Properties

Label 513.2.y.a.28.1
Level $513$
Weight $2$
Character 513.28
Analytic conductor $4.096$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(28,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.y (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,9,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 28.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 513.28
Dual form 513.2.y.a.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.152704 - 0.866025i) q^{2} +(1.15270 - 0.419550i) q^{4} +(-2.37939 - 0.866025i) q^{5} +(1.32635 - 2.29731i) q^{7} +(-1.41875 - 2.45734i) q^{8} +(-0.386659 + 2.19285i) q^{10} +(0.205737 + 0.356347i) q^{11} +(-1.12449 - 0.943555i) q^{13} +(-2.19207 - 0.797847i) q^{14} +(-0.0320889 + 0.0269258i) q^{16} +(0.414878 + 2.35289i) q^{17} +(-4.29813 - 0.725293i) q^{19} -3.10607 q^{20} +(0.277189 - 0.232589i) q^{22} +(-0.826352 + 0.300767i) q^{23} +(1.08125 + 0.907278i) q^{25} +(-0.645430 + 1.11792i) q^{26} +(0.565055 - 3.20459i) q^{28} +(1.06031 - 6.01330i) q^{29} +(1.01114 - 1.75135i) q^{31} +(-4.31908 - 3.62414i) q^{32} +(1.97431 - 0.718589i) q^{34} +(-5.14543 + 4.31753i) q^{35} -9.69459 q^{37} +(0.0282185 + 3.83305i) q^{38} +(1.24763 + 7.07564i) q^{40} +(6.53596 - 5.48432i) q^{41} +(10.6099 + 3.86170i) q^{43} +(0.386659 + 0.324446i) q^{44} +(0.386659 + 0.669713i) q^{46} +(1.47178 - 8.34689i) q^{47} +(-0.0184183 - 0.0319015i) q^{49} +(0.620615 - 1.07494i) q^{50} +(-1.69207 - 0.615862i) q^{52} +(-1.41875 + 0.516382i) q^{53} +(-0.180922 - 1.02606i) q^{55} -7.52704 q^{56} -5.36959 q^{58} +(0.645430 + 3.66041i) q^{59} +(2.35844 - 0.858402i) q^{61} +(-1.67112 - 0.608239i) q^{62} +(-2.52094 + 4.36640i) q^{64} +(1.85844 + 3.21891i) q^{65} +(-0.847296 + 4.80526i) q^{67} +(1.46538 + 2.53812i) q^{68} +(4.52481 + 3.79677i) q^{70} +(9.46451 + 3.44480i) q^{71} +(-7.85117 + 6.58791i) q^{73} +(1.48040 + 8.39576i) q^{74} +(-5.25877 + 0.967233i) q^{76} +1.09152 q^{77} +(12.4251 - 10.4259i) q^{79} +(0.0996702 - 0.0362770i) q^{80} +(-5.74763 - 4.82283i) q^{82} +(-2.81908 + 4.88279i) q^{83} +(1.05051 - 5.95772i) q^{85} +(1.72416 - 9.77817i) q^{86} +(0.583778 - 1.01113i) q^{88} +(1.22803 + 1.03044i) q^{89} +(-3.65910 + 1.33180i) q^{91} +(-0.826352 + 0.693392i) q^{92} -7.45336 q^{94} +(9.59879 + 5.44804i) q^{95} +(-0.0175410 - 0.0994798i) q^{97} +(-0.0248149 + 0.0208222i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 9 q^{4} - 3 q^{5} + 9 q^{7} - 6 q^{8} - 9 q^{10} - 9 q^{11} + 6 q^{13} - 24 q^{14} + 9 q^{16} + 24 q^{17} - 12 q^{19} + 6 q^{20} - 9 q^{22} - 6 q^{23} + 9 q^{25} + 12 q^{26} + 42 q^{28}+ \cdots + 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.152704 0.866025i −0.107978 0.612372i −0.989989 0.141144i \(-0.954922\pi\)
0.882011 0.471228i \(-0.156189\pi\)
\(3\) 0 0
\(4\) 1.15270 0.419550i 0.576352 0.209775i
\(5\) −2.37939 0.866025i −1.06409 0.387298i −0.250129 0.968213i \(-0.580473\pi\)
−0.813965 + 0.580914i \(0.802695\pi\)
\(6\) 0 0
\(7\) 1.32635 2.29731i 0.501314 0.868301i −0.498685 0.866783i \(-0.666184\pi\)
0.999999 0.00151779i \(-0.000483127\pi\)
\(8\) −1.41875 2.45734i −0.501603 0.868802i
\(9\) 0 0
\(10\) −0.386659 + 2.19285i −0.122272 + 0.693441i
\(11\) 0.205737 + 0.356347i 0.0620321 + 0.107443i 0.895374 0.445316i \(-0.146909\pi\)
−0.833342 + 0.552758i \(0.813575\pi\)
\(12\) 0 0
\(13\) −1.12449 0.943555i −0.311876 0.261695i 0.473391 0.880852i \(-0.343030\pi\)
−0.785267 + 0.619157i \(0.787474\pi\)
\(14\) −2.19207 0.797847i −0.585854 0.213234i
\(15\) 0 0
\(16\) −0.0320889 + 0.0269258i −0.00802222 + 0.00673144i
\(17\) 0.414878 + 2.35289i 0.100623 + 0.570659i 0.992879 + 0.119130i \(0.0380104\pi\)
−0.892256 + 0.451530i \(0.850879\pi\)
\(18\) 0 0
\(19\) −4.29813 0.725293i −0.986059 0.166394i
\(20\) −3.10607 −0.694538
\(21\) 0 0
\(22\) 0.277189 0.232589i 0.0590968 0.0495881i
\(23\) −0.826352 + 0.300767i −0.172306 + 0.0627144i −0.426733 0.904378i \(-0.640336\pi\)
0.254427 + 0.967092i \(0.418113\pi\)
\(24\) 0 0
\(25\) 1.08125 + 0.907278i 0.216250 + 0.181456i
\(26\) −0.645430 + 1.11792i −0.126579 + 0.219242i
\(27\) 0 0
\(28\) 0.565055 3.20459i 0.106785 0.605610i
\(29\) 1.06031 6.01330i 0.196894 1.11664i −0.712801 0.701366i \(-0.752574\pi\)
0.909695 0.415276i \(-0.136315\pi\)
\(30\) 0 0
\(31\) 1.01114 1.75135i 0.181607 0.314552i −0.760821 0.648962i \(-0.775203\pi\)
0.942428 + 0.334409i \(0.108537\pi\)
\(32\) −4.31908 3.62414i −0.763512 0.640663i
\(33\) 0 0
\(34\) 1.97431 0.718589i 0.338591 0.123237i
\(35\) −5.14543 + 4.31753i −0.869736 + 0.729795i
\(36\) 0 0
\(37\) −9.69459 −1.59378 −0.796891 0.604124i \(-0.793523\pi\)
−0.796891 + 0.604124i \(0.793523\pi\)
\(38\) 0.0282185 + 3.83305i 0.00457764 + 0.621802i
\(39\) 0 0
\(40\) 1.24763 + 7.07564i 0.197267 + 1.11876i
\(41\) 6.53596 5.48432i 1.02075 0.856507i 0.0310243 0.999519i \(-0.490123\pi\)
0.989721 + 0.143012i \(0.0456786\pi\)
\(42\) 0 0
\(43\) 10.6099 + 3.86170i 1.61800 + 0.588904i 0.983000 0.183608i \(-0.0587776\pi\)
0.635001 + 0.772512i \(0.281000\pi\)
\(44\) 0.386659 + 0.324446i 0.0582911 + 0.0489120i
\(45\) 0 0
\(46\) 0.386659 + 0.669713i 0.0570098 + 0.0987439i
\(47\) 1.47178 8.34689i 0.214681 1.21752i −0.666777 0.745257i \(-0.732327\pi\)
0.881458 0.472261i \(-0.156562\pi\)
\(48\) 0 0
\(49\) −0.0184183 0.0319015i −0.00263119 0.00455735i
\(50\) 0.620615 1.07494i 0.0877682 0.152019i
\(51\) 0 0
\(52\) −1.69207 0.615862i −0.234647 0.0854047i
\(53\) −1.41875 + 0.516382i −0.194880 + 0.0709305i −0.437616 0.899162i \(-0.644177\pi\)
0.242736 + 0.970092i \(0.421955\pi\)
\(54\) 0 0
\(55\) −0.180922 1.02606i −0.0243955 0.138354i
\(56\) −7.52704 −1.00584
\(57\) 0 0
\(58\) −5.36959 −0.705061
\(59\) 0.645430 + 3.66041i 0.0840278 + 0.476545i 0.997562 + 0.0697837i \(0.0222309\pi\)
−0.913534 + 0.406762i \(0.866658\pi\)
\(60\) 0 0
\(61\) 2.35844 0.858402i 0.301967 0.109907i −0.186593 0.982437i \(-0.559744\pi\)
0.488560 + 0.872530i \(0.337522\pi\)
\(62\) −1.67112 0.608239i −0.212233 0.0772464i
\(63\) 0 0
\(64\) −2.52094 + 4.36640i −0.315118 + 0.545801i
\(65\) 1.85844 + 3.21891i 0.230511 + 0.399257i
\(66\) 0 0
\(67\) −0.847296 + 4.80526i −0.103514 + 0.587056i 0.888290 + 0.459283i \(0.151894\pi\)
−0.991804 + 0.127772i \(0.959217\pi\)
\(68\) 1.46538 + 2.53812i 0.177704 + 0.307792i
\(69\) 0 0
\(70\) 4.52481 + 3.79677i 0.540819 + 0.453801i
\(71\) 9.46451 + 3.44480i 1.12323 + 0.408822i 0.835830 0.548988i \(-0.184987\pi\)
0.287400 + 0.957811i \(0.407209\pi\)
\(72\) 0 0
\(73\) −7.85117 + 6.58791i −0.918910 + 0.771057i −0.973793 0.227436i \(-0.926966\pi\)
0.0548834 + 0.998493i \(0.482521\pi\)
\(74\) 1.48040 + 8.39576i 0.172093 + 0.975988i
\(75\) 0 0
\(76\) −5.25877 + 0.967233i −0.603222 + 0.110949i
\(77\) 1.09152 0.124390
\(78\) 0 0
\(79\) 12.4251 10.4259i 1.39794 1.17301i 0.435932 0.899979i \(-0.356419\pi\)
0.962006 0.273030i \(-0.0880258\pi\)
\(80\) 0.0996702 0.0362770i 0.0111435 0.00405589i
\(81\) 0 0
\(82\) −5.74763 4.82283i −0.634719 0.532593i
\(83\) −2.81908 + 4.88279i −0.309434 + 0.535955i −0.978239 0.207483i \(-0.933473\pi\)
0.668805 + 0.743438i \(0.266806\pi\)
\(84\) 0 0
\(85\) 1.05051 5.95772i 0.113944 0.646206i
\(86\) 1.72416 9.77817i 0.185920 1.05441i
\(87\) 0 0
\(88\) 0.583778 1.01113i 0.0622310 0.107787i
\(89\) 1.22803 + 1.03044i 0.130170 + 0.109226i 0.705549 0.708662i \(-0.250701\pi\)
−0.575378 + 0.817888i \(0.695145\pi\)
\(90\) 0 0
\(91\) −3.65910 + 1.33180i −0.383578 + 0.139611i
\(92\) −0.826352 + 0.693392i −0.0861531 + 0.0722911i
\(93\) 0 0
\(94\) −7.45336 −0.768756
\(95\) 9.59879 + 5.44804i 0.984815 + 0.558958i
\(96\) 0 0
\(97\) −0.0175410 0.0994798i −0.00178102 0.0101006i 0.983904 0.178696i \(-0.0571879\pi\)
−0.985685 + 0.168596i \(0.946077\pi\)
\(98\) −0.0248149 + 0.0208222i −0.00250669 + 0.00210336i
\(99\) 0 0
\(100\) 1.62701 + 0.592184i 0.162701 + 0.0592184i
\(101\) 7.99273 + 6.70669i 0.795306 + 0.667341i 0.947053 0.321078i \(-0.104045\pi\)
−0.151747 + 0.988419i \(0.548490\pi\)
\(102\) 0 0
\(103\) −3.58512 6.20961i −0.353253 0.611851i 0.633565 0.773690i \(-0.281591\pi\)
−0.986817 + 0.161838i \(0.948258\pi\)
\(104\) −0.723278 + 4.10191i −0.0709232 + 0.402226i
\(105\) 0 0
\(106\) 0.663848 + 1.14982i 0.0644786 + 0.111680i
\(107\) 6.43629 11.1480i 0.622220 1.07772i −0.366852 0.930279i \(-0.619564\pi\)
0.989072 0.147437i \(-0.0471022\pi\)
\(108\) 0 0
\(109\) 12.0103 + 4.37138i 1.15037 + 0.418702i 0.845650 0.533738i \(-0.179213\pi\)
0.304725 + 0.952440i \(0.401435\pi\)
\(110\) −0.860967 + 0.313366i −0.0820900 + 0.0298783i
\(111\) 0 0
\(112\) 0.0192957 + 0.109431i 0.00182327 + 0.0103403i
\(113\) 11.0077 1.03552 0.517761 0.855526i \(-0.326766\pi\)
0.517761 + 0.855526i \(0.326766\pi\)
\(114\) 0 0
\(115\) 2.22668 0.207639
\(116\) −1.30066 7.37641i −0.120763 0.684882i
\(117\) 0 0
\(118\) 3.07145 1.11792i 0.282750 0.102913i
\(119\) 5.95558 + 2.16766i 0.545948 + 0.198709i
\(120\) 0 0
\(121\) 5.41534 9.37965i 0.492304 0.852696i
\(122\) −1.10354 1.91139i −0.0999099 0.173049i
\(123\) 0 0
\(124\) 0.430770 2.44302i 0.0386843 0.219389i
\(125\) 4.54323 + 7.86911i 0.406359 + 0.703835i
\(126\) 0 0
\(127\) −4.24897 3.56531i −0.377035 0.316370i 0.434502 0.900671i \(-0.356924\pi\)
−0.811537 + 0.584301i \(0.801369\pi\)
\(128\) −6.42989 2.34029i −0.568328 0.206854i
\(129\) 0 0
\(130\) 2.50387 2.10100i 0.219604 0.184270i
\(131\) 3.40167 + 19.2919i 0.297206 + 1.68554i 0.658100 + 0.752930i \(0.271360\pi\)
−0.360895 + 0.932607i \(0.617529\pi\)
\(132\) 0 0
\(133\) −7.36706 + 8.91215i −0.638805 + 0.772781i
\(134\) 4.29086 0.370674
\(135\) 0 0
\(136\) 5.19325 4.35765i 0.445317 0.373666i
\(137\) 18.1395 6.60224i 1.54976 0.564067i 0.581400 0.813618i \(-0.302505\pi\)
0.968362 + 0.249550i \(0.0802828\pi\)
\(138\) 0 0
\(139\) 2.43448 + 2.04277i 0.206490 + 0.173265i 0.740168 0.672422i \(-0.234746\pi\)
−0.533678 + 0.845688i \(0.679191\pi\)
\(140\) −4.11974 + 7.13559i −0.348181 + 0.603068i
\(141\) 0 0
\(142\) 1.53802 8.72254i 0.129068 0.731979i
\(143\) 0.104885 0.594831i 0.00877091 0.0497423i
\(144\) 0 0
\(145\) −7.73055 + 13.3897i −0.641987 + 1.11195i
\(146\) 6.90420 + 5.79331i 0.571396 + 0.479458i
\(147\) 0 0
\(148\) −11.1750 + 4.06736i −0.918579 + 0.334335i
\(149\) −8.05097 + 6.75557i −0.659561 + 0.553438i −0.909955 0.414706i \(-0.863884\pi\)
0.250394 + 0.968144i \(0.419440\pi\)
\(150\) 0 0
\(151\) 9.59627 0.780933 0.390467 0.920617i \(-0.372314\pi\)
0.390467 + 0.920617i \(0.372314\pi\)
\(152\) 4.31567 + 11.5910i 0.350047 + 0.940154i
\(153\) 0 0
\(154\) −0.166679 0.945283i −0.0134314 0.0761731i
\(155\) −3.92262 + 3.29147i −0.315072 + 0.264377i
\(156\) 0 0
\(157\) 14.4547 + 5.26108i 1.15361 + 0.419880i 0.846811 0.531894i \(-0.178519\pi\)
0.306800 + 0.951774i \(0.400742\pi\)
\(158\) −10.9265 9.16841i −0.869265 0.729400i
\(159\) 0 0
\(160\) 7.13816 + 12.3636i 0.564321 + 0.977432i
\(161\) −0.405078 + 2.29731i −0.0319246 + 0.181053i
\(162\) 0 0
\(163\) −9.19846 15.9322i −0.720479 1.24791i −0.960808 0.277215i \(-0.910589\pi\)
0.240329 0.970692i \(-0.422745\pi\)
\(164\) 5.23308 9.06396i 0.408635 0.707776i
\(165\) 0 0
\(166\) 4.65910 + 1.69577i 0.361616 + 0.131618i
\(167\) −21.5141 + 7.83051i −1.66481 + 0.605943i −0.991108 0.133057i \(-0.957521\pi\)
−0.673706 + 0.739000i \(0.735298\pi\)
\(168\) 0 0
\(169\) −1.88326 10.6805i −0.144866 0.821575i
\(170\) −5.31996 −0.408022
\(171\) 0 0
\(172\) 13.8503 1.05607
\(173\) −1.88026 10.6635i −0.142954 0.810731i −0.968987 0.247110i \(-0.920519\pi\)
0.826034 0.563621i \(-0.190592\pi\)
\(174\) 0 0
\(175\) 3.51842 1.28060i 0.265967 0.0968042i
\(176\) −0.0161968 0.00589515i −0.00122088 0.000444364i
\(177\) 0 0
\(178\) 0.704860 1.22085i 0.0528315 0.0915068i
\(179\) −3.27719 5.67626i −0.244949 0.424263i 0.717169 0.696900i \(-0.245438\pi\)
−0.962117 + 0.272636i \(0.912104\pi\)
\(180\) 0 0
\(181\) 0.973126 5.51887i 0.0723319 0.410214i −0.927046 0.374947i \(-0.877661\pi\)
0.999378 0.0352669i \(-0.0112281\pi\)
\(182\) 1.71213 + 2.96550i 0.126912 + 0.219818i
\(183\) 0 0
\(184\) 1.91147 + 1.60392i 0.140916 + 0.118242i
\(185\) 23.0672 + 8.39576i 1.69593 + 0.617269i
\(186\) 0 0
\(187\) −0.753089 + 0.631917i −0.0550713 + 0.0462103i
\(188\) −1.80541 10.2390i −0.131673 0.746754i
\(189\) 0 0
\(190\) 3.25237 9.14473i 0.235952 0.663429i
\(191\) −3.26857 −0.236505 −0.118253 0.992984i \(-0.537729\pi\)
−0.118253 + 0.992984i \(0.537729\pi\)
\(192\) 0 0
\(193\) −1.22075 + 1.02433i −0.0878716 + 0.0737331i −0.685665 0.727917i \(-0.740489\pi\)
0.597794 + 0.801650i \(0.296044\pi\)
\(194\) −0.0834734 + 0.0303818i −0.00599304 + 0.00218129i
\(195\) 0 0
\(196\) −0.0346151 0.0290455i −0.00247251 0.00207468i
\(197\) 10.6343 18.4191i 0.757661 1.31231i −0.186379 0.982478i \(-0.559675\pi\)
0.944040 0.329830i \(-0.106991\pi\)
\(198\) 0 0
\(199\) −3.09580 + 17.5572i −0.219455 + 1.24459i 0.653550 + 0.756883i \(0.273279\pi\)
−0.873006 + 0.487710i \(0.837832\pi\)
\(200\) 0.695470 3.94421i 0.0491772 0.278898i
\(201\) 0 0
\(202\) 4.58765 7.94604i 0.322786 0.559081i
\(203\) −12.4081 10.4116i −0.870876 0.730752i
\(204\) 0 0
\(205\) −20.3011 + 7.38901i −1.41789 + 0.516071i
\(206\) −4.83022 + 4.05304i −0.336538 + 0.282389i
\(207\) 0 0
\(208\) 0.0614894 0.00426352
\(209\) −0.625829 1.68085i −0.0432895 0.116267i
\(210\) 0 0
\(211\) 3.66132 + 20.7644i 0.252056 + 1.42948i 0.803518 + 0.595280i \(0.202959\pi\)
−0.551463 + 0.834200i \(0.685930\pi\)
\(212\) −1.41875 + 1.19047i −0.0974400 + 0.0817619i
\(213\) 0 0
\(214\) −10.6373 3.87165i −0.727149 0.264661i
\(215\) −21.9008 18.3770i −1.49362 1.25330i
\(216\) 0 0
\(217\) −2.68227 4.64582i −0.182084 0.315379i
\(218\) 1.95171 11.0687i 0.132187 0.749668i
\(219\) 0 0
\(220\) −0.639033 1.10684i −0.0430836 0.0746230i
\(221\) 1.75356 3.03725i 0.117957 0.204307i
\(222\) 0 0
\(223\) −18.5351 6.74622i −1.24120 0.451760i −0.363782 0.931484i \(-0.618515\pi\)
−0.877419 + 0.479724i \(0.840737\pi\)
\(224\) −14.0544 + 5.11538i −0.939048 + 0.341785i
\(225\) 0 0
\(226\) −1.68092 9.53298i −0.111813 0.634125i
\(227\) −26.4020 −1.75236 −0.876180 0.481983i \(-0.839917\pi\)
−0.876180 + 0.481983i \(0.839917\pi\)
\(228\) 0 0
\(229\) −5.87164 −0.388009 −0.194005 0.981001i \(-0.562148\pi\)
−0.194005 + 0.981001i \(0.562148\pi\)
\(230\) −0.340022 1.92836i −0.0224204 0.127152i
\(231\) 0 0
\(232\) −16.2811 + 5.92582i −1.06890 + 0.389049i
\(233\) 24.4209 + 8.88847i 1.59986 + 0.582303i 0.979400 0.201932i \(-0.0647219\pi\)
0.620464 + 0.784235i \(0.286944\pi\)
\(234\) 0 0
\(235\) −10.7306 + 18.5859i −0.699984 + 1.21241i
\(236\) 2.27972 + 3.94858i 0.148397 + 0.257031i
\(237\) 0 0
\(238\) 0.967805 5.48870i 0.0627335 0.355779i
\(239\) −4.18479 7.24827i −0.270692 0.468852i 0.698347 0.715759i \(-0.253919\pi\)
−0.969039 + 0.246907i \(0.920586\pi\)
\(240\) 0 0
\(241\) −8.33409 6.99313i −0.536846 0.450467i 0.333612 0.942711i \(-0.391733\pi\)
−0.870458 + 0.492243i \(0.836177\pi\)
\(242\) −8.94996 3.25752i −0.575325 0.209401i
\(243\) 0 0
\(244\) 2.35844 1.97897i 0.150984 0.126690i
\(245\) 0.0161968 + 0.0918566i 0.00103478 + 0.00586850i
\(246\) 0 0
\(247\) 4.14883 + 4.87111i 0.263984 + 0.309941i
\(248\) −5.73824 −0.364378
\(249\) 0 0
\(250\) 6.12108 5.13620i 0.387131 0.324842i
\(251\) −5.82547 + 2.12030i −0.367701 + 0.133832i −0.519261 0.854616i \(-0.673793\pi\)
0.151560 + 0.988448i \(0.451570\pi\)
\(252\) 0 0
\(253\) −0.277189 0.232589i −0.0174267 0.0146227i
\(254\) −2.43882 + 4.22415i −0.153025 + 0.265047i
\(255\) 0 0
\(256\) −2.79591 + 15.8564i −0.174744 + 0.991025i
\(257\) 2.93835 16.6642i 0.183289 1.03948i −0.744845 0.667238i \(-0.767476\pi\)
0.928134 0.372247i \(-0.121412\pi\)
\(258\) 0 0
\(259\) −12.8584 + 22.2715i −0.798985 + 1.38388i
\(260\) 3.49273 + 2.93075i 0.216610 + 0.181757i
\(261\) 0 0
\(262\) 16.1878 5.89187i 1.00008 0.364001i
\(263\) −11.1853 + 9.38555i −0.689713 + 0.578738i −0.918826 0.394662i \(-0.870862\pi\)
0.229114 + 0.973400i \(0.426417\pi\)
\(264\) 0 0
\(265\) 3.82295 0.234842
\(266\) 8.84312 + 5.01914i 0.542207 + 0.307743i
\(267\) 0 0
\(268\) 1.03936 + 5.89452i 0.0634892 + 0.360065i
\(269\) −13.2194 + 11.0924i −0.806002 + 0.676316i −0.949650 0.313313i \(-0.898561\pi\)
0.143648 + 0.989629i \(0.454117\pi\)
\(270\) 0 0
\(271\) 4.35117 + 1.58370i 0.264315 + 0.0962026i 0.470778 0.882252i \(-0.343973\pi\)
−0.206464 + 0.978454i \(0.566195\pi\)
\(272\) −0.0766663 0.0643307i −0.00464858 0.00390062i
\(273\) 0 0
\(274\) −8.48767 14.7011i −0.512759 0.888125i
\(275\) −0.100852 + 0.571962i −0.00608162 + 0.0344906i
\(276\) 0 0
\(277\) 2.36184 + 4.09083i 0.141909 + 0.245794i 0.928216 0.372043i \(-0.121342\pi\)
−0.786306 + 0.617837i \(0.788009\pi\)
\(278\) 1.39734 2.42026i 0.0838067 0.145157i
\(279\) 0 0
\(280\) 17.9097 + 6.51860i 1.07031 + 0.389561i
\(281\) −30.6819 + 11.1673i −1.83033 + 0.666184i −0.837527 + 0.546397i \(0.815999\pi\)
−0.992800 + 0.119788i \(0.961779\pi\)
\(282\) 0 0
\(283\) −1.69846 9.63246i −0.100963 0.572590i −0.992756 0.120147i \(-0.961663\pi\)
0.891793 0.452444i \(-0.149448\pi\)
\(284\) 12.3550 0.733137
\(285\) 0 0
\(286\) −0.531155 −0.0314079
\(287\) −3.93020 22.2893i −0.231992 1.31569i
\(288\) 0 0
\(289\) 10.6108 3.86202i 0.624166 0.227178i
\(290\) 12.7763 + 4.65020i 0.750251 + 0.273069i
\(291\) 0 0
\(292\) −6.28611 + 10.8879i −0.367867 + 0.637164i
\(293\) 2.06758 + 3.58116i 0.120789 + 0.209213i 0.920079 0.391732i \(-0.128124\pi\)
−0.799290 + 0.600946i \(0.794791\pi\)
\(294\) 0 0
\(295\) 1.63429 9.26849i 0.0951518 0.539633i
\(296\) 13.7542 + 23.8229i 0.799446 + 1.38468i
\(297\) 0 0
\(298\) 7.07991 + 5.94075i 0.410128 + 0.344138i
\(299\) 1.21301 + 0.441500i 0.0701502 + 0.0255326i
\(300\) 0 0
\(301\) 22.9440 19.2523i 1.32247 1.10969i
\(302\) −1.46538 8.31061i −0.0843234 0.478222i
\(303\) 0 0
\(304\) 0.157451 0.0924567i 0.00903046 0.00530276i
\(305\) −6.35504 −0.363888
\(306\) 0 0
\(307\) −4.76991 + 4.00243i −0.272233 + 0.228431i −0.768676 0.639639i \(-0.779084\pi\)
0.496442 + 0.868070i \(0.334639\pi\)
\(308\) 1.25820 0.457947i 0.0716925 0.0260939i
\(309\) 0 0
\(310\) 3.44949 + 2.89447i 0.195918 + 0.164395i
\(311\) −1.29426 + 2.24173i −0.0733909 + 0.127117i −0.900385 0.435093i \(-0.856715\pi\)
0.826994 + 0.562210i \(0.190049\pi\)
\(312\) 0 0
\(313\) −3.58971 + 20.3582i −0.202902 + 1.15072i 0.697804 + 0.716288i \(0.254160\pi\)
−0.900707 + 0.434428i \(0.856951\pi\)
\(314\) 2.34895 13.3215i 0.132559 0.751777i
\(315\) 0 0
\(316\) 9.94831 17.2310i 0.559636 0.969318i
\(317\) −6.99866 5.87257i −0.393084 0.329836i 0.424729 0.905320i \(-0.360369\pi\)
−0.817813 + 0.575484i \(0.804814\pi\)
\(318\) 0 0
\(319\) 2.36097 0.859322i 0.132189 0.0481128i
\(320\) 9.77972 8.20616i 0.546703 0.458738i
\(321\) 0 0
\(322\) 2.05138 0.114319
\(323\) −0.0766663 10.4139i −0.00426583 0.579447i
\(324\) 0 0
\(325\) −0.359785 2.04044i −0.0199573 0.113183i
\(326\) −12.3931 + 10.3990i −0.686388 + 0.575948i
\(327\) 0 0
\(328\) −22.7497 8.28023i −1.25614 0.457199i
\(329\) −17.2233 14.4520i −0.949550 0.796767i
\(330\) 0 0
\(331\) −8.04710 13.9380i −0.442309 0.766101i 0.555552 0.831482i \(-0.312507\pi\)
−0.997860 + 0.0653807i \(0.979174\pi\)
\(332\) −1.20099 + 6.81115i −0.0659129 + 0.373810i
\(333\) 0 0
\(334\) 10.0667 + 17.4360i 0.550826 + 0.954058i
\(335\) 6.17752 10.6998i 0.337514 0.584591i
\(336\) 0 0
\(337\) 19.2071 + 6.99081i 1.04628 + 0.380813i 0.807256 0.590201i \(-0.200952\pi\)
0.239020 + 0.971015i \(0.423174\pi\)
\(338\) −8.96198 + 3.26189i −0.487468 + 0.177424i
\(339\) 0 0
\(340\) −1.28864 7.30823i −0.0698862 0.396344i
\(341\) 0.832119 0.0450618
\(342\) 0 0
\(343\) 18.4712 0.997352
\(344\) −5.56330 31.5510i −0.299953 1.70112i
\(345\) 0 0
\(346\) −8.94774 + 3.25671i −0.481033 + 0.175082i
\(347\) −20.7528 7.55342i −1.11407 0.405489i −0.281586 0.959536i \(-0.590860\pi\)
−0.832485 + 0.554047i \(0.813083\pi\)
\(348\) 0 0
\(349\) 9.26264 16.0434i 0.495818 0.858782i −0.504171 0.863604i \(-0.668202\pi\)
0.999988 + 0.00482248i \(0.00153505\pi\)
\(350\) −1.64631 2.85149i −0.0879988 0.152418i
\(351\) 0 0
\(352\) 0.402856 2.28471i 0.0214723 0.121775i
\(353\) 15.5544 + 26.9410i 0.827876 + 1.43392i 0.899701 + 0.436506i \(0.143784\pi\)
−0.0718253 + 0.997417i \(0.522882\pi\)
\(354\) 0 0
\(355\) −19.5364 16.3930i −1.03689 0.870051i
\(356\) 1.84787 + 0.672569i 0.0979369 + 0.0356461i
\(357\) 0 0
\(358\) −4.41534 + 3.70491i −0.233358 + 0.195811i
\(359\) 2.95218 + 16.7427i 0.155810 + 0.883643i 0.958041 + 0.286630i \(0.0925350\pi\)
−0.802231 + 0.597013i \(0.796354\pi\)
\(360\) 0 0
\(361\) 17.9479 + 6.23481i 0.944626 + 0.328148i
\(362\) −4.92808 −0.259014
\(363\) 0 0
\(364\) −3.65910 + 3.07035i −0.191789 + 0.160930i
\(365\) 24.3862 8.87587i 1.27643 0.464584i
\(366\) 0 0
\(367\) 17.6138 + 14.7797i 0.919433 + 0.771496i 0.973890 0.227020i \(-0.0728983\pi\)
−0.0544568 + 0.998516i \(0.517343\pi\)
\(368\) 0.0184183 0.0319015i 0.000960121 0.00166298i
\(369\) 0 0
\(370\) 3.74850 21.2588i 0.194875 1.10519i
\(371\) −0.695470 + 3.94421i −0.0361070 + 0.204773i
\(372\) 0 0
\(373\) −1.71348 + 2.96783i −0.0887205 + 0.153668i −0.906971 0.421194i \(-0.861611\pi\)
0.818250 + 0.574863i \(0.194944\pi\)
\(374\) 0.662255 + 0.555698i 0.0342444 + 0.0287345i
\(375\) 0 0
\(376\) −22.5993 + 8.22546i −1.16547 + 0.424196i
\(377\) −6.86618 + 5.76141i −0.353626 + 0.296728i
\(378\) 0 0
\(379\) −12.1898 −0.626150 −0.313075 0.949728i \(-0.601359\pi\)
−0.313075 + 0.949728i \(0.601359\pi\)
\(380\) 13.3503 + 2.25281i 0.684855 + 0.115567i
\(381\) 0 0
\(382\) 0.499123 + 2.83067i 0.0255373 + 0.144829i
\(383\) 7.09492 5.95335i 0.362534 0.304202i −0.443266 0.896390i \(-0.646180\pi\)
0.805800 + 0.592188i \(0.201736\pi\)
\(384\) 0 0
\(385\) −2.59714 0.945283i −0.132363 0.0481761i
\(386\) 1.07351 + 0.900783i 0.0546403 + 0.0458486i
\(387\) 0 0
\(388\) −0.0619563 0.107311i −0.00314535 0.00544791i
\(389\) 6.33363 35.9198i 0.321128 1.82120i −0.214469 0.976731i \(-0.568802\pi\)
0.535596 0.844474i \(-0.320087\pi\)
\(390\) 0 0
\(391\) −1.05051 1.81953i −0.0531264 0.0920177i
\(392\) −0.0522619 + 0.0905203i −0.00263962 + 0.00457196i
\(393\) 0 0
\(394\) −17.5753 6.39689i −0.885432 0.322271i
\(395\) −38.5933 + 14.0468i −1.94184 + 0.706772i
\(396\) 0 0
\(397\) −2.72075 15.4302i −0.136551 0.774417i −0.973767 0.227546i \(-0.926930\pi\)
0.837217 0.546871i \(-0.184181\pi\)
\(398\) 15.6777 0.785851
\(399\) 0 0
\(400\) −0.0591253 −0.00295627
\(401\) 1.60426 + 9.09819i 0.0801127 + 0.454342i 0.998305 + 0.0582059i \(0.0185380\pi\)
−0.918192 + 0.396136i \(0.870351\pi\)
\(402\) 0 0
\(403\) −2.78952 + 1.01530i −0.138956 + 0.0505757i
\(404\) 12.0270 + 4.37748i 0.598367 + 0.217788i
\(405\) 0 0
\(406\) −7.12196 + 12.3356i −0.353457 + 0.612205i
\(407\) −1.99454 3.45464i −0.0988655 0.171240i
\(408\) 0 0
\(409\) 2.77972 15.7645i 0.137448 0.779507i −0.835676 0.549223i \(-0.814924\pi\)
0.973124 0.230283i \(-0.0739653\pi\)
\(410\) 9.49912 + 16.4530i 0.469128 + 0.812554i
\(411\) 0 0
\(412\) −6.73783 5.65371i −0.331949 0.278538i
\(413\) 9.26517 + 3.37225i 0.455909 + 0.165937i
\(414\) 0 0
\(415\) 10.9363 9.17664i 0.536841 0.450463i
\(416\) 1.43717 + 8.15058i 0.0704629 + 0.399615i
\(417\) 0 0
\(418\) −1.36009 + 0.798656i −0.0665242 + 0.0390635i
\(419\) −20.9828 −1.02508 −0.512538 0.858665i \(-0.671294\pi\)
−0.512538 + 0.858665i \(0.671294\pi\)
\(420\) 0 0
\(421\) −15.2365 + 12.7849i −0.742581 + 0.623099i −0.933529 0.358501i \(-0.883288\pi\)
0.190949 + 0.981600i \(0.438844\pi\)
\(422\) 17.4234 6.34160i 0.848157 0.308704i
\(423\) 0 0
\(424\) 3.28177 + 2.75374i 0.159377 + 0.133733i
\(425\) −1.68614 + 2.92047i −0.0817896 + 0.141664i
\(426\) 0 0
\(427\) 1.15611 6.55661i 0.0559479 0.317297i
\(428\) 2.74200 15.5507i 0.132540 0.751670i
\(429\) 0 0
\(430\) −12.5706 + 21.7729i −0.606207 + 1.04998i
\(431\) 29.0292 + 24.3584i 1.39829 + 1.17330i 0.961854 + 0.273563i \(0.0882021\pi\)
0.436431 + 0.899738i \(0.356242\pi\)
\(432\) 0 0
\(433\) −1.89780 + 0.690744i −0.0912026 + 0.0331950i −0.387218 0.921988i \(-0.626564\pi\)
0.296016 + 0.955183i \(0.404342\pi\)
\(434\) −3.61381 + 3.03234i −0.173468 + 0.145557i
\(435\) 0 0
\(436\) 15.6783 0.750854
\(437\) 3.76991 0.693392i 0.180339 0.0331694i
\(438\) 0 0
\(439\) −5.44356 30.8720i −0.259807 1.47344i −0.783425 0.621486i \(-0.786529\pi\)
0.523618 0.851953i \(-0.324582\pi\)
\(440\) −2.26470 + 1.90031i −0.107965 + 0.0905937i
\(441\) 0 0
\(442\) −2.89811 1.05483i −0.137849 0.0501729i
\(443\) −13.5196 11.3443i −0.642336 0.538984i 0.262399 0.964959i \(-0.415486\pi\)
−0.904734 + 0.425976i \(0.859931\pi\)
\(444\) 0 0
\(445\) −2.02956 3.51531i −0.0962105 0.166641i
\(446\) −3.01202 + 17.0820i −0.142623 + 0.808857i
\(447\) 0 0
\(448\) 6.68732 + 11.5828i 0.315946 + 0.547235i
\(449\) −6.13429 + 10.6249i −0.289495 + 0.501420i −0.973689 0.227880i \(-0.926821\pi\)
0.684194 + 0.729300i \(0.260154\pi\)
\(450\) 0 0
\(451\) 3.29901 + 1.20074i 0.155344 + 0.0565407i
\(452\) 12.6887 4.61830i 0.596825 0.217226i
\(453\) 0 0
\(454\) 4.03168 + 22.8648i 0.189216 + 1.07310i
\(455\) 9.85978 0.462234
\(456\) 0 0
\(457\) 19.1875 0.897552 0.448776 0.893644i \(-0.351860\pi\)
0.448776 + 0.893644i \(0.351860\pi\)
\(458\) 0.896622 + 5.08499i 0.0418964 + 0.237606i
\(459\) 0 0
\(460\) 2.56670 0.934204i 0.119673 0.0435575i
\(461\) 37.0933 + 13.5009i 1.72761 + 0.628798i 0.998456 0.0555528i \(-0.0176921\pi\)
0.729153 + 0.684351i \(0.239914\pi\)
\(462\) 0 0
\(463\) −7.09286 + 12.2852i −0.329633 + 0.570942i −0.982439 0.186584i \(-0.940258\pi\)
0.652806 + 0.757525i \(0.273592\pi\)
\(464\) 0.127889 + 0.221510i 0.00593708 + 0.0102833i
\(465\) 0 0
\(466\) 3.96848 22.5064i 0.183836 1.04259i
\(467\) 14.8935 + 25.7963i 0.689190 + 1.19371i 0.972100 + 0.234566i \(0.0753668\pi\)
−0.282910 + 0.959146i \(0.591300\pi\)
\(468\) 0 0
\(469\) 9.91534 + 8.31996i 0.457848 + 0.384180i
\(470\) 17.7344 + 6.45480i 0.818028 + 0.297738i
\(471\) 0 0
\(472\) 8.07919 6.77925i 0.371875 0.312040i
\(473\) 0.806751 + 4.57531i 0.0370945 + 0.210373i
\(474\) 0 0
\(475\) −3.98932 4.68383i −0.183043 0.214909i
\(476\) 7.77446 0.356342
\(477\) 0 0
\(478\) −5.63816 + 4.73097i −0.257883 + 0.216390i
\(479\) −0.368241 + 0.134029i −0.0168254 + 0.00612393i −0.350419 0.936593i \(-0.613961\pi\)
0.333594 + 0.942717i \(0.391739\pi\)
\(480\) 0 0
\(481\) 10.9014 + 9.14738i 0.497062 + 0.417085i
\(482\) −4.78359 + 8.28541i −0.217886 + 0.377390i
\(483\) 0 0
\(484\) 2.30706 13.0840i 0.104866 0.594726i
\(485\) −0.0444153 + 0.251892i −0.00201679 + 0.0114378i
\(486\) 0 0
\(487\) 12.1163 20.9861i 0.549043 0.950971i −0.449297 0.893383i \(-0.648325\pi\)
0.998340 0.0575887i \(-0.0183412\pi\)
\(488\) −5.45542 4.57764i −0.246955 0.207220i
\(489\) 0 0
\(490\) 0.0770768 0.0280537i 0.00348198 0.00126734i
\(491\) −26.1052 + 21.9049i −1.17811 + 0.988552i −0.178121 + 0.984009i \(0.557002\pi\)
−0.999990 + 0.00454368i \(0.998554\pi\)
\(492\) 0 0
\(493\) 14.5885 0.657034
\(494\) 3.58496 4.33683i 0.161295 0.195123i
\(495\) 0 0
\(496\) 0.0147100 + 0.0834248i 0.000660501 + 0.00374589i
\(497\) 20.4670 17.1739i 0.918072 0.770354i
\(498\) 0 0
\(499\) 27.7215 + 10.0898i 1.24099 + 0.451682i 0.877346 0.479858i \(-0.159312\pi\)
0.363640 + 0.931540i \(0.381534\pi\)
\(500\) 8.53849 + 7.16464i 0.381853 + 0.320412i
\(501\) 0 0
\(502\) 2.72580 + 4.72123i 0.121659 + 0.210719i
\(503\) 4.04870 22.9613i 0.180522 1.02379i −0.751052 0.660243i \(-0.770453\pi\)
0.931574 0.363551i \(-0.118436\pi\)
\(504\) 0 0
\(505\) −13.2096 22.8797i −0.587820 1.01813i
\(506\) −0.159100 + 0.275570i −0.00707287 + 0.0122506i
\(507\) 0 0
\(508\) −6.39363 2.32709i −0.283671 0.103248i
\(509\) 6.16132 2.24254i 0.273096 0.0993987i −0.201842 0.979418i \(-0.564693\pi\)
0.474938 + 0.880019i \(0.342471\pi\)
\(510\) 0 0
\(511\) 4.72106 + 26.7744i 0.208847 + 1.18443i
\(512\) 0.473897 0.0209435
\(513\) 0 0
\(514\) −14.8803 −0.656343
\(515\) 3.15270 + 17.8799i 0.138925 + 0.787881i
\(516\) 0 0
\(517\) 3.27719 1.19280i 0.144131 0.0524592i
\(518\) 21.2512 + 7.73480i 0.933724 + 0.339848i
\(519\) 0 0
\(520\) 5.27332 9.13366i 0.231250 0.400537i
\(521\) 6.23055 + 10.7916i 0.272965 + 0.472790i 0.969620 0.244617i \(-0.0786622\pi\)
−0.696654 + 0.717407i \(0.745329\pi\)
\(522\) 0 0
\(523\) −4.67483 + 26.5123i −0.204416 + 1.15930i 0.693940 + 0.720033i \(0.255873\pi\)
−0.898356 + 0.439268i \(0.855238\pi\)
\(524\) 12.0150 + 20.8106i 0.524878 + 0.909116i
\(525\) 0 0
\(526\) 9.83615 + 8.25351i 0.428877 + 0.359870i
\(527\) 4.54024 + 1.65251i 0.197776 + 0.0719846i
\(528\) 0 0
\(529\) −17.0266 + 14.2870i −0.740288 + 0.621175i
\(530\) −0.583778 3.31077i −0.0253577 0.143811i
\(531\) 0 0
\(532\) −4.75295 + 13.3639i −0.206066 + 0.579399i
\(533\) −12.5243 −0.542490
\(534\) 0 0
\(535\) −24.9688 + 20.9513i −1.07950 + 0.905806i
\(536\) 13.0103 4.73535i 0.561958 0.204536i
\(537\) 0 0
\(538\) 11.6250 + 9.75449i 0.501187 + 0.420546i
\(539\) 0.00757866 0.0131266i 0.000326436 0.000565404i
\(540\) 0 0
\(541\) −4.69506 + 26.6270i −0.201856 + 1.14478i 0.700454 + 0.713698i \(0.252981\pi\)
−0.902310 + 0.431087i \(0.858130\pi\)
\(542\) 0.707081 4.01006i 0.0303717 0.172247i
\(543\) 0 0
\(544\) 6.73530 11.6659i 0.288774 0.500171i
\(545\) −24.7913 20.8024i −1.06194 0.891077i
\(546\) 0 0
\(547\) 0.416527 0.151603i 0.0178094 0.00648209i −0.333100 0.942891i \(-0.608095\pi\)
0.350909 + 0.936409i \(0.385872\pi\)
\(548\) 18.1395 15.2208i 0.774881 0.650202i
\(549\) 0 0
\(550\) 0.510734 0.0217778
\(551\) −8.91875 + 25.0769i −0.379951 + 1.06831i
\(552\) 0 0
\(553\) −7.47148 42.3729i −0.317720 1.80188i
\(554\) 3.18210 2.67010i 0.135195 0.113442i
\(555\) 0 0
\(556\) 3.66328 + 1.33332i 0.155357 + 0.0565455i
\(557\) −21.8248 18.3131i −0.924745 0.775953i 0.0501217 0.998743i \(-0.484039\pi\)
−0.974866 + 0.222790i \(0.928484\pi\)
\(558\) 0 0
\(559\) −8.28699 14.3535i −0.350502 0.607088i
\(560\) 0.0488583 0.277089i 0.00206464 0.0117092i
\(561\) 0 0
\(562\) 14.3564 + 24.8660i 0.605587 + 1.04891i
\(563\) 0.992259 1.71864i 0.0418187 0.0724322i −0.844358 0.535779i \(-0.820018\pi\)
0.886177 + 0.463347i \(0.153351\pi\)
\(564\) 0 0
\(565\) −26.1917 9.53298i −1.10189 0.401056i
\(566\) −8.08260 + 2.94182i −0.339737 + 0.123654i
\(567\) 0 0
\(568\) −4.96270 28.1449i −0.208230 1.18093i
\(569\) 11.7638 0.493165 0.246583 0.969122i \(-0.420692\pi\)
0.246583 + 0.969122i \(0.420692\pi\)
\(570\) 0 0
\(571\) 3.64227 0.152424 0.0762122 0.997092i \(-0.475717\pi\)
0.0762122 + 0.997092i \(0.475717\pi\)
\(572\) −0.128660 0.729669i −0.00537956 0.0305090i
\(573\) 0 0
\(574\) −18.7029 + 6.80730i −0.780644 + 0.284131i
\(575\) −1.16637 0.424525i −0.0486412 0.0177039i
\(576\) 0 0
\(577\) −14.6591 + 25.3903i −0.610266 + 1.05701i 0.380929 + 0.924604i \(0.375604\pi\)
−0.991195 + 0.132408i \(0.957729\pi\)
\(578\) −4.96492 8.59949i −0.206513 0.357692i
\(579\) 0 0
\(580\) −3.29339 + 18.6777i −0.136750 + 0.775550i
\(581\) 7.47818 + 12.9526i 0.310247 + 0.537364i
\(582\) 0 0
\(583\) −0.475900 0.399328i −0.0197098 0.0165385i
\(584\) 27.3276 + 9.94643i 1.13082 + 0.411586i
\(585\) 0 0
\(586\) 2.78564 2.33743i 0.115074 0.0965585i
\(587\) −1.18701 6.73189i −0.0489933 0.277855i 0.950463 0.310839i \(-0.100610\pi\)
−0.999456 + 0.0329842i \(0.989499\pi\)
\(588\) 0 0
\(589\) −5.61628 + 6.79417i −0.231415 + 0.279949i
\(590\) −8.27631 −0.340730
\(591\) 0 0
\(592\) 0.311089 0.261034i 0.0127857 0.0107284i
\(593\) 11.3880 4.14489i 0.467649 0.170210i −0.0974379 0.995242i \(-0.531065\pi\)
0.565087 + 0.825031i \(0.308843\pi\)
\(594\) 0 0
\(595\) −12.2934 10.3154i −0.503980 0.422889i
\(596\) −6.44609 + 11.1650i −0.264042 + 0.457334i
\(597\) 0 0
\(598\) 0.197119 1.11792i 0.00806079 0.0457150i
\(599\) 5.09358 28.8871i 0.208118 1.18030i −0.684339 0.729164i \(-0.739909\pi\)
0.892457 0.451132i \(-0.148980\pi\)
\(600\) 0 0
\(601\) 0.410130 0.710366i 0.0167295 0.0289764i −0.857539 0.514418i \(-0.828008\pi\)
0.874269 + 0.485442i \(0.161341\pi\)
\(602\) −20.1766 16.9302i −0.822339 0.690024i
\(603\) 0 0
\(604\) 11.0617 4.02611i 0.450092 0.163820i
\(605\) −21.0082 + 17.6280i −0.854105 + 0.716679i
\(606\) 0 0
\(607\) −32.5654 −1.32179 −0.660895 0.750479i \(-0.729823\pi\)
−0.660895 + 0.750479i \(0.729823\pi\)
\(608\) 15.9354 + 18.7096i 0.646266 + 0.758775i
\(609\) 0 0
\(610\) 0.970437 + 5.50362i 0.0392919 + 0.222835i
\(611\) −9.53074 + 7.99724i −0.385573 + 0.323534i
\(612\) 0 0
\(613\) −7.50134 2.73027i −0.302976 0.110274i 0.186058 0.982539i \(-0.440429\pi\)
−0.489035 + 0.872264i \(0.662651\pi\)
\(614\) 4.19459 + 3.51968i 0.169280 + 0.142043i
\(615\) 0 0
\(616\) −1.54859 2.68224i −0.0623945 0.108070i
\(617\) 7.03390 39.8912i 0.283174 1.60596i −0.428561 0.903513i \(-0.640979\pi\)
0.711735 0.702448i \(-0.247910\pi\)
\(618\) 0 0
\(619\) 5.70368 + 9.87906i 0.229250 + 0.397073i 0.957586 0.288147i \(-0.0930393\pi\)
−0.728336 + 0.685220i \(0.759706\pi\)
\(620\) −3.14068 + 5.43982i −0.126133 + 0.218468i
\(621\) 0 0
\(622\) 2.13903 + 0.778544i 0.0857674 + 0.0312168i
\(623\) 3.99602 1.45443i 0.160097 0.0582707i
\(624\) 0 0
\(625\) −5.22075 29.6084i −0.208830 1.18433i
\(626\) 18.1789 0.726576
\(627\) 0 0
\(628\) 18.8693 0.752966
\(629\) −4.02207 22.8103i −0.160370 0.909506i
\(630\) 0 0
\(631\) −1.01202 + 0.368346i −0.0402879 + 0.0146636i −0.362086 0.932145i \(-0.617935\pi\)
0.321798 + 0.946808i \(0.395713\pi\)
\(632\) −43.2483 15.7411i −1.72032 0.626146i
\(633\) 0 0
\(634\) −4.01707 + 6.95778i −0.159538 + 0.276329i
\(635\) 7.02229 + 12.1630i 0.278671 + 0.482672i
\(636\) 0 0
\(637\) −0.00938966 + 0.0532514i −0.000372032 + 0.00210990i
\(638\) −1.10472 1.91344i −0.0437364 0.0757536i
\(639\) 0 0
\(640\) 13.2724 + 11.1369i 0.524639 + 0.440225i
\(641\) 4.39393 + 1.59926i 0.173550 + 0.0631670i 0.427334 0.904094i \(-0.359453\pi\)
−0.253784 + 0.967261i \(0.581675\pi\)
\(642\) 0 0
\(643\) −17.3255 + 14.5378i −0.683250 + 0.573315i −0.916954 0.398993i \(-0.869360\pi\)
0.233704 + 0.972308i \(0.424915\pi\)
\(644\) 0.496901 + 2.81807i 0.0195806 + 0.111047i
\(645\) 0 0
\(646\) −9.00703 + 1.65664i −0.354377 + 0.0651797i
\(647\) −22.0479 −0.866791 −0.433396 0.901204i \(-0.642685\pi\)
−0.433396 + 0.901204i \(0.642685\pi\)
\(648\) 0 0
\(649\) −1.17159 + 0.983080i −0.0459889 + 0.0385893i
\(650\) −1.71213 + 0.623166i −0.0671554 + 0.0244426i
\(651\) 0 0
\(652\) −17.2875 14.5059i −0.677029 0.568095i
\(653\) −19.4898 + 33.7573i −0.762694 + 1.32103i 0.178763 + 0.983892i \(0.442791\pi\)
−0.941457 + 0.337133i \(0.890543\pi\)
\(654\) 0 0
\(655\) 8.61334 48.8487i 0.336551 1.90868i
\(656\) −0.0620621 + 0.351972i −0.00242312 + 0.0137422i
\(657\) 0 0
\(658\) −9.88578 + 17.1227i −0.385388 + 0.667511i
\(659\) −12.0981 10.1515i −0.471274 0.395446i 0.375985 0.926626i \(-0.377304\pi\)
−0.847259 + 0.531180i \(0.821749\pi\)
\(660\) 0 0
\(661\) 38.5419 14.0281i 1.49911 0.545631i 0.543278 0.839553i \(-0.317183\pi\)
0.955829 + 0.293922i \(0.0949606\pi\)
\(662\) −10.8418 + 9.09738i −0.421380 + 0.353580i
\(663\) 0 0
\(664\) 15.9982 0.620852
\(665\) 25.2472 14.8254i 0.979045 0.574903i
\(666\) 0 0
\(667\) 0.932419 + 5.28801i 0.0361034 + 0.204753i
\(668\) −21.5141 + 18.0525i −0.832407 + 0.698472i
\(669\) 0 0
\(670\) −10.2096 3.71599i −0.394432 0.143561i
\(671\) 0.791108 + 0.663818i 0.0305404 + 0.0256264i
\(672\) 0 0
\(673\) 15.1446 + 26.2311i 0.583780 + 1.01114i 0.995026 + 0.0996119i \(0.0317601\pi\)
−0.411247 + 0.911524i \(0.634907\pi\)
\(674\) 3.12122 17.7013i 0.120225 0.681830i
\(675\) 0 0
\(676\) −6.65183 11.5213i −0.255839 0.443127i
\(677\) 1.35710 2.35056i 0.0521575 0.0903394i −0.838768 0.544489i \(-0.816724\pi\)
0.890925 + 0.454150i \(0.150057\pi\)
\(678\) 0 0
\(679\) −0.251801 0.0916481i −0.00966324 0.00351713i
\(680\) −16.1306 + 5.87105i −0.618579 + 0.225144i
\(681\) 0 0
\(682\) −0.127068 0.720637i −0.00486567 0.0275946i
\(683\) −32.8803 −1.25813 −0.629065 0.777353i \(-0.716562\pi\)
−0.629065 + 0.777353i \(0.716562\pi\)
\(684\) 0 0
\(685\) −48.8786 −1.86755
\(686\) −2.82062 15.9965i −0.107692 0.610751i
\(687\) 0 0
\(688\) −0.444440 + 0.161763i −0.0169441 + 0.00616716i
\(689\) 2.08260 + 0.758003i 0.0793406 + 0.0288776i
\(690\) 0 0
\(691\) 22.7010 39.3193i 0.863586 1.49578i −0.00485771 0.999988i \(-0.501546\pi\)
0.868444 0.495787i \(-0.165120\pi\)
\(692\) −6.64125 11.5030i −0.252463 0.437278i
\(693\) 0 0
\(694\) −3.37242 + 19.1259i −0.128015 + 0.726010i
\(695\) −4.02347 6.96886i −0.152619 0.264344i
\(696\) 0 0
\(697\) 15.6156 + 13.1031i 0.591484 + 0.496314i
\(698\) −15.3084 5.57180i −0.579431 0.210896i
\(699\) 0 0
\(700\) 3.51842 2.95230i 0.132984 0.111587i
\(701\) −0.281364 1.59569i −0.0106270 0.0602685i 0.979033 0.203701i \(-0.0652971\pi\)
−0.989660 + 0.143433i \(0.954186\pi\)
\(702\) 0 0
\(703\) 41.6687 + 7.03142i 1.57156 + 0.265195i
\(704\) −2.07461 −0.0781897
\(705\) 0 0
\(706\) 20.9564 17.5845i 0.788703 0.661800i
\(707\) 26.0085 9.46632i 0.978151 0.356018i
\(708\) 0 0
\(709\) 27.7652 + 23.2977i 1.04274 + 0.874965i 0.992312 0.123763i \(-0.0394961\pi\)
0.0504309 + 0.998728i \(0.483941\pi\)
\(710\) −11.2135 + 19.4223i −0.420834 + 0.728906i
\(711\) 0 0
\(712\) 0.789876 4.47961i 0.0296019 0.167881i
\(713\) −0.308811 + 1.75135i −0.0115651 + 0.0655887i
\(714\) 0 0
\(715\) −0.764700 + 1.32450i −0.0285982 + 0.0495335i
\(716\) −6.15910 5.16810i −0.230176 0.193141i
\(717\) 0 0
\(718\) 14.0488 5.11333i 0.524295 0.190828i
\(719\) −4.76676 + 3.99979i −0.177770 + 0.149167i −0.727331 0.686287i \(-0.759239\pi\)
0.549561 + 0.835454i \(0.314795\pi\)
\(720\) 0 0
\(721\) −19.0205 −0.708362
\(722\) 2.65880 16.4954i 0.0989501 0.613896i
\(723\) 0 0
\(724\) −1.19372 6.76990i −0.0443641 0.251601i
\(725\) 6.60220 5.53990i 0.245199 0.205747i
\(726\) 0 0
\(727\) −15.2255 5.54163i −0.564683 0.205528i 0.0438755 0.999037i \(-0.486030\pi\)
−0.608558 + 0.793509i \(0.708252\pi\)
\(728\) 8.46404 + 7.10217i 0.313698 + 0.263224i
\(729\) 0 0
\(730\) −11.4106 19.7637i −0.422325 0.731489i
\(731\) −4.68433 + 26.5661i −0.173256 + 0.982584i
\(732\) 0 0
\(733\) −9.85251 17.0650i −0.363911 0.630312i 0.624690 0.780873i \(-0.285225\pi\)
−0.988601 + 0.150561i \(0.951892\pi\)
\(734\) 10.1099 17.5109i 0.373165 0.646340i
\(735\) 0 0
\(736\) 4.65910 + 1.69577i 0.171737 + 0.0625071i
\(737\) −1.88666 + 0.686688i −0.0694960 + 0.0252945i
\(738\) 0 0
\(739\) 3.34049 + 18.9449i 0.122882 + 0.696898i 0.982543 + 0.186034i \(0.0595634\pi\)
−0.859661 + 0.510864i \(0.829326\pi\)
\(740\) 30.1121 1.10694
\(741\) 0 0
\(742\) 3.52198 0.129296
\(743\) −2.61293 14.8187i −0.0958591 0.543644i −0.994481 0.104920i \(-0.966542\pi\)
0.898622 0.438725i \(-0.144570\pi\)
\(744\) 0 0
\(745\) 25.0069 9.10175i 0.916181 0.333462i
\(746\) 2.83187 + 1.03072i 0.103682 + 0.0377372i
\(747\) 0 0
\(748\) −0.602968 + 1.04437i −0.0220467 + 0.0381860i
\(749\) −17.0736 29.5723i −0.623855 1.08055i
\(750\) 0 0
\(751\) −4.74469 + 26.9085i −0.173136 + 0.981904i 0.767137 + 0.641483i \(0.221681\pi\)
−0.940273 + 0.340421i \(0.889430\pi\)
\(752\) 0.177519 + 0.307471i 0.00647344 + 0.0112123i
\(753\) 0 0
\(754\) 6.03802 + 5.06650i 0.219892 + 0.184511i
\(755\) −22.8332 8.31061i −0.830986 0.302454i
\(756\) 0 0
\(757\) −5.61128 + 4.70842i −0.203945 + 0.171131i −0.739040 0.673662i \(-0.764720\pi\)
0.535094 + 0.844792i \(0.320276\pi\)
\(758\) 1.86143 + 10.5567i 0.0676103 + 0.383437i
\(759\) 0 0
\(760\) −0.230552 31.3169i −0.00836300 1.13598i
\(761\) −23.1830 −0.840384 −0.420192 0.907435i \(-0.638037\pi\)
−0.420192 + 0.907435i \(0.638037\pi\)
\(762\) 0 0
\(763\) 25.9722 21.7933i 0.940259 0.788971i
\(764\) −3.76769 + 1.37133i −0.136310 + 0.0496129i
\(765\) 0 0
\(766\) −6.23917 5.23529i −0.225430 0.189159i
\(767\) 2.72803 4.72508i 0.0985033 0.170613i
\(768\) 0 0
\(769\) −0.775845 + 4.40003i −0.0279777 + 0.158669i −0.995596 0.0937492i \(-0.970115\pi\)
0.967618 + 0.252418i \(0.0812259\pi\)
\(770\) −0.422046 + 2.39354i −0.0152095 + 0.0862572i
\(771\) 0 0
\(772\) −0.977407 + 1.69292i −0.0351776 + 0.0609294i
\(773\) 3.04782 + 2.55742i 0.109622 + 0.0919841i 0.695951 0.718089i \(-0.254983\pi\)
−0.586329 + 0.810073i \(0.699427\pi\)
\(774\) 0 0
\(775\) 2.68227 0.976265i 0.0963499 0.0350685i
\(776\) −0.219570 + 0.184241i −0.00788210 + 0.00661386i
\(777\) 0 0
\(778\) −32.0746 −1.14993
\(779\) −32.0702 + 18.8319i −1.14903 + 0.674721i
\(780\) 0 0
\(781\) 0.719656 + 4.08137i 0.0257513 + 0.146043i
\(782\) −1.41534 + 1.18762i −0.0506126 + 0.0424690i
\(783\) 0 0
\(784\) 0.00144999 0.000527755i 5.17855e−5 1.88484e-5i
\(785\) −29.8371 25.0363i −1.06493 0.893583i
\(786\) 0 0
\(787\) 16.6866 + 28.9020i 0.594813 + 1.03025i 0.993573 + 0.113191i \(0.0361073\pi\)
−0.398760 + 0.917055i \(0.630559\pi\)
\(788\) 4.53044 25.6934i 0.161390 0.915290i
\(789\) 0 0
\(790\) 18.0582 + 31.2778i 0.642484 + 1.11281i
\(791\) 14.6001 25.2882i 0.519121 0.899144i
\(792\) 0 0
\(793\) −3.46198 1.26006i −0.122939 0.0447460i
\(794\) −12.9474 + 4.71248i −0.459487 + 0.167240i
\(795\) 0 0
\(796\) 3.79756 + 21.5370i 0.134601 + 0.763360i
\(797\) −3.56036 −0.126115 −0.0630573 0.998010i \(-0.520085\pi\)
−0.0630573 + 0.998010i \(0.520085\pi\)
\(798\) 0 0
\(799\) 20.2499 0.716390
\(800\) −1.38191 7.83721i −0.0488579 0.277087i
\(801\) 0 0
\(802\) 7.63429 2.77865i 0.269576 0.0981176i
\(803\) −3.96286 1.44236i −0.139846 0.0508999i
\(804\) 0 0
\(805\) 2.95336 5.11538i 0.104092 0.180293i
\(806\) 1.30525 + 2.26075i 0.0459753 + 0.0796316i
\(807\) 0 0
\(808\) 5.14099 29.1560i 0.180859 1.02570i
\(809\) −19.2476 33.3379i −0.676710 1.17210i −0.975966 0.217924i \(-0.930072\pi\)
0.299255 0.954173i \(-0.403262\pi\)
\(810\) 0 0
\(811\) −9.88713 8.29628i −0.347184 0.291322i 0.452474 0.891778i \(-0.350541\pi\)
−0.799658 + 0.600456i \(0.794986\pi\)
\(812\) −18.6710 6.79569i −0.655224 0.238482i
\(813\) 0 0
\(814\) −2.68723 + 2.25486i −0.0941874 + 0.0790327i
\(815\) 8.08899 + 45.8750i 0.283345 + 1.60693i
\(816\) 0 0
\(817\) −42.8021 24.2934i −1.49745 0.849919i
\(818\) −14.0770 −0.492190
\(819\) 0 0
\(820\) −20.3011 + 17.0347i −0.708946 + 0.594876i
\(821\) 40.7301 14.8246i 1.42149 0.517381i 0.487011 0.873396i \(-0.338087\pi\)
0.934480 + 0.356015i \(0.115865\pi\)
\(822\) 0 0
\(823\) −10.3452 8.68068i −0.360612 0.302590i 0.444422 0.895817i \(-0.353409\pi\)
−0.805035 + 0.593228i \(0.797853\pi\)
\(824\) −10.1728 + 17.6198i −0.354385 + 0.613813i
\(825\) 0 0
\(826\) 1.50563 8.53882i 0.0523874 0.297104i
\(827\) 2.89012 16.3907i 0.100499 0.569960i −0.892424 0.451199i \(-0.850997\pi\)
0.992923 0.118761i \(-0.0378923\pi\)
\(828\) 0 0
\(829\) 24.4334 42.3198i 0.848605 1.46983i −0.0338476 0.999427i \(-0.510776\pi\)
0.882453 0.470401i \(-0.155891\pi\)
\(830\) −9.61721 8.06980i −0.333818 0.280107i
\(831\) 0 0
\(832\) 6.95471 2.53131i 0.241111 0.0877573i
\(833\) 0.0674192 0.0565714i 0.00233594 0.00196008i
\(834\) 0 0
\(835\) 57.9718 2.00620
\(836\) −1.42659 1.67495i −0.0493398 0.0579294i
\(837\) 0 0
\(838\) 3.20414 + 18.1716i 0.110685 + 0.627728i
\(839\) 27.7401 23.2767i 0.957695 0.803601i −0.0228818 0.999738i \(-0.507284\pi\)
0.980577 + 0.196137i \(0.0628397\pi\)
\(840\) 0 0
\(841\) −7.78446 2.83331i −0.268430 0.0977004i
\(842\) 13.3987 + 11.2429i 0.461751 + 0.387455i
\(843\) 0 0
\(844\) 12.9321 + 22.3991i 0.445142 + 0.771008i
\(845\) −4.76857 + 27.0439i −0.164044 + 0.930339i
\(846\) 0 0
\(847\) −14.3653 24.8814i −0.493598 0.854936i
\(848\) 0.0316221 0.0547710i 0.00108591 0.00188084i
\(849\) 0 0
\(850\) 2.78668 + 1.01427i 0.0955825 + 0.0347892i
\(851\) 8.01114 2.91582i 0.274618 0.0999530i
\(852\) 0 0
\(853\) 8.79369 + 49.8715i 0.301090 + 1.70757i 0.641360 + 0.767240i \(0.278370\pi\)
−0.340270 + 0.940328i \(0.610519\pi\)
\(854\) −5.85473 −0.200345
\(855\) 0 0
\(856\) −36.5259 −1.24843
\(857\) 7.66849 + 43.4902i 0.261951 + 1.48560i 0.777580 + 0.628784i \(0.216447\pi\)
−0.515629 + 0.856812i \(0.672442\pi\)
\(858\) 0 0
\(859\) 4.35457 1.58493i 0.148576 0.0540772i −0.266662 0.963790i \(-0.585921\pi\)
0.415238 + 0.909713i \(0.363698\pi\)
\(860\) −32.9552 11.9947i −1.12376 0.409016i
\(861\) 0 0
\(862\) 16.6621 28.8596i 0.567513 0.982962i
\(863\) 23.1202 + 40.0454i 0.787021 + 1.36316i 0.927784 + 0.373117i \(0.121711\pi\)
−0.140763 + 0.990043i \(0.544956\pi\)
\(864\) 0 0
\(865\) −4.76099 + 27.0009i −0.161879 + 0.918059i
\(866\) 0.888003 + 1.53807i 0.0301756 + 0.0522656i
\(867\) 0 0
\(868\) −5.04101 4.22991i −0.171103 0.143573i
\(869\) 6.27156 + 2.28266i 0.212748 + 0.0774340i
\(870\) 0 0
\(871\) 5.48680 4.60397i 0.185913 0.156000i
\(872\) −6.29756 35.7152i −0.213262 1.20947i
\(873\) 0 0
\(874\) −1.17617 3.15896i −0.0397847 0.106853i
\(875\) 24.1037 0.814854
\(876\) 0 0
\(877\) −16.0646 + 13.4798i −0.542465 + 0.455182i −0.872380 0.488829i \(-0.837424\pi\)
0.329915 + 0.944011i \(0.392980\pi\)
\(878\) −25.9047 + 9.42853i −0.874240 + 0.318197i
\(879\) 0 0
\(880\) 0.0334331 + 0.0280537i 0.00112703 + 0.000945689i
\(881\) 8.69800 15.0654i 0.293043 0.507565i −0.681485 0.731832i \(-0.738665\pi\)
0.974528 + 0.224267i \(0.0719988\pi\)
\(882\) 0 0
\(883\) 2.73190 15.4934i 0.0919356 0.521393i −0.903708 0.428150i \(-0.859166\pi\)
0.995643 0.0932430i \(-0.0297233\pi\)
\(884\) 0.747053 4.23675i 0.0251261 0.142497i
\(885\) 0 0
\(886\) −7.75995 + 13.4406i −0.260701 + 0.451547i
\(887\) −17.7044 14.8557i −0.594455 0.498807i 0.295203 0.955435i \(-0.404613\pi\)
−0.889658 + 0.456627i \(0.849057\pi\)
\(888\) 0 0
\(889\) −13.8262 + 5.03234i −0.463717 + 0.168779i
\(890\) −2.73442 + 2.29445i −0.0916580 + 0.0769102i
\(891\) 0 0
\(892\) −24.1958 −0.810136
\(893\) −12.3799 + 34.8086i −0.414276 + 1.16482i
\(894\) 0 0
\(895\) 2.88191 + 16.3441i 0.0963317 + 0.546324i
\(896\) −13.9047 + 11.6674i −0.464522 + 0.389781i
\(897\) 0 0
\(898\) 10.1382 + 3.68999i 0.338315 + 0.123136i
\(899\) −9.45929 7.93729i −0.315485 0.264723i
\(900\) 0 0
\(901\) −1.80360 3.12392i −0.0600865 0.104073i
\(902\) 0.536102 3.04038i 0.0178502 0.101234i
\(903\) 0 0
\(904\) −15.6172 27.0498i −0.519421 0.899663i
\(905\) −7.09492 + 12.2888i −0.235843 + 0.408492i
\(906\) 0 0
\(907\) −17.4662 6.35716i −0.579954 0.211086i 0.0353511 0.999375i \(-0.488745\pi\)
−0.615305 + 0.788289i \(0.710967\pi\)
\(908\) −30.4337 + 11.0769i −1.00998 + 0.367601i
\(909\) 0 0
\(910\) −1.50563 8.53882i −0.0499110 0.283059i
\(911\) 4.35410 0.144258 0.0721289 0.997395i \(-0.477021\pi\)
0.0721289 + 0.997395i \(0.477021\pi\)
\(912\) 0 0
\(913\) −2.31996 −0.0767793
\(914\) −2.93000 16.6168i −0.0969157 0.549636i
\(915\) 0 0
\(916\) −6.76827 + 2.46345i −0.223630 + 0.0813946i
\(917\) 48.8312 + 17.7731i 1.61255 + 0.586919i
\(918\) 0 0
\(919\) 3.91488 6.78077i 0.129140 0.223677i −0.794204 0.607652i \(-0.792112\pi\)
0.923344 + 0.383975i \(0.125445\pi\)
\(920\) −3.15910 5.47172i −0.104152 0.180397i
\(921\) 0 0
\(922\) 6.02781 34.1854i 0.198515 1.12584i
\(923\) −7.39234 12.8039i −0.243322 0.421446i
\(924\) 0 0
\(925\) −10.4823 8.79569i −0.344656 0.289201i
\(926\) 11.7224 + 4.26660i 0.385222 + 0.140209i
\(927\) 0 0
\(928\) −26.3726 + 22.1292i −0.865722 + 0.726427i
\(929\) 0.423496 + 2.40176i 0.0138944 + 0.0787993i 0.990967 0.134109i \(-0.0428174\pi\)
−0.977072 + 0.212909i \(0.931706\pi\)
\(930\) 0 0
\(931\) 0.0560265 + 0.150475i 0.00183619 + 0.00493163i
\(932\) 31.8792 1.04424
\(933\) 0 0
\(934\) 20.0660 16.8374i 0.656579 0.550935i
\(935\) 2.33915 0.851379i 0.0764982 0.0278431i
\(936\) 0 0
\(937\) −34.5522 28.9927i −1.12877 0.947150i −0.129756 0.991546i \(-0.541419\pi\)
−0.999014 + 0.0443957i \(0.985864\pi\)
\(938\) 5.69119 9.85743i 0.185824 0.321856i
\(939\) 0 0
\(940\) −4.57145 + 25.9260i −0.149104 + 0.845613i
\(941\) −9.45290 + 53.6100i −0.308156 + 1.74764i 0.300111 + 0.953904i \(0.402976\pi\)
−0.608266 + 0.793733i \(0.708135\pi\)
\(942\) 0 0
\(943\) −3.75150 + 6.49778i −0.122166 + 0.211597i
\(944\) −0.119271 0.100080i −0.00388193 0.00325732i
\(945\) 0 0
\(946\) 3.83915 1.39733i 0.124821 0.0454313i
\(947\) −8.22487 + 6.90149i −0.267272 + 0.224268i −0.766567 0.642164i \(-0.778037\pi\)
0.499295 + 0.866432i \(0.333592\pi\)
\(948\) 0 0
\(949\) 15.0446 0.488368
\(950\) −3.44713 + 4.17009i −0.111840 + 0.135296i
\(951\) 0 0
\(952\) −3.12280 17.7103i −0.101211 0.573993i
\(953\) 7.21760 6.05628i 0.233801 0.196182i −0.518359 0.855163i \(-0.673457\pi\)
0.752159 + 0.658981i \(0.229012\pi\)
\(954\) 0 0
\(955\) 7.77719 + 2.83067i 0.251664 + 0.0915982i
\(956\) −7.86484 6.59938i −0.254367 0.213439i
\(957\) 0 0
\(958\) 0.172304 + 0.298439i 0.00556689 + 0.00964214i
\(959\) 8.89198 50.4289i 0.287137 1.62843i
\(960\) 0 0
\(961\) 13.4552 + 23.3050i 0.434038 + 0.751776i
\(962\) 6.25718 10.8378i 0.201740 0.349423i
\(963\) 0 0
\(964\) −12.5407 4.56444i −0.403909 0.147011i
\(965\) 3.79174 1.38008i 0.122060 0.0444263i
\(966\) 0 0
\(967\) 4.75847 + 26.9866i 0.153022 + 0.867831i 0.960572 + 0.278031i \(0.0896820\pi\)
−0.807550 + 0.589799i \(0.799207\pi\)
\(968\) −30.7320 −0.987765
\(969\) 0 0
\(970\) 0.224927 0.00722197
\(971\) 3.48932 + 19.7889i 0.111978 + 0.635057i 0.988202 + 0.153154i \(0.0489431\pi\)
−0.876225 + 0.481903i \(0.839946\pi\)
\(972\) 0 0
\(973\) 7.92185 2.88332i 0.253963 0.0924349i
\(974\) −20.0247 7.28840i −0.641633 0.233535i
\(975\) 0 0
\(976\) −0.0525666 + 0.0910480i −0.00168262 + 0.00291438i
\(977\) −7.06371 12.2347i −0.225988 0.391423i 0.730627 0.682776i \(-0.239228\pi\)
−0.956615 + 0.291354i \(0.905894\pi\)
\(978\) 0 0
\(979\) −0.114542 + 0.649602i −0.00366079 + 0.0207614i
\(980\) 0.0572085 + 0.0990880i 0.00182746 + 0.00316525i
\(981\) 0 0
\(982\) 22.9565 + 19.2628i 0.732572 + 0.614701i
\(983\) 31.2494 + 11.3739i 0.996702 + 0.362770i 0.788312 0.615276i \(-0.210955\pi\)
0.208390 + 0.978046i \(0.433178\pi\)
\(984\) 0 0
\(985\) −41.2545 + 34.6166i −1.31448 + 1.10298i
\(986\) −2.22772 12.6340i −0.0709451 0.402350i
\(987\) 0 0
\(988\) 6.82605 + 3.87430i 0.217165 + 0.123258i
\(989\) −9.92902 −0.315724
\(990\) 0 0
\(991\) −20.7324 + 17.3965i −0.658585 + 0.552619i −0.909662 0.415348i \(-0.863660\pi\)
0.251077 + 0.967967i \(0.419215\pi\)
\(992\) −10.7144 + 3.89971i −0.340181 + 0.123816i
\(993\) 0 0
\(994\) −17.9984 15.1025i −0.570875 0.479021i
\(995\) 22.5710 39.0942i 0.715550 1.23937i
\(996\) 0 0
\(997\) −9.46467 + 53.6768i −0.299749 + 1.69996i 0.347497 + 0.937681i \(0.387032\pi\)
−0.647247 + 0.762281i \(0.724080\pi\)
\(998\) 4.50485 25.5483i 0.142599 0.808717i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.y.a.28.1 6
3.2 odd 2 513.2.y.c.28.1 yes 6
19.6 even 9 9747.2.a.bd.1.1 3
19.13 odd 18 9747.2.a.v.1.3 3
19.17 even 9 inner 513.2.y.a.55.1 yes 6
57.17 odd 18 513.2.y.c.55.1 yes 6
57.32 even 18 9747.2.a.bb.1.1 3
57.44 odd 18 9747.2.a.u.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.y.a.28.1 6 1.1 even 1 trivial
513.2.y.a.55.1 yes 6 19.17 even 9 inner
513.2.y.c.28.1 yes 6 3.2 odd 2
513.2.y.c.55.1 yes 6 57.17 odd 18
9747.2.a.u.1.3 3 57.44 odd 18
9747.2.a.v.1.3 3 19.13 odd 18
9747.2.a.bb.1.1 3 57.32 even 18
9747.2.a.bd.1.1 3 19.6 even 9