\) −5.70961 + 9.88933i −0.554566 + 0.960537i
\(107\) 5.36097 + 9.28547i 0.518264 + 0.897660i 0.999775 + 0.0212197i \(0.00675495\pi\)
−0.481511 + 0.876440i \(0.659912\pi\)
\(108\) 0 0
\(109\) 0.355914 2.01849i 0.0340904 0.193336i −0.963007 0.269478i \(-0.913149\pi\)
0.997097 + 0.0761414i \(0.0242600\pi\)
\(110\) 1.07532 + 6.09845i 0.102528 + 0.581465i
\(111\) 0 0
\(112\) 4.04395 + 3.39328i 0.382117 + 0.320634i
\(113\) 4.86484 0.457645 0.228823 0.973468i \(-0.426512\pi\)
0.228823 + 0.973468i \(0.426512\pi\)
\(114\) 0 0
\(115\) 1.18479 0.110482
\(116\) 0.401674 + 0.337044i 0.0372945 + 0.0312938i
\(117\) 0 0
\(118\) −1.00387 5.69323i −0.0924138 0.524104i
\(119\) 1.81702 10.3048i 0.166566 0.944642i
\(120\) 0 0
\(121\) −8.15910 14.1320i −0.741736 1.28473i
\(122\) −6.38326 + 11.0561i −0.577913 + 1.00097i
\(123\) 0 0
\(124\) −1.18273 + 0.992431i −0.106213 + 0.0891229i
\(125\) 4.05690 7.02676i 0.362861 0.628493i
\(126\) 0 0
\(127\) 7.17024 + 2.60976i 0.636256 + 0.231578i 0.639952 0.768415i \(-0.278954\pi\)
−0.00369577 + 0.999993i \(0.501176\pi\)
\(128\) −1.64930 + 9.35365i −0.145779 + 0.826753i
\(129\) 0 0
\(130\) −5.43242 + 1.97724i −0.476455 + 0.173415i
\(131\) 9.20233 + 7.72167i 0.804012 + 0.674646i 0.949170 0.314763i \(-0.101925\pi\)
−0.145159 + 0.989408i \(0.546369\pi\)
\(132\) 0 0
\(133\) 6.04370 2.10100i 0.524055 0.182180i
\(134\) 3.57398 0.308745
\(135\) 0 0
\(136\) 19.7173 7.17653i 1.69075 0.615382i
\(137\) 0.695060 + 3.94188i 0.0593829 + 0.336777i 0.999996 0.00270222i \(-0.000860146\pi\)
−0.940613 + 0.339480i \(0.889749\pi\)
\(138\) 0 0
\(139\) 21.4119 + 7.79331i 1.81614 + 0.661020i 0.996051 + 0.0887793i \(0.0282966\pi\)
0.820086 + 0.572241i \(0.193926\pi\)
\(140\) −0.119271 0.206583i −0.0100802 0.0174594i
\(141\) 0 0
\(142\) 13.0287 10.9324i 1.09334 0.917424i
\(143\) 19.5364 16.3930i 1.63372 1.37085i
\(144\) 0 0
\(145\) 1.24763 + 2.16095i 0.103610 + 0.179457i
\(146\) 1.48158 + 0.539252i 0.122617 + 0.0446288i
\(147\) 0 0
\(148\) 0.387126 + 2.19550i 0.0318216 + 0.180469i
\(149\) −16.4217 + 5.97702i −1.34532 + 0.489657i −0.911484 0.411334i \(-0.865063\pi\)
−0.433837 + 0.900991i \(0.642841\pi\)
\(150\) 0 0
\(151\) −0.638156 −0.0519324 −0.0259662 0.999663i \(-0.508266\pi\)
−0.0259662 + 0.999663i \(0.508266\pi\)
\(152\) 9.70826 + 8.38906i 0.787444 + 0.680443i
\(153\) 0 0
\(154\) −7.91850 6.64441i −0.638091 0.535422i
\(155\) −6.90420 + 2.51292i −0.554559 + 0.201843i
\(156\) 0 0
\(157\) 0.216415 1.22735i 0.0172718 0.0979530i −0.974953 0.222410i \(-0.928608\pi\)
0.992225 + 0.124457i \(0.0397188\pi\)
\(158\) −7.83662 2.85230i −0.623448 0.226916i
\(159\) 0 0
\(160\) 0.458111 0.793471i 0.0362168 0.0627294i
\(161\) −1.51501 + 1.27125i −0.119400 + 0.100188i
\(162\) 0 0
\(163\) −3.63176 + 6.29039i −0.284461 + 0.492701i −0.972478 0.232993i \(-0.925148\pi\)
0.688017 + 0.725694i \(0.258481\pi\)
\(164\) −0.473126 0.819478i −0.0369449 0.0639905i
\(165\) 0 0
\(166\) −0.243756 + 1.38241i −0.0189191 + 0.107296i
\(167\) 1.92350 + 10.9087i 0.148845 + 0.844140i 0.964199 + 0.265178i \(0.0854307\pi\)
−0.815355 + 0.578961i \(0.803458\pi\)
\(168\) 0 0
\(169\) 8.27972 + 6.94751i 0.636901 + 0.534424i
\(170\) 8.44562 0.647750
\(171\) 0 0
\(172\) 0.633103 0.0482737
\(173\) 6.11927 + 5.13468i 0.465240 + 0.390382i 0.845055 0.534680i \(-0.179568\pi\)
−0.379815 + 0.925062i \(0.624012\pi\)
\(174\) 0 0
\(175\) 1.07738 + 6.11013i 0.0814424 + 0.461883i
\(176\) 3.26399 18.5110i 0.246032 1.39532i
\(177\) 0 0
\(178\) −8.57991 14.8608i −0.643091 1.11387i
\(179\) −3.61721 + 6.26519i −0.270363 + 0.468283i −0.968955 0.247238i \(-0.920477\pi\)
0.698592 + 0.715520i \(0.253810\pi\)
\(180\) 0 0
\(181\) −15.7062 + 13.1791i −1.16743 + 0.979593i −0.999980 0.00628756i \(-0.997999\pi\)
−0.167453 + 0.985880i \(0.553554\pi\)
\(182\) 4.82501 8.35716i 0.357653 0.619474i
\(183\) 0 0
\(184\) −3.72668 1.35640i −0.274735 0.0999952i
\(185\) −1.84224 + 10.4479i −0.135444 + 0.768144i
\(186\) 0 0
\(187\) −35.0107 + 12.7429i −2.56024 + 0.931851i
\(188\) −0.564178 0.473401i −0.0411469 0.0345263i
\(189\) 0 0
\(190\) 2.51707 + 4.50946i 0.182608 + 0.327151i
\(191\) 5.78106 0.418303 0.209151 0.977883i \(-0.432930\pi\)
0.209151 + 0.977883i \(0.432930\pi\)
\(192\) 0 0
\(193\) 14.7233 5.35883i 1.05980 0.385737i 0.247450 0.968901i \(-0.420407\pi\)
0.812355 + 0.583163i \(0.198185\pi\)
\(194\) −2.71482 15.3965i −0.194913 1.10541i
\(195\) 0 0
\(196\) −0.841367 0.306232i −0.0600976 0.0218737i
\(197\) −11.8905 20.5950i −0.847165 1.46733i −0.883728 0.468002i \(-0.844974\pi\)
0.0365624 0.999331i \(-0.488359\pi\)
\(198\) 0 0
\(199\) −11.4816 + 9.63419i −0.813908 + 0.682950i −0.951537 0.307534i \(-0.900496\pi\)
0.137629 + 0.990484i \(0.456052\pi\)
\(200\) −9.53074 + 7.99724i −0.673925 + 0.565491i
\(201\) 0 0
\(202\) 3.76011 + 6.51271i 0.264561 + 0.458233i
\(203\) −3.91400 1.42458i −0.274709 0.0999859i
\(204\) 0 0
\(205\) −0.781937 4.43458i −0.0546128 0.309725i
\(206\) −3.69846 + 1.34613i −0.257684 + 0.0937894i
\(207\) 0 0
\(208\) 17.5476 1.21671
\(209\) −17.2383 14.8959i −1.19240 1.03037i
\(210\) 0 0
\(211\) −6.93036 5.81526i −0.477106 0.400339i 0.372273 0.928123i \(-0.378579\pi\)
−0.849379 + 0.527784i \(0.823023\pi\)
\(212\) −1.47178 + 0.535685i −0.101082 + 0.0367910i
\(213\) 0 0
\(214\) 2.50846 14.2262i 0.171475 0.972480i
\(215\) 2.83110 + 1.03044i 0.193079 + 0.0702751i
\(216\) 0 0
\(217\) 6.13223 10.6213i 0.416283 0.721023i
\(218\) −2.11540 + 1.77503i −0.143273 + 0.120220i
\(219\) 0 0
\(220\) −0.424678 + 0.735564i −0.0286318 + 0.0495917i
\(221\) −17.3910 30.1221i −1.16985 2.02623i
\(222\) 0 0
\(223\) −0.721629 + 4.09256i −0.0483239 + 0.274058i −0.999390 0.0349299i \(-0.988879\pi\)
0.951066 + 0.308988i \(0.0999903\pi\)
\(224\) 0.265578 + 1.50617i 0.0177447 + 0.100635i
\(225\) 0 0
\(226\) −5.02094 4.21307i −0.333988 0.280249i
\(227\) 23.7050 1.57336 0.786679 0.617363i \(-0.211799\pi\)
0.786679 + 0.617363i \(0.211799\pi\)
\(228\) 0 0
\(229\) −19.5175 −1.28976 −0.644878 0.764286i \(-0.723092\pi\)
−0.644878 + 0.764286i \(0.723092\pi\)
\(230\) −1.22281 1.02606i −0.0806298 0.0676564i
\(231\) 0 0
\(232\) −1.45037 8.22546i −0.0952215 0.540028i
\(233\) −0.662666 + 3.75817i −0.0434127 + 0.246206i −0.998790 0.0491834i \(-0.984338\pi\)
0.955377 + 0.295389i \(0.0954492\pi\)
\(234\) 0 0
\(235\) −1.75237 3.03520i −0.114312 0.197995i
\(236\) 0.396459 0.686688i 0.0258073 0.0446996i
\(237\) 0 0
\(238\) −10.7996 + 9.06191i −0.700032 + 0.587396i
\(239\) −0.411474 + 0.712694i −0.0266160 + 0.0461003i −0.879027 0.476773i \(-0.841806\pi\)
0.852411 + 0.522873i \(0.175140\pi\)
\(240\) 0 0
\(241\) 8.13088 + 2.95940i 0.523756 + 0.190632i 0.590348 0.807149i \(-0.298990\pi\)
−0.0665921 + 0.997780i \(0.521213\pi\)
\(242\) −3.81773 + 21.6514i −0.245413 + 1.39181i
\(243\) 0 0
\(244\) −1.64543 + 0.598887i −0.105338 + 0.0383398i
\(245\) −3.26399 2.73881i −0.208528 0.174976i
\(246\) 0 0
\(247\) 10.9003 18.2631i 0.693571 1.16206i
\(248\) 24.5936 1.56169
\(249\) 0 0
\(250\) −10.2724 + 3.73886i −0.649686 + 0.236466i
\(251\) −1.23261 6.99049i −0.0778017 0.441236i −0.998679 0.0513830i \(-0.983637\pi\)
0.920877 0.389853i \(-0.127474\pi\)
\(252\) 0 0
\(253\) 6.61721 + 2.40847i 0.416021 + 0.151419i
\(254\) −5.14022 8.90311i −0.322526 0.558631i
\(255\) 0 0
\(256\) −3.36753 + 2.82569i −0.210470 + 0.176606i
\(257\) −13.9795 + 11.7302i −0.872019 + 0.731711i −0.964522 0.264002i \(-0.914957\pi\)
0.0925035 + 0.995712i \(0.470513\pi\)
\(258\) 0 0
\(259\) −8.85457 15.3366i −0.550196 0.952968i
\(260\) −0.745100 0.271194i −0.0462091 0.0168187i
\(261\) 0 0
\(262\) −2.81046 15.9389i −0.173631 0.984709i
\(263\) −12.0312 + 4.37900i −0.741876 + 0.270021i −0.685183 0.728371i \(-0.740278\pi\)
−0.0566931 + 0.998392i \(0.518056\pi\)
\(264\) 0 0
\(265\) −7.45336 −0.457856
\(266\) −8.05715 3.06558i −0.494016 0.187963i
\(267\) 0 0
\(268\) 0.375515 + 0.315094i 0.0229382 + 0.0192475i
\(269\) 9.42989 3.43220i 0.574951 0.209265i −0.0381469 0.999272i \(-0.512145\pi\)
0.613098 + 0.790007i \(0.289923\pi\)
\(270\) 0 0
\(271\) −2.40033 + 13.6129i −0.145810 + 0.826928i 0.820904 + 0.571066i \(0.193470\pi\)
−0.966714 + 0.255861i \(0.917641\pi\)
\(272\) −24.0895 8.76785i −1.46064 0.531629i
\(273\) 0 0
\(274\) 2.69640 4.67031i 0.162896 0.282144i
\(275\) 16.9231 14.2002i 1.02050 0.856302i
\(276\) 0 0
\(277\) 9.04189 15.6610i 0.543274 0.940979i −0.455439 0.890267i \(-0.650518\pi\)
0.998713 0.0507119i \(-0.0161490\pi\)
\(278\) −15.3498 26.5867i −0.920621 1.59456i
\(279\) 0 0
\(280\) −0.659815 + 3.74200i −0.0394315 + 0.223627i
\(281\) −3.21853 18.2532i −0.192001 1.08889i −0.916625 0.399749i \(-0.869097\pi\)
0.724623 0.689145i \(-0.242014\pi\)
\(282\) 0 0
\(283\) 3.86824 + 3.24584i 0.229943 + 0.192945i 0.750478 0.660895i \(-0.229823\pi\)
−0.520535 + 0.853840i \(0.674268\pi\)
\(284\) 2.33275 0.138423
\(285\) 0 0
\(286\) −34.3601 −2.03175
\(287\) 5.75806 + 4.83158i 0.339887 + 0.285199i
\(288\) 0 0
\(289\) 5.87164 + 33.2998i 0.345391 + 1.95881i
\(290\) 0.583778 3.31077i 0.0342806 0.194415i
\(291\) 0 0
\(292\) 0.108126 + 0.187280i 0.00632761 + 0.0109597i
\(293\) −5.92855 + 10.2685i −0.346349 + 0.599895i −0.985598 0.169105i \(-0.945912\pi\)
0.639248 + 0.769000i \(0.279246\pi\)
\(294\) 0 0
\(295\) 2.89053 2.42544i 0.168293 0.141215i
\(296\) 17.7558 30.7540i 1.03204 1.78754i
\(297\) 0 0
\(298\) 22.1250 + 8.05282i 1.28166 + 0.466488i
\(299\) −1.14156 + 6.47410i −0.0660181 + 0.374407i
\(300\) 0 0
\(301\) −4.72580 + 1.72005i −0.272391 + 0.0991422i
\(302\) 0.658633 + 0.552659i 0.0379001 + 0.0318020i
\(303\) 0 0
\(304\) −2.49794 15.4755i −0.143267 0.887578i
\(305\) −8.33275 −0.477132
\(306\) 0 0
\(307\) 4.87211 1.77330i 0.278066 0.101208i −0.199223 0.979954i \(-0.563842\pi\)
0.477289 + 0.878746i \(0.341620\pi\)
\(308\) −0.246196 1.39625i −0.0140283 0.0795585i
\(309\) 0 0
\(310\) 9.30200 + 3.38565i 0.528318 + 0.192292i
\(311\) 4.11334 + 7.12452i 0.233246 + 0.403994i 0.958762 0.284212i \(-0.0917319\pi\)
−0.725515 + 0.688206i \(0.758399\pi\)
\(312\) 0 0
\(313\) −25.6006 + 21.4815i −1.44703 + 1.21420i −0.512321 + 0.858794i \(0.671214\pi\)
−0.934711 + 0.355410i \(0.884341\pi\)
\(314\) −1.28627 + 1.07931i −0.0725886 + 0.0609091i
\(315\) 0 0
\(316\) −0.571919 0.990592i −0.0321729 0.0557252i
\(317\) 19.1532 + 6.97118i 1.07575 + 0.391541i 0.818324 0.574757i \(-0.194904\pi\)
0.257425 + 0.966298i \(0.417126\pi\)
\(318\) 0 0
\(319\) 2.57532 + 14.6054i 0.144190 + 0.817744i
\(320\) −7.10354 + 2.58548i −0.397100 + 0.144533i
\(321\) 0 0
\(322\) 2.66456 0.148490
\(323\) −24.0895 + 19.6253i −1.34037 + 1.09198i
\(324\) 0 0
\(325\) 15.7986 + 13.2566i 0.876349 + 0.735344i
\(326\) 9.19594 3.34705i 0.509316 0.185376i
\(327\) 0 0
\(328\) −2.61737 + 14.8439i −0.144520 + 0.819615i
\(329\) 5.49747 + 2.00092i 0.303086 + 0.110314i
\(330\) 0 0
\(331\) 8.48932 14.7039i 0.466615 0.808202i −0.532657 0.846331i \(-0.678807\pi\)
0.999273 + 0.0381294i \(0.0121399\pi\)
\(332\) −0.147489 + 0.123758i −0.00809451 + 0.00679210i
\(333\) 0 0
\(334\) 7.46198 12.9245i 0.408301 0.707199i
\(335\) 1.16637 + 2.02022i 0.0637258 + 0.110376i
\(336\) 0 0
\(337\) 4.23349 24.0093i 0.230613 1.30787i −0.621046 0.783774i \(-0.713292\pi\)
0.851659 0.524096i \(-0.175597\pi\)
\(338\) −2.52869 14.3409i −0.137542 0.780041i
\(339\) 0 0
\(340\) 0.887374 + 0.744596i 0.0481246 + 0.0403814i
\(341\) −43.6691 −2.36482
\(342\) 0 0
\(343\) 17.3878 0.938851
\(344\) −7.72534 6.48233i −0.416522 0.349504i
\(345\) 0 0
\(346\) −1.86887 10.5989i −0.100471 0.569800i
\(347\) 1.39734 7.92469i 0.0750130 0.425420i −0.924055 0.382259i \(-0.875146\pi\)
0.999068 0.0431606i \(-0.0137427\pi\)
\(348\) 0 0
\(349\) −3.12701 5.41614i −0.167385 0.289919i 0.770115 0.637906i \(-0.220199\pi\)
−0.937500 + 0.347986i \(0.886866\pi\)
\(350\) 4.17958 7.23924i 0.223408 0.386954i
\(351\) 0 0
\(352\) 4.17159 3.50038i 0.222346 0.186571i
\(353\) −1.76558 + 3.05807i −0.0939722 + 0.162765i −0.909179 0.416405i \(-0.863290\pi\)
0.815207 + 0.579170i \(0.196623\pi\)
\(354\) 0 0
\(355\) 10.4315 + 3.79677i 0.553649 + 0.201512i
\(356\) 0.408700 2.31785i 0.0216610 0.122846i
\(357\) 0 0
\(358\) 9.15910 3.33364i 0.484073 0.176188i
\(359\) 15.5043 + 13.0097i 0.818288 + 0.686625i 0.952570 0.304318i \(-0.0984286\pi\)
−0.134283 + 0.990943i \(0.542873\pi\)
\(360\) 0 0
\(361\) −17.6582 7.01336i −0.929380 0.369124i
\(362\) 27.6236 1.45186
\(363\) 0 0
\(364\) 1.24376 0.452690i 0.0651905 0.0237274i
\(365\) 0.178701 + 1.01346i 0.00935362 + 0.0530470i
\(366\) 0 0
\(367\) −1.52734 0.555907i −0.0797266 0.0290181i 0.301849 0.953356i \(-0.402396\pi\)
−0.381576 + 0.924338i \(0.624618\pi\)
\(368\) 2.42262 + 4.19610i 0.126288 + 0.218737i
\(369\) 0 0
\(370\) 10.9495 9.18772i 0.569237 0.477647i
\(371\) 9.53074 7.99724i 0.494812 0.415196i
\(372\) 0 0
\(373\) 16.9782 + 29.4071i 0.879097 + 1.52264i 0.852334 + 0.522998i \(0.175187\pi\)
0.0267631 + 0.999642i \(0.491480\pi\)
\(374\) 47.1698 + 17.1684i 2.43909 + 0.887758i
\(375\) 0 0
\(376\) 2.03714 + 11.5532i 0.105058 + 0.595811i
\(377\) −13.0103 + 4.73535i −0.670063 + 0.243883i
\(378\) 0 0
\(379\) −16.0300 −0.823407 −0.411704 0.911318i \(-0.635066\pi\)
−0.411704 + 0.911318i \(0.635066\pi\)
\(380\) −0.133103 + 0.695720i −0.00682805 + 0.0356897i
\(381\) 0 0
\(382\) −5.96657 5.00654i −0.305276 0.256157i
\(383\) −9.01501 + 3.28120i −0.460646 + 0.167661i −0.561910 0.827198i \(-0.689933\pi\)
0.101265 + 0.994860i \(0.467711\pi\)
\(384\) 0 0
\(385\) 1.17159 6.64441i 0.0597097 0.338630i
\(386\) −19.8366 7.21994i −1.00966 0.367485i
\(387\) 0 0
\(388\) 1.07217 1.85705i 0.0544310 0.0942773i
\(389\) −8.48886 + 7.12300i −0.430402 + 0.361150i −0.832103 0.554621i \(-0.812863\pi\)
0.401701 + 0.915771i \(0.368419\pi\)
\(390\) 0 0
\(391\) 4.80200 8.31731i 0.242848 0.420625i
\(392\) 7.13113 + 12.3515i 0.360176 + 0.623844i
\(393\) 0 0
\(394\) −5.56371 + 31.5534i −0.280296 + 1.58964i
\(395\) −0.945212 5.36056i −0.0475588 0.269719i
\(396\) 0 0
\(397\) 13.2233 + 11.0956i 0.663657 + 0.556875i 0.911181 0.412007i \(-0.135172\pi\)
−0.247523 + 0.968882i \(0.579617\pi\)
\(398\) 20.1935 1.01221
\(399\) 0 0
\(400\) 15.2003 0.760014
\(401\) −29.1104 24.4265i −1.45370 1.21980i −0.929821 0.368013i \(-0.880038\pi\)
−0.523883 0.851790i \(-0.675517\pi\)
\(402\) 0 0
\(403\) −7.07919 40.1481i −0.352640 1.99992i
\(404\) −0.179111 + 1.01579i −0.00891111 + 0.0505374i
\(405\) 0 0
\(406\) 2.80587 + 4.85992i 0.139253 + 0.241194i
\(407\) −31.5278 + 54.6078i −1.56278 + 2.70681i
\(408\) 0 0
\(409\) 0.103541 0.0868809i 0.00511975 0.00429598i −0.640224 0.768188i \(-0.721159\pi\)
0.645344 + 0.763892i \(0.276714\pi\)
\(410\) −3.03343 + 5.25406i −0.149811 + 0.259480i
\(411\) 0 0
\(412\) −0.507274 0.184633i −0.0249916 0.00909620i
\(413\) −1.09374 + 6.20291i −0.0538194 + 0.305225i
\(414\) 0 0
\(415\) −0.860967 + 0.313366i −0.0422632 + 0.0153825i
\(416\) 3.89440 + 3.26779i 0.190939 + 0.160217i
\(417\) 0 0
\(418\) 4.89124 + 30.3027i 0.239239 + 1.48215i
\(419\) 39.7965 1.94419 0.972094 0.234591i \(-0.0753751\pi\)
0.972094 + 0.234591i \(0.0753751\pi\)
\(420\) 0 0
\(421\) −21.1604 + 7.70177i −1.03130 + 0.375361i −0.801575 0.597895i \(-0.796004\pi\)
−0.229722 + 0.973256i \(0.573782\pi\)
\(422\) 2.11658 + 12.0037i 0.103034 + 0.584333i
\(423\) 0 0
\(424\) 23.4440 + 8.53293i 1.13854 + 0.414396i
\(425\) −15.0646 26.0927i −0.730743 1.26568i
\(426\) 0 0
\(427\) 10.6552 8.94080i 0.515643 0.432676i
\(428\) 1.51779 1.27358i 0.0733651 0.0615606i
\(429\) 0 0
\(430\) −2.02956 3.51531i −0.0978742 0.169523i
\(431\) 3.68644 + 1.34175i 0.177570 + 0.0646301i 0.429275 0.903174i \(-0.358769\pi\)
−0.251705 + 0.967804i \(0.580991\pi\)
\(432\) 0 0
\(433\) 2.76991 + 15.7090i 0.133114 + 0.754925i 0.976155 + 0.217076i \(0.0696519\pi\)
−0.843041 + 0.537849i \(0.819237\pi\)
\(434\) −15.5273 + 5.65149i −0.745336 + 0.271280i
\(435\) 0 0
\(436\) −0.378756 −0.0181391
\(437\) 5.87211 + 0.0851529i 0.280901 + 0.00407341i
\(438\) 0 0
\(439\) 3.60607 + 3.02585i 0.172108 + 0.144416i 0.724773 0.688988i \(-0.241945\pi\)
−0.552665 + 0.833404i \(0.686389\pi\)
\(440\) 12.7135 4.62733i 0.606091 0.220599i
\(441\) 0 0
\(442\) −8.13744 + 46.1497i −0.387059 + 2.19512i
\(443\) 27.4513 + 9.99146i 1.30425 + 0.474708i 0.898379 0.439221i \(-0.144746\pi\)
0.405872 + 0.913930i \(0.366968\pi\)
\(444\) 0 0
\(445\) 5.60014 9.69972i 0.265472 0.459811i
\(446\) 4.28905 3.59894i 0.203092 0.170415i
\(447\) 0 0
\(448\) 6.30928 10.9280i 0.298085 0.516299i
\(449\) 7.39053 + 12.8008i 0.348781 + 0.604106i 0.986033 0.166549i \(-0.0532625\pi\)
−0.637252 + 0.770655i \(0.719929\pi\)
\(450\) 0 0
\(451\) 4.64749 26.3572i 0.218842 1.24111i
\(452\) −0.156107 0.885328i −0.00734267 0.0416423i
\(453\) 0 0
\(454\) −24.4657 20.5292i −1.14823 0.963481i
\(455\) 6.29860 0.295283
\(456\) 0 0
\(457\) −9.71782 −0.454580 −0.227290 0.973827i \(-0.572987\pi\)
−0.227290 + 0.973827i \(0.572987\pi\)
\(458\) 20.1438 + 16.9027i 0.941260 + 0.789811i
\(459\) 0 0
\(460\) −0.0380187 0.215615i −0.00177263 0.0100531i
\(461\) 2.44521 13.8675i 0.113885 0.645873i −0.873411 0.486983i \(-0.838097\pi\)
0.987296 0.158890i \(-0.0507916\pi\)
\(462\) 0 0
\(463\) 13.8255 + 23.9464i 0.642524 + 1.11288i 0.984867 + 0.173310i \(0.0554462\pi\)
−0.342343 + 0.939575i \(0.611221\pi\)
\(464\) −5.10220 + 8.83726i −0.236864 + 0.410260i
\(465\) 0 0
\(466\) 3.93860 3.30488i 0.182452 0.153095i
\(467\) 6.92380 11.9924i 0.320395 0.554941i −0.660174 0.751112i \(-0.729518\pi\)
0.980570 + 0.196172i \(0.0628509\pi\)
\(468\) 0 0
\(469\) −3.65910 1.33180i −0.168962 0.0614970i
\(470\) −0.819955 + 4.65020i −0.0378217 + 0.214498i
\(471\) 0 0
\(472\) −11.8687 + 4.31986i −0.546302 + 0.198838i
\(473\) 13.7173 + 11.5102i 0.630724 + 0.529241i
\(474\) 0 0
\(475\) 9.44222 15.8201i 0.433239 0.725877i
\(476\) −1.93363 −0.0886278
\(477\) 0 0
\(478\) 1.04189 0.379217i 0.0476549 0.0173450i
\(479\) 3.33022 + 18.8866i 0.152162 + 0.862952i 0.961335 + 0.275382i \(0.0888043\pi\)
−0.809173 + 0.587570i \(0.800085\pi\)
\(480\) 0 0
\(481\) −55.3157 20.1333i −2.52218 0.917999i
\(482\) −5.82888 10.0959i −0.265498 0.459856i
\(483\) 0 0
\(484\) −2.30999 + 1.93831i −0.105000 + 0.0881052i
\(485\) 7.81702 6.55926i 0.354953 0.297841i
\(486\) 0 0
\(487\) −2.80659 4.86116i −0.127179 0.220280i 0.795404 0.606080i \(-0.207259\pi\)
−0.922582 + 0.385800i \(0.873926\pi\)
\(488\) 26.2101 + 9.53969i 1.18647 + 0.431841i
\(489\) 0 0
\(490\) 0.996845 + 5.65339i 0.0450329 + 0.255394i
\(491\) 16.3709 5.95853i 0.738810 0.268905i 0.0549206 0.998491i \(-0.482509\pi\)
0.683889 + 0.729586i \(0.260287\pi\)
\(492\) 0 0
\(493\) 20.2267 0.910964
\(494\) −27.0665 + 9.40923i −1.21778 + 0.423341i
\(495\) 0 0
\(496\) −23.0173 19.3138i −1.03351 0.867215i
\(497\) −17.4128 + 6.33775i −0.781072 + 0.284287i
\(498\) 0 0
\(499\) 3.06434 17.3787i 0.137179 0.777979i −0.836139 0.548518i \(-0.815192\pi\)
0.973318 0.229461i \(-0.0736965\pi\)
\(500\) −1.40895 0.512815i −0.0630101 0.0229338i
\(501\) 0 0
\(502\) −4.78177 + 8.28228i −0.213421 + 0.369656i
\(503\) −28.9709 + 24.3095i −1.29175 + 1.08391i −0.300240 + 0.953864i \(0.597067\pi\)
−0.991508 + 0.130042i \(0.958489\pi\)
\(504\) 0 0
\(505\) −2.45424 + 4.25087i −0.109212 + 0.189161i
\(506\) −4.74376 8.21643i −0.210886 0.365265i
\(507\) 0 0
\(508\) 0.244852 1.38862i 0.0108635 0.0616101i
\(509\) 4.43036 + 25.1258i 0.196372 + 1.11368i 0.910451 + 0.413617i \(0.135735\pi\)
−0.714079 + 0.700065i \(0.753154\pi\)
\(510\) 0 0
\(511\) −1.31592 1.10419i −0.0582130 0.0488465i
\(512\) 24.9186 1.10126
\(513\) 0 0
\(514\) 24.5868 1.08448
\(515\) −1.96791 1.65127i −0.0867165 0.0727638i
\(516\) 0 0
\(517\) −3.61721 20.5142i −0.159085 0.902215i
\(518\) −4.14315 + 23.4970i −0.182040 + 1.03240i
\(519\) 0 0
\(520\) 6.31521 + 10.9383i 0.276940 + 0.479674i
\(521\) 2.74763 4.75903i 0.120376 0.208497i −0.799540 0.600613i \(-0.794923\pi\)
0.919916 + 0.392116i \(0.128257\pi\)
\(522\) 0 0
\(523\) −21.6400 + 18.1581i −0.946250 + 0.793998i −0.978662 0.205477i \(-0.934125\pi\)
0.0324123 + 0.999475i \(0.489681\pi\)
\(524\) 1.10994 1.92247i 0.0484878 0.0839834i
\(525\) 0 0
\(526\) 16.2096 + 5.89981i 0.706772 + 0.257244i
\(527\) −10.3421 + 58.6529i −0.450508 + 2.55496i
\(528\) 0 0
\(529\) 19.9072 7.24563i 0.865530 0.315027i
\(530\) 7.69253 + 6.45480i 0.334142 + 0.280379i
\(531\) 0 0
\(532\) −0.576286 1.03244i −0.0249852 0.0447622i
\(533\) 24.9855 1.08224
\(534\) 0 0
\(535\) 8.86009 3.22481i 0.383055 0.139421i
\(536\) −1.35591 7.68977i −0.0585666 0.332148i
\(537\) 0 0
\(538\) −12.7049 4.62419i −0.547745 0.199363i
\(539\) −12.6623 21.9317i −0.545402 0.944664i
\(540\) 0 0
\(541\) 11.5556 9.69627i 0.496812 0.416875i −0.359648 0.933088i \(-0.617103\pi\)
0.856460 + 0.516213i \(0.172659\pi\)
\(542\) 14.2665 11.9710i 0.612799 0.514200i
\(543\) 0 0
\(544\) −3.71348 6.43193i −0.159214 0.275767i
\(545\) −1.69372 0.616462i −0.0725508 0.0264063i
\(546\) 0 0
\(547\) 3.21482 + 18.2322i 0.137456 + 0.779551i 0.973118 + 0.230307i \(0.0739731\pi\)
−0.835662 + 0.549244i \(0.814916\pi\)
\(548\) 0.695060 0.252981i 0.0296915 0.0108068i
\(549\) 0 0
\(550\) −29.7638 −1.26913
\(551\) 6.02822 + 10.7999i 0.256811 + 0.460089i
\(552\) 0 0
\(553\) 6.96039 + 5.84046i 0.295986 + 0.248362i
\(554\) −22.8949 + 8.33305i −0.972710 + 0.354037i
\(555\) 0 0
\(556\) 0.731181 4.14673i 0.0310090 0.175861i
\(557\) −20.2263 7.36176i −0.857015 0.311928i −0.124118 0.992268i \(-0.539610\pi\)
−0.732897 + 0.680340i \(0.761832\pi\)
\(558\) 0 0
\(559\) −8.35844 + 14.4772i −0.353524 + 0.612322i
\(560\) 3.55619 2.98400i 0.150276 0.126097i
\(561\) 0 0
\(562\) −12.4859 + 21.6262i −0.526687 + 0.912248i
\(563\) −16.8648 29.2108i −0.710768 1.23109i −0.964569 0.263830i \(-0.915014\pi\)
0.253801 0.967256i \(-0.418319\pi\)
\(564\) 0 0
\(565\) 0.742878 4.21307i 0.0312531 0.177245i
\(566\) −1.18139 6.69999i −0.0496575 0.281622i
\(567\) 0 0
\(568\) −28.4650 23.8849i −1.19436 1.00219i
\(569\) −15.7469 −0.660145 −0.330072 0.943956i \(-0.607073\pi\)
−0.330072 + 0.943956i \(0.607073\pi\)
\(570\) 0 0
\(571\) 42.6391 1.78439 0.892195 0.451650i \(-0.149164\pi\)
0.892195 + 0.451650i \(0.149164\pi\)
\(572\) −3.61019 3.02931i −0.150949 0.126662i
\(573\) 0 0
\(574\) −1.75855 9.97324i −0.0734005 0.416275i
\(575\) −0.988856 + 5.60808i −0.0412381 + 0.233873i
\(576\) 0 0
\(577\) −9.75624 16.8983i −0.406158 0.703486i 0.588298 0.808644i \(-0.299798\pi\)
−0.994455 + 0.105159i \(0.966465\pi\)
\(578\) 22.7784 39.4533i 0.947455 1.64104i
\(579\) 0 0
\(580\) 0.353226 0.296392i 0.0146669 0.0123070i
\(581\) 0.764700 1.32450i 0.0317251 0.0549495i
\(582\) 0 0
\(583\) −41.6279 15.1513i −1.72405 0.627504i
\(584\) 0.598164 3.39236i 0.0247522 0.140377i
\(585\) 0 0
\(586\) 15.0116 5.46378i 0.620124 0.225707i
\(587\) −9.09808 7.63419i −0.375518 0.315097i 0.435422 0.900226i \(-0.356599\pi\)
−0.810940 + 0.585130i \(0.801044\pi\)
\(588\) 0 0
\(589\) −34.3995 + 11.9584i −1.41740 + 0.492738i
\(590\) −5.08378 −0.209296
\(591\) 0 0
\(592\) −40.7695 + 14.8389i −1.67562 + 0.609874i
\(593\) 0.245567 + 1.39268i 0.0100842 + 0.0571904i 0.989435 0.144980i \(-0.0463117\pi\)
−0.979350 + 0.202170i \(0.935201\pi\)
\(594\) 0 0
\(595\) −8.64677 3.14717i −0.354483 0.129021i
\(596\) 1.61468 + 2.79672i 0.0661401 + 0.114558i
\(597\) 0 0
\(598\) 6.78493 5.69323i 0.277456 0.232814i
\(599\) −19.1682 + 16.0840i −0.783191 + 0.657175i −0.944050 0.329802i \(-0.893018\pi\)
0.160859 + 0.986977i \(0.448573\pi\)
\(600\) 0 0
\(601\) 6.92649 + 11.9970i 0.282537 + 0.489369i 0.972009 0.234944i \(-0.0754905\pi\)
−0.689472 + 0.724313i \(0.742157\pi\)
\(602\) 6.36706 + 2.31742i 0.259502 + 0.0944510i
\(603\) 0 0
\(604\) 0.0204777 + 0.116135i 0.000833226 + 0.00472546i
\(605\) −13.4846 + 4.90798i −0.548226 + 0.199538i
\(606\) 0 0
\(607\) 1.59089 0.0645722 0.0322861 0.999479i \(-0.489721\pi\)
0.0322861 + 0.999479i \(0.489721\pi\)
\(608\) 2.32753 3.89971i 0.0943940 0.158154i
\(609\) 0 0
\(610\) 8.60014 + 7.21637i 0.348209 + 0.292182i
\(611\) 18.2738 6.65111i 0.739278 0.269075i
\(612\) 0 0
\(613\) 4.65317 26.3894i 0.187940 1.06586i −0.734180 0.678955i \(-0.762433\pi\)
0.922120 0.386905i \(-0.126456\pi\)
\(614\) −6.56418 2.38917i −0.264909 0.0964189i
\(615\) 0 0
\(616\) −11.2920 + 19.5582i −0.454966 + 0.788024i
\(617\) 27.1523 22.7835i 1.09311 0.917228i 0.0961675 0.995365i \(-0.469342\pi\)
0.996943 + 0.0781368i \(0.0248971\pi\)
\(618\) 0 0
\(619\) −19.9538 + 34.5610i −0.802012 + 1.38913i 0.116278 + 0.993217i \(0.462904\pi\)
−0.918290 + 0.395909i \(0.870430\pi\)
\(620\) 0.678863 + 1.17582i 0.0272638 + 0.0472223i
\(621\) 0 0
\(622\) 1.92468 10.9154i 0.0771726 0.437667i
\(623\) 3.24653 + 18.4120i 0.130069 + 0.737661i
\(624\) 0 0
\(625\) 10.7233 + 8.99790i 0.428931 + 0.359916i
\(626\) 45.0256 1.79958
\(627\) 0 0
\(628\) −0.230304 −0.00919011
\(629\) 65.8781 + 55.2783i 2.62673 + 2.20409i
\(630\) 0 0
\(631\) −2.28905 12.9818i −0.0911256 0.516799i −0.995866 0.0908353i \(-0.971046\pi\)
0.904740 0.425963i \(-0.140065\pi\)
\(632\) −3.16390 + 17.9434i −0.125853 + 0.713750i
\(633\) 0 0
\(634\) −13.7306 23.7820i −0.545310 0.944504i
\(635\) 3.35504 5.81109i 0.133141 0.230606i
\(636\) 0 0
\(637\) 18.1107 15.1966i 0.717570 0.602113i
\(638\) 9.99067 17.3043i 0.395534 0.685085i
\(639\) 0 0
\(640\) 7.84864 + 2.85667i 0.310245 + 0.112920i
\(641\) −7.66250 + 43.4562i −0.302651 + 1.71642i 0.331711 + 0.943381i \(0.392374\pi\)
−0.634362 + 0.773036i \(0.718737\pi\)
\(642\) 0 0
\(643\) −10.2674 + 3.73702i −0.404906 + 0.147374i −0.536441 0.843938i \(-0.680232\pi\)
0.131535 + 0.991312i \(0.458009\pi\)
\(644\) 0.279963 + 0.234917i 0.0110321 + 0.00925703i
\(645\) 0 0
\(646\) 41.8585 + 0.607000i 1.64690 + 0.0238821i
\(647\) −3.20170 −0.125872 −0.0629360 0.998018i \(-0.520046\pi\)
−0.0629360 + 0.998018i \(0.520046\pi\)
\(648\) 0 0
\(649\) 21.0744 7.67047i 0.827244 0.301092i
\(650\) −4.82501 27.3640i −0.189252 1.07330i
\(651\) 0 0
\(652\) 1.26130 + 0.459074i 0.0493962 + 0.0179787i
\(653\) −12.5620 21.7579i −0.491587 0.851454i 0.508366 0.861141i \(-0.330250\pi\)
−0.999953 + 0.00968702i \(0.996916\pi\)
\(654\) 0 0
\(655\) 8.09240 6.79033i 0.316196 0.265320i
\(656\) 14.1068 11.8370i 0.550777 0.462157i
\(657\) 0 0
\(658\) −3.94104 6.82608i −0.153638 0.266108i
\(659\) −28.9111 10.5228i −1.12622 0.409909i −0.289298 0.957239i \(-0.593422\pi\)
−0.836917 + 0.547330i \(0.815644\pi\)
\(660\) 0 0
\(661\) −1.60978 9.12949i −0.0626130 0.355096i −0.999977 0.00674518i \(-0.997853\pi\)
0.937364 0.348351i \(-0.113258\pi\)
\(662\) −21.4957 + 7.82380i −0.835455 + 0.304081i
\(663\) 0 0
\(664\) 3.06687 0.119017
\(665\) −0.896622 5.55483i −0.0347695 0.215407i
\(666\) 0 0
\(667\) −2.92855 2.45734i −0.113394 0.0951487i
\(668\) 1.92350 0.700095i 0.0744223 0.0270875i
\(669\) 0 0
\(670\) 0.545759 3.09516i 0.0210845 0.119576i
\(671\) −46.5394 16.9390i −1.79663 0.653921i
\(672\) 0 0
\(673\) 4.74644 8.22108i 0.182962 0.316899i −0.759926 0.650010i \(-0.774765\pi\)
0.942888 + 0.333110i \(0.108098\pi\)
\(674\) −25.1620 + 21.1134i −0.969204 + 0.813259i
\(675\) 0 0
\(676\) 0.998656 1.72972i 0.0384098 0.0665278i
\(677\) −9.50774 16.4679i −0.365412 0.632912i 0.623430 0.781879i \(-0.285739\pi\)
−0.988842 + 0.148967i \(0.952405\pi\)
\(678\) 0 0
\(679\) −2.95786 + 16.7749i −0.113512 + 0.643761i
\(680\) −3.20414 18.1716i −0.122873 0.696849i
\(681\) 0 0
\(682\) 45.0704 + 37.8186i 1.72584 + 1.44815i
\(683\) −6.58677 −0.252036 −0.126018 0.992028i \(-0.540220\pi\)
−0.126018 + 0.992028i \(0.540220\pi\)
\(684\) 0 0
\(685\) 3.51991 0.134489
\(686\) −17.9457 15.0582i −0.685170 0.574926i
\(687\) 0 0
\(688\) 2.13950 + 12.1337i 0.0815677 + 0.462593i
\(689\) 7.18139 40.7277i 0.273589 1.55160i
\(690\) 0 0
\(691\) 21.3525 + 36.9836i 0.812288 + 1.40692i 0.911259 + 0.411833i \(0.135111\pi\)
−0.0989713 + 0.995090i \(0.531555\pi\)
\(692\) 0.738074 1.27838i 0.0280574 0.0485968i
\(693\) 0 0
\(694\) −8.30516 + 6.96886i −0.315260 + 0.264534i
\(695\) 10.0189 17.3532i 0.380038 0.658245i
\(696\) 0 0
\(697\) −34.3002 12.4843i −1.29921 0.472875i
\(698\) −1.46316 + 8.29801i −0.0553816 + 0.314084i
\(699\) 0 0
\(700\) 1.07738 0.392135i 0.0407212 0.0148213i
\(701\) −4.64227 3.89533i −0.175336 0.147125i 0.550896 0.834574i \(-0.314286\pi\)
−0.726233 + 0.687449i \(0.758730\pi\)
\(702\) 0 0
\(703\) −9.88150 + 51.6498i −0.372688 + 1.94801i
\(704\) −44.9299 −1.69336
\(705\) 0 0
\(706\) 4.47060 1.62717i 0.168253 0.0612392i
\(707\) −1.42278 8.06899i −0.0535092 0.303466i
\(708\) 0 0
\(709\) 19.5937 + 7.13154i 0.735858 + 0.267831i 0.682643 0.730752i \(-0.260831\pi\)
0.0532159 + 0.998583i \(0.483053\pi\)
\(710\) −7.47818 12.9526i −0.280651 0.486102i
\(711\) 0 0
\(712\) −28.7195 + 24.0985i −1.07631 + 0.903130i
\(713\) 8.62314 7.23567i 0.322939 0.270978i
\(714\) 0 0
\(715\) −11.2135 19.4223i −0.419360 0.726353i
\(716\) 1.25624 + 0.457236i 0.0469481 + 0.0170877i
\(717\) 0 0
\(718\) −4.73514 26.8543i −0.176714 1.00219i
\(719\) 38.0540 13.8505i 1.41917 0.516537i 0.485365 0.874311i \(-0.338687\pi\)
0.933808 + 0.357774i \(0.116464\pi\)
\(720\) 0 0
\(721\) 4.28817 0.159700
\(722\) 12.1511 + 22.5309i 0.452218 + 0.838512i
\(723\) 0 0
\(724\) 2.90239 + 2.43539i 0.107866 + 0.0905107i
\(725\) −11.2699 + 4.10191i −0.418554 + 0.152341i
\(726\) 0 0
\(727\) 2.18913 12.4152i 0.0811903 0.460453i −0.916924 0.399063i \(-0.869335\pi\)
0.998114 0.0613902i \(-0.0195534\pi\)
\(728\) −19.8118 7.21091i −0.734274 0.267254i
\(729\) 0 0
\(730\) 0.693249 1.20074i 0.0256583 0.0444414i
\(731\) 18.7083 15.6981i 0.691950 0.580615i
\(732\) 0 0
\(733\) 9.05350 15.6811i 0.334399 0.579195i −0.648970 0.760814i \(-0.724800\pi\)
0.983369 + 0.181618i \(0.0581335\pi\)
\(734\) 1.09492 + 1.89646i 0.0404143 + 0.0699997i
\(735\) 0 0
\(736\) −0.243756 + 1.38241i −0.00898496 + 0.0509562i
\(737\) 2.40760 + 13.6542i 0.0886852 + 0.502959i
\(738\) 0 0
\(739\) −16.8425 14.1326i −0.619563 0.519875i 0.278103 0.960551i \(-0.410294\pi\)
−0.897666 + 0.440676i \(0.854739\pi\)
\(740\) 1.96048 0.0720685
\(741\) 0 0
\(742\) −16.7624 −0.615367
\(743\) −22.9939 19.2942i −0.843565 0.707835i 0.114798 0.993389i \(-0.463378\pi\)
−0.958363 + 0.285554i \(0.907822\pi\)
\(744\) 0 0
\(745\) 2.66860 + 15.1344i 0.0977698 + 0.554480i
\(746\) 7.94428 45.0542i 0.290861 1.64955i
\(747\) 0 0
\(748\) 3.44247 + 5.96253i 0.125869 + 0.218012i
\(749\) −7.86942 + 13.6302i −0.287542 + 0.498038i
\(750\) 0 0
\(751\) 23.8241 19.9908i 0.869355 0.729475i −0.0946073 0.995515i \(-0.530160\pi\)
0.963962 + 0.266039i \(0.0857151\pi\)
\(752\) 7.16637 12.4125i 0.261331 0.452638i
\(753\) 0 0
\(754\) 17.5287 + 6.37992i 0.638357 + 0.232343i
\(755\) −0.0974487 + 0.552659i −0.00354652 + 0.0201133i
\(756\) 0 0
\(757\) 17.7481 6.45978i 0.645065 0.234785i 0.00129008 0.999999i \(-0.499589\pi\)
0.643775 + 0.765215i \(0.277367\pi\)
\(758\) 16.5444 + 13.8824i 0.600920 + 0.504232i
\(759\) 0 0
\(760\) 8.74763 7.12656i 0.317310 0.258508i
\(761\) 5.65539 0.205008 0.102504 0.994733i \(-0.467315\pi\)
0.102504 + 0.994733i \(0.467315\pi\)
\(762\) 0 0
\(763\) 2.82723 1.02903i 0.102353 0.0372533i
\(764\) −0.185508 1.05207i −0.00671143 0.0380624i
\(765\) 0 0
\(766\) 12.1459 + 4.42074i 0.438849 + 0.159728i
\(767\) 10.4684 + 18.1318i 0.377991 + 0.654700i
\(768\) 0 0
\(769\) −6.03596 + 5.06477i −0.217662 + 0.182640i −0.745099 0.666954i \(-0.767598\pi\)
0.527437 + 0.849594i \(0.323153\pi\)
\(770\) −6.96341 + 5.84300i −0.250944 + 0.210567i
\(771\) 0 0
\(772\) −1.44768 2.50746i −0.0521032 0.0902454i
\(773\) −21.5043 7.82694i −0.773457 0.281515i −0.0750155 0.997182i \(-0.523901\pi\)
−0.698442 + 0.715667i \(0.746123\pi\)
\(774\) 0 0
\(775\) −6.13223 34.7776i −0.220276 1.24925i
\(776\) −32.0972 + 11.6824i −1.15222 + 0.419375i
\(777\) 0 0
\(778\) 14.9299 0.535265
\(779\) −3.55674 22.0350i −0.127433 0.789487i
\(780\) 0 0
\(781\) 50.5433 + 42.4109i 1.80858 + 1.51758i
\(782\) −12.1591 + 4.42555i −0.434809 + 0.158257i
\(783\) 0 0
\(784\) 3.02578 17.1600i 0.108064 0.612859i
\(785\) −1.02987 0.374841i −0.0367575 0.0133787i
\(786\) 0 0
\(787\) −18.6844 + 32.3623i −0.666026 + 1.15359i 0.312980 + 0.949760i \(0.398673\pi\)
−0.979006 + 0.203832i \(0.934661\pi\)
\(788\) −3.36643 + 2.82477i −0.119924 + 0.100628i
\(789\) 0 0
\(790\) −3.66684 + 6.35115i −0.130460 + 0.225964i
\(791\) 3.57057 + 6.18442i 0.126955 + 0.219893i
\(792\) 0 0
\(793\) 8.02869 45.5329i 0.285107 1.61692i
\(794\) −4.03849 22.9034i −0.143320 0.812811i
\(795\) 0 0
\(796\) 2.12171 + 1.78033i 0.0752020 + 0.0631020i
\(797\) −39.0324 −1.38260 −0.691299 0.722569i \(-0.742961\pi\)
−0.691299 + 0.722569i \(0.742961\pi\)
\(798\) 0 0
\(799\) −28.4097 −1.00506
\(800\) 3.37346 + 2.83067i 0.119270 + 0.100079i
\(801\) 0 0
\(802\) 8.89053 + 50.4207i 0.313936 + 1.78042i
\(803\) −1.06212 + 6.02357i −0.0374813 + 0.212567i
\(804\) 0 0
\(805\) 0.869585 + 1.50617i 0.0306488 + 0.0530854i
\(806\) −27.4629 + 47.5672i −0.967340 + 1.67548i
\(807\) 0 0
\(808\) 12.5862 10.5611i 0.442782 0.371538i
\(809\) 19.9829 34.6114i 0.702562 1.21687i −0.265002 0.964248i \(-0.585373\pi\)
0.967564 0.252626i \(-0.0812941\pi\)
\(810\) 0 0
\(811\) 8.21213 + 2.98897i 0.288367 + 0.104957i 0.482154 0.876087i \(-0.339855\pi\)
−0.193787 + 0.981044i \(0.562077\pi\)
\(812\) −0.133656 + 0.758003i −0.00469042 + 0.0266007i
\(813\) 0 0
\(814\) 79.8312 29.0562i 2.79808 1.01842i
\(815\) 4.89306 + 4.10576i 0.171396 + 0.143819i
\(816\) 0 0
\(817\) 13.9575 + 5.31056i 0.488312 + 0.185793i
\(818\) −0.182104 −0.00636712
\(819\) 0 0
\(820\) −0.781937 + 0.284602i −0.0273064 + 0.00993872i
\(821\) −6.66607 37.8052i −0.232647 1.31941i −0.847512 0.530776i \(-0.821900\pi\)
0.614864 0.788633i \(-0.289211\pi\)
\(822\) 0 0
\(823\) 11.3084 + 4.11592i 0.394186 + 0.143472i 0.531506 0.847055i \(-0.321626\pi\)
−0.137319 + 0.990527i \(0.543849\pi\)
\(824\) 4.29948 + 7.44691i 0.149779 + 0.259426i
\(825\) 0 0
\(826\) 6.50072 5.45475i 0.226189 0.189795i
\(827\) 29.6111 24.8467i 1.02968 0.864004i 0.0388667 0.999244i \(-0.487625\pi\)
0.990813 + 0.135241i \(0.0431808\pi\)
\(828\) 0 0
\(829\) −16.6680 28.8699i −0.578904 1.00269i −0.995605 0.0936482i \(-0.970147\pi\)
0.416701 0.909044i \(-0.363186\pi\)
\(830\) 1.15998 + 0.422197i 0.0402634 + 0.0146547i
\(831\) 0 0
\(832\) −7.28359 41.3073i −0.252513 1.43207i
\(833\) −32.4556 + 11.8129i −1.12452 + 0.409292i
\(834\) 0 0
\(835\) 9.74092 0.337099
\(836\) −2.15767 + 3.61510i −0.0746246 + 0.125031i
\(837\) 0 0
\(838\) −41.0736 34.4648i −1.41886 1.19057i
\(839\) 27.8854 10.1494i 0.962710 0.350398i 0.187615 0.982243i \(-0.439924\pi\)
0.775095 + 0.631845i \(0.217702\pi\)
\(840\) 0 0
\(841\) −3.63769 + 20.6304i −0.125438 + 0.711392i
\(842\) 28.5094 + 10.3766i 0.982498 + 0.357600i
\(843\) 0 0
\(844\) −0.835904 + 1.44783i −0.0287730 + 0.0498363i
\(845\) 7.28106 6.10953i 0.250476 0.210174i
\(846\) 0 0
\(847\) 11.9768 20.7445i 0.411529 0.712789i
\(848\) −15.2404 26.3971i −0.523356 0.906479i
\(849\) 0 0
\(850\) −7.04891 + 39.9764i −0.241776 + 1.37118i
\(851\) −2.82248 16.0071i −0.0967534 0.548716i
\(852\) 0 0
\(853\) 15.0541 + 12.6319i 0.515444 + 0.432509i 0.863040 0.505136i \(-0.168558\pi\)
−0.347596 + 0.937644i \(0.613002\pi\)
\(854\) −18.7401 −0.641273
\(855\) 0 0
\(856\) −31.5607 −1.07872
\(857\) 15.3544 + 12.8839i 0.524497 + 0.440105i 0.866196 0.499704i \(-0.166558\pi\)
−0.341699 + 0.939809i \(0.611002\pi\)
\(858\) 0 0
\(859\) 8.28699 + 46.9978i 0.282748 + 1.60355i 0.713219 + 0.700941i \(0.247237\pi\)
−0.430471 + 0.902605i \(0.641652\pi\)
\(860\) 0.0966772 0.548284i 0.00329666 0.0186963i
\(861\) 0 0
\(862\) −2.64274 4.57736i −0.0900121 0.155906i
\(863\) −0.260992 + 0.452051i −0.00888427 + 0.0153880i −0.870433 0.492286i \(-0.836161\pi\)
0.861549 + 0.507674i \(0.169495\pi\)
\(864\) 0 0
\(865\) 5.38120 4.51536i 0.182966 0.153527i
\(866\) 10.7456 18.6119i 0.365149 0.632457i
\(867\) 0 0
\(868\) −2.12970 0.775147i −0.0722867 0.0263102i
\(869\) 5.61793 31.8608i 0.190575 1.08081i
\(870\) 0 0
\(871\) −12.1630 + 4.42696i −0.412127 + 0.150002i
\(872\) 4.62171 + 3.87808i 0.156511 + 0.131328i
\(873\) 0 0
\(874\) −5.98680 5.17328i −0.202506 0.174989i
\(875\) 11.9103 0.402643
\(876\) 0 0
\(877\) 9.37851 3.41350i 0.316690 0.115266i −0.178785 0.983888i \(-0.557217\pi\)
0.495474 + 0.868623i \(0.334994\pi\)
\(878\) −1.10132 6.24589i −0.0371677 0.210789i
\(879\) 0 0
\(880\) −15.5326 5.65339i −0.523602 0.190576i
\(881\) −21.7515 37.6747i −0.732827 1.26929i −0.955670 0.294439i \(-0.904867\pi\)
0.222844 0.974854i \(-0.428466\pi\)
\(882\) 0 0
\(883\) −18.4008 + 15.4401i −0.619236 + 0.519601i −0.897563 0.440886i \(-0.854664\pi\)
0.278327 + 0.960486i \(0.410220\pi\)
\(884\) −4.92371 + 4.13149i −0.165602 + 0.138957i
\(885\) 0 0
\(886\) −19.6793 34.0856i −0.661140 1.14513i
\(887\) 27.0398 + 9.84169i 0.907909 + 0.330452i 0.753417 0.657542i \(-0.228404\pi\)
0.154491 + 0.987994i \(0.450626\pi\)
\(888\) 0 0
\(889\) 1.94499 + 11.0306i 0.0652330 + 0.369955i
\(890\) −14.1800 + 5.16111i −0.475316 + 0.173001i
\(891\) 0 0
\(892\) 0.767942 0.0257126
\(893\) −8.46703 15.1691i −0.283338 0.507615i
\(894\) 0 0
\(895\) 4.87346 + 4.08931i 0.162902 + 0.136691i
\(896\) −13.1013 + 4.76849i −0.437684 + 0.159304i
\(897\) 0 0
\(898\) 3.45811 19.6119i 0.115399 0.654458i
\(899\) 22.2777 + 8.10840i 0.743001 + 0.270430i
\(900\) 0 0
\(901\) −30.2087 + 52.3231i −1.00640 + 1.74313i
\(902\) −27.6226 + 23.1782i −0.919733 + 0.771748i
\(903\) 0 0
\(904\) −7.15998 + 12.4014i −0.238137 + 0.412466i
\(905\) 9.01501 + 15.6145i 0.299669 + 0.519042i
\(906\) 0 0
\(907\) −7.94625 + 45.0654i −0.263851 + 1.49637i 0.508436 + 0.861100i \(0.330224\pi\)
−0.772287 + 0.635273i \(0.780887\pi\)
\(908\) −0.760668 4.31396i −0.0252436 0.143164i
\(909\) 0 0
\(910\) −6.50072 5.45475i −0.215497 0.180823i
\(911\) −26.9067 −0.891460 −0.445730 0.895168i \(-0.647056\pi\)
−0.445730 + 0.895168i \(0.647056\pi\)
\(912\) 0 0
\(913\) −5.44562 −0.180224
\(914\) 10.0296 + 8.41587i 0.331751 + 0.278372i
\(915\) 0 0
\(916\) 0.626296 + 3.55190i 0.0206934 + 0.117358i
\(917\) −3.06206 + 17.3658i −0.101118 + 0.573470i
\(918\) 0 0
\(919\) 8.96064 + 15.5203i 0.295584 + 0.511967i 0.975121 0.221675i \(-0.0711524\pi\)
−0.679536 + 0.733642i \(0.737819\pi\)
\(920\) −1.74376 + 3.02027i −0.0574899 + 0.0995755i
\(921\) 0 0
\(922\) −14.5333 + 12.1949i −0.478628 + 0.401616i
\(923\) −30.7977 + 53.3432i −1.01372 + 1.75581i
\(924\) 0 0
\(925\) −47.9163 17.4401i −1.57548 0.573427i
\(926\) 6.46909 36.6881i 0.212588 1.20564i
\(927\) 0 0
\(928\) −2.77807 + 1.01113i −0.0911945 + 0.0331921i
\(929\) 3.93763 + 3.30407i 0.129190 + 0.108403i 0.705093 0.709115i \(-0.250905\pi\)
−0.575904 + 0.817518i \(0.695350\pi\)
\(930\) 0 0
\(931\) −15.9802 13.8088i −0.523731 0.452564i
\(932\) 0.705194 0.0230994
\(933\) 0 0
\(934\) −17.5317 + 6.38101i −0.573654 + 0.208793i
\(935\) 5.68938 + 32.2661i 0.186063 + 1.05521i
\(936\) 0 0
\(937\) −26.4522 9.62781i −0.864155 0.314527i −0.128357 0.991728i \(-0.540970\pi\)
−0.735798 + 0.677201i \(0.763193\pi\)
\(938\) 2.62314 + 4.54341i 0.0856486 + 0.148348i
\(939\) 0 0
\(940\) −0.496130 + 0.416302i −0.0161820 + 0.0135783i
\(941\) 25.9893 21.8076i 0.847228 0.710908i −0.111950 0.993714i \(-0.535710\pi\)
0.959177 + 0.282805i \(0.0912651\pi\)
\(942\) 0 0
\(943\) 3.44949 + 5.97470i 0.112331 + 0.194563i
\(944\) 14.5005 + 5.27774i 0.471950 + 0.171776i
\(945\) 0 0
\(946\) −4.18938 23.7591i −0.136208 0.772476i
\(947\) 37.9577 13.8155i 1.23346 0.448943i 0.358679 0.933461i \(-0.383227\pi\)
0.874781 + 0.484519i \(0.161005\pi\)
\(948\) 0 0
\(949\) −5.71007 −0.185357
\(950\) −23.4458 + 8.15058i −0.760684 + 0.264440i
\(951\) 0 0
\(952\) 23.5948 + 19.7984i 0.764712 + 0.641670i
\(953\) −34.2028 + 12.4488i −1.10794 + 0.403256i −0.830236 0.557411i \(-0.811795\pi\)
−0.277701 + 0.960668i \(0.589572\pi\)
\(954\) 0 0
\(955\) 0.882789 5.00654i 0.0285664 0.162008i
\(956\) 0.142903 + 0.0520126i 0.00462183 + 0.00168221i
\(957\) 0 0
\(958\) 12.9192 22.3767i 0.417401 0.722960i
\(959\) −4.50096 + 3.77676i −0.145344 + 0.121958i
\(960\) 0 0
\(961\) −19.4033 + 33.6075i −0.625914 + 1.08411i
\(962\) 39.6548 + 68.6842i 1.27852 + 2.21447i
\(963\) 0 0
\(964\) 0.277656 1.57466i 0.00894269 0.0507165i
\(965\) −2.39259 13.5690i −0.0770202 0.436803i
\(966\) 0 0
\(967\) −9.60195 8.05699i −0.308778 0.259095i 0.475209 0.879873i \(-0.342373\pi\)
−0.783987 + 0.620778i \(0.786817\pi\)
\(968\) 48.0337 1.54386
\(969\) 0 0
\(970\) −13.7483 −0.441433
\(971\) 9.94222 + 8.34251i 0.319061 + 0.267724i 0.788225 0.615387i \(-0.211000\pi\)
−0.469164 + 0.883111i \(0.655445\pi\)
\(972\) 0 0
\(973\) 5.80818 + 32.9398i 0.186202 + 1.05600i
\(974\) −1.31323 + 7.44772i −0.0420787 + 0.238640i
\(975\) 0 0
\(976\) −17.0385 29.5115i −0.545389 0.944641i
\(977\) 18.8610 32.6682i 0.603416 1.04515i −0.388884 0.921287i \(-0.627139\pi\)
0.992300 0.123860i \(-0.0395274\pi\)
\(978\) 0 0
\(979\) 50.9952 42.7901i 1.62981 1.36758i
\(980\) −0.393685 + 0.681882i −0.0125758 + 0.0217819i
\(981\) 0 0
\(982\) −22.0565 8.02791i −0.703851 0.256181i
\(983\) −1.21002 + 6.86235i −0.0385936 + 0.218875i −0.998005 0.0631351i \(-0.979890\pi\)
0.959411 + 0.282010i \(0.0910012\pi\)
\(984\) 0 0
\(985\) −19.6515 + 7.15257i −0.626150 + 0.227900i
\(986\) −20.8757 17.5168i −0.664819 0.557849i
\(987\) 0 0
\(988\) −3.67340 1.39765i −0.116866 0.0444653i
\(989\) −4.61587 −0.146776
\(990\) 0 0
\(991\) 19.0205 6.92291i 0.604207 0.219913i −0.0217595 0.999763i \(-0.506927\pi\)
0.625967 + 0.779850i \(0.284705\pi\)
\(992\) −1.51161 8.57277i −0.0479937 0.272186i
\(993\) 0 0
\(994\) 23.4602 + 8.53882i 0.744113 + 0.270835i
\(995\) 6.59017 + 11.4145i 0.208923 + 0.361865i
\(996\) 0 0
\(997\) 26.3350 22.0977i 0.834039 0.699842i −0.122176 0.992508i \(-0.538987\pi\)
0.956214 + 0.292667i \(0.0945427\pi\)
\(998\) −18.2131 + 15.2826i −0.576526 + 0.483762i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.y.c.244.1 yes 6
3.2 odd 2 513.2.y.a.244.1 yes 6
19.5 even 9 9747.2.a.u.1.2 3
19.6 even 9 inner 513.2.y.c.82.1 yes 6
19.14 odd 18 9747.2.a.bb.1.2 3
57.5 odd 18 9747.2.a.bd.1.2 3
57.14 even 18 9747.2.a.v.1.2 3
57.44 odd 18 513.2.y.a.82.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.y.a.82.1 6 57.44 odd 18
513.2.y.a.244.1 yes 6 3.2 odd 2
513.2.y.c.82.1 yes 6 19.6 even 9 inner
513.2.y.c.244.1 yes 6 1.1 even 1 trivial
9747.2.a.u.1.2 3 19.5 even 9
9747.2.a.v.1.2 3 57.14 even 18
9747.2.a.bb.1.2 3 19.14 odd 18
9747.2.a.bd.1.2 3 57.5 odd 18