Properties

Label 9747.2.a.u.1.3
Level $9747$
Weight $2$
Character 9747.1
Self dual yes
Analytic conductor $77.830$
Analytic rank $2$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9747,2,Mod(1,9747)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9747, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9747.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9747 = 3^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9747.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,-3,0,-9,-6,0,0,-9,0,-9,12,0,3,-3,0,0,-3,0,18,3,0,-6, 12,0,-18,-6,0,0,0,0,-9,12,0,-27,0,0,18,-21,0,-18,-18,0,-9,-6,0,12,15,0, -9,-6,0,0,33,0,-9,-3,0,-9,3,0,12,3,0,-9,33,0,-9,-3,0,-18,21,0,0,27,0,0, -12,0,18,0,0,-9,3,0,9,-33,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.8301868501\)
Analytic rank: \(2\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 9747.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.879385 q^{2} -1.22668 q^{4} -2.53209 q^{5} -2.65270 q^{7} -2.83750 q^{8} -2.22668 q^{10} +0.411474 q^{11} -1.46791 q^{13} -2.33275 q^{14} -0.0418891 q^{16} -2.38919 q^{17} +3.10607 q^{20} +0.361844 q^{22} -0.879385 q^{23} +1.41147 q^{25} -1.29086 q^{26} +3.25402 q^{28} -6.10607 q^{29} -2.02229 q^{31} +5.63816 q^{32} -2.10101 q^{34} +6.71688 q^{35} -9.69459 q^{37} +7.18479 q^{40} -8.53209 q^{41} -11.2909 q^{43} -0.504748 q^{44} -0.773318 q^{46} -8.47565 q^{47} +0.0368366 q^{49} +1.24123 q^{50} +1.80066 q^{52} -1.50980 q^{53} -1.04189 q^{55} +7.52704 q^{56} -5.36959 q^{58} -3.71688 q^{59} -2.50980 q^{61} -1.77837 q^{62} +5.04189 q^{64} +3.71688 q^{65} -4.87939 q^{67} +2.93077 q^{68} +5.90673 q^{70} +10.0719 q^{71} -10.2490 q^{73} -8.52528 q^{74} -1.09152 q^{77} +16.2199 q^{79} +0.106067 q^{80} -7.50299 q^{82} -5.63816 q^{83} +6.04963 q^{85} -9.92902 q^{86} -1.16756 q^{88} -1.60307 q^{89} +3.89393 q^{91} +1.07873 q^{92} -7.45336 q^{94} -0.101014 q^{97} +0.0323936 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{5} - 9 q^{7} - 6 q^{8} - 9 q^{11} - 9 q^{13} + 12 q^{14} + 3 q^{16} - 3 q^{17} - 3 q^{20} + 18 q^{22} + 3 q^{23} - 6 q^{25} + 12 q^{26} - 18 q^{28} - 6 q^{29} - 9 q^{34} + 12 q^{35}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.879385 0.621819 0.310910 0.950439i \(-0.399366\pi\)
0.310910 + 0.950439i \(0.399366\pi\)
\(3\) 0 0
\(4\) −1.22668 −0.613341
\(5\) −2.53209 −1.13238 −0.566192 0.824273i \(-0.691584\pi\)
−0.566192 + 0.824273i \(0.691584\pi\)
\(6\) 0 0
\(7\) −2.65270 −1.00263 −0.501314 0.865266i \(-0.667150\pi\)
−0.501314 + 0.865266i \(0.667150\pi\)
\(8\) −2.83750 −1.00321
\(9\) 0 0
\(10\) −2.22668 −0.704139
\(11\) 0.411474 0.124064 0.0620321 0.998074i \(-0.480242\pi\)
0.0620321 + 0.998074i \(0.480242\pi\)
\(12\) 0 0
\(13\) −1.46791 −0.407125 −0.203563 0.979062i \(-0.565252\pi\)
−0.203563 + 0.979062i \(0.565252\pi\)
\(14\) −2.33275 −0.623453
\(15\) 0 0
\(16\) −0.0418891 −0.0104723
\(17\) −2.38919 −0.579463 −0.289731 0.957108i \(-0.593566\pi\)
−0.289731 + 0.957108i \(0.593566\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 3.10607 0.694538
\(21\) 0 0
\(22\) 0.361844 0.0771455
\(23\) −0.879385 −0.183364 −0.0916822 0.995788i \(-0.529224\pi\)
−0.0916822 + 0.995788i \(0.529224\pi\)
\(24\) 0 0
\(25\) 1.41147 0.282295
\(26\) −1.29086 −0.253158
\(27\) 0 0
\(28\) 3.25402 0.614952
\(29\) −6.10607 −1.13387 −0.566934 0.823763i \(-0.691871\pi\)
−0.566934 + 0.823763i \(0.691871\pi\)
\(30\) 0 0
\(31\) −2.02229 −0.363214 −0.181607 0.983371i \(-0.558130\pi\)
−0.181607 + 0.983371i \(0.558130\pi\)
\(32\) 5.63816 0.996695
\(33\) 0 0
\(34\) −2.10101 −0.360321
\(35\) 6.71688 1.13536
\(36\) 0 0
\(37\) −9.69459 −1.59378 −0.796891 0.604124i \(-0.793523\pi\)
−0.796891 + 0.604124i \(0.793523\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 7.18479 1.13602
\(41\) −8.53209 −1.33249 −0.666244 0.745734i \(-0.732099\pi\)
−0.666244 + 0.745734i \(0.732099\pi\)
\(42\) 0 0
\(43\) −11.2909 −1.72184 −0.860920 0.508740i \(-0.830111\pi\)
−0.860920 + 0.508740i \(0.830111\pi\)
\(44\) −0.504748 −0.0760936
\(45\) 0 0
\(46\) −0.773318 −0.114020
\(47\) −8.47565 −1.23630 −0.618150 0.786060i \(-0.712118\pi\)
−0.618150 + 0.786060i \(0.712118\pi\)
\(48\) 0 0
\(49\) 0.0368366 0.00526238
\(50\) 1.24123 0.175536
\(51\) 0 0
\(52\) 1.80066 0.249707
\(53\) −1.50980 −0.207387 −0.103694 0.994609i \(-0.533066\pi\)
−0.103694 + 0.994609i \(0.533066\pi\)
\(54\) 0 0
\(55\) −1.04189 −0.140488
\(56\) 7.52704 1.00584
\(57\) 0 0
\(58\) −5.36959 −0.705061
\(59\) −3.71688 −0.483897 −0.241948 0.970289i \(-0.577786\pi\)
−0.241948 + 0.970289i \(0.577786\pi\)
\(60\) 0 0
\(61\) −2.50980 −0.321347 −0.160673 0.987008i \(-0.551367\pi\)
−0.160673 + 0.987008i \(0.551367\pi\)
\(62\) −1.77837 −0.225853
\(63\) 0 0
\(64\) 5.04189 0.630236
\(65\) 3.71688 0.461022
\(66\) 0 0
\(67\) −4.87939 −0.596112 −0.298056 0.954548i \(-0.596338\pi\)
−0.298056 + 0.954548i \(0.596338\pi\)
\(68\) 2.93077 0.355408
\(69\) 0 0
\(70\) 5.90673 0.705989
\(71\) 10.0719 1.19532 0.597658 0.801751i \(-0.296098\pi\)
0.597658 + 0.801751i \(0.296098\pi\)
\(72\) 0 0
\(73\) −10.2490 −1.19955 −0.599776 0.800168i \(-0.704743\pi\)
−0.599776 + 0.800168i \(0.704743\pi\)
\(74\) −8.52528 −0.991044
\(75\) 0 0
\(76\) 0 0
\(77\) −1.09152 −0.124390
\(78\) 0 0
\(79\) 16.2199 1.82488 0.912439 0.409212i \(-0.134196\pi\)
0.912439 + 0.409212i \(0.134196\pi\)
\(80\) 0.106067 0.0118586
\(81\) 0 0
\(82\) −7.50299 −0.828567
\(83\) −5.63816 −0.618868 −0.309434 0.950921i \(-0.600140\pi\)
−0.309434 + 0.950921i \(0.600140\pi\)
\(84\) 0 0
\(85\) 6.04963 0.656174
\(86\) −9.92902 −1.07067
\(87\) 0 0
\(88\) −1.16756 −0.124462
\(89\) −1.60307 −0.169925 −0.0849627 0.996384i \(-0.527077\pi\)
−0.0849627 + 0.996384i \(0.527077\pi\)
\(90\) 0 0
\(91\) 3.89393 0.408195
\(92\) 1.07873 0.112465
\(93\) 0 0
\(94\) −7.45336 −0.768756
\(95\) 0 0
\(96\) 0 0
\(97\) −0.101014 −0.0102565 −0.00512823 0.999987i \(-0.501632\pi\)
−0.00512823 + 0.999987i \(0.501632\pi\)
\(98\) 0.0323936 0.00327225
\(99\) 0 0
\(100\) −1.73143 −0.173143
\(101\) −10.4338 −1.03820 −0.519099 0.854714i \(-0.673732\pi\)
−0.519099 + 0.854714i \(0.673732\pi\)
\(102\) 0 0
\(103\) 7.17024 0.706505 0.353253 0.935528i \(-0.385076\pi\)
0.353253 + 0.935528i \(0.385076\pi\)
\(104\) 4.16519 0.408431
\(105\) 0 0
\(106\) −1.32770 −0.128957
\(107\) 12.8726 1.24444 0.622220 0.782843i \(-0.286231\pi\)
0.622220 + 0.782843i \(0.286231\pi\)
\(108\) 0 0
\(109\) −12.7811 −1.22420 −0.612102 0.790779i \(-0.709676\pi\)
−0.612102 + 0.790779i \(0.709676\pi\)
\(110\) −0.916222 −0.0873583
\(111\) 0 0
\(112\) 0.111119 0.0104998
\(113\) −11.0077 −1.03552 −0.517761 0.855526i \(-0.673234\pi\)
−0.517761 + 0.855526i \(0.673234\pi\)
\(114\) 0 0
\(115\) 2.22668 0.207639
\(116\) 7.49020 0.695448
\(117\) 0 0
\(118\) −3.26857 −0.300896
\(119\) 6.33780 0.580985
\(120\) 0 0
\(121\) −10.8307 −0.984608
\(122\) −2.20708 −0.199820
\(123\) 0 0
\(124\) 2.48070 0.222774
\(125\) 9.08647 0.812718
\(126\) 0 0
\(127\) −5.54664 −0.492184 −0.246092 0.969246i \(-0.579147\pi\)
−0.246092 + 0.969246i \(0.579147\pi\)
\(128\) −6.84255 −0.604802
\(129\) 0 0
\(130\) 3.26857 0.286673
\(131\) −19.5895 −1.71154 −0.855770 0.517357i \(-0.826916\pi\)
−0.855770 + 0.517357i \(0.826916\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.29086 −0.370674
\(135\) 0 0
\(136\) 6.77930 0.581321
\(137\) 19.3037 1.64922 0.824611 0.565700i \(-0.191394\pi\)
0.824611 + 0.565700i \(0.191394\pi\)
\(138\) 0 0
\(139\) 3.17799 0.269553 0.134777 0.990876i \(-0.456968\pi\)
0.134777 + 0.990876i \(0.456968\pi\)
\(140\) −8.23947 −0.696363
\(141\) 0 0
\(142\) 8.85710 0.743271
\(143\) −0.604007 −0.0505096
\(144\) 0 0
\(145\) 15.4611 1.28397
\(146\) −9.01279 −0.745904
\(147\) 0 0
\(148\) 11.8922 0.977531
\(149\) 10.5098 0.860996 0.430498 0.902591i \(-0.358338\pi\)
0.430498 + 0.902591i \(0.358338\pi\)
\(150\) 0 0
\(151\) 9.59627 0.780933 0.390467 0.920617i \(-0.372314\pi\)
0.390467 + 0.920617i \(0.372314\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.959866 −0.0773482
\(155\) 5.12061 0.411298
\(156\) 0 0
\(157\) −15.3824 −1.22765 −0.613824 0.789443i \(-0.710369\pi\)
−0.613824 + 0.789443i \(0.710369\pi\)
\(158\) 14.2635 1.13474
\(159\) 0 0
\(160\) −14.2763 −1.12864
\(161\) 2.33275 0.183846
\(162\) 0 0
\(163\) 18.3969 1.44096 0.720479 0.693477i \(-0.243922\pi\)
0.720479 + 0.693477i \(0.243922\pi\)
\(164\) 10.4662 0.817270
\(165\) 0 0
\(166\) −4.95811 −0.384824
\(167\) −22.8949 −1.77166 −0.885829 0.464012i \(-0.846410\pi\)
−0.885829 + 0.464012i \(0.846410\pi\)
\(168\) 0 0
\(169\) −10.8452 −0.834249
\(170\) 5.31996 0.408022
\(171\) 0 0
\(172\) 13.8503 1.05607
\(173\) 10.8280 0.823238 0.411619 0.911356i \(-0.364964\pi\)
0.411619 + 0.911356i \(0.364964\pi\)
\(174\) 0 0
\(175\) −3.74422 −0.283037
\(176\) −0.0172363 −0.00129923
\(177\) 0 0
\(178\) −1.40972 −0.105663
\(179\) −6.55438 −0.489897 −0.244949 0.969536i \(-0.578771\pi\)
−0.244949 + 0.969536i \(0.578771\pi\)
\(180\) 0 0
\(181\) 5.60401 0.416543 0.208271 0.978071i \(-0.433216\pi\)
0.208271 + 0.978071i \(0.433216\pi\)
\(182\) 3.42427 0.253824
\(183\) 0 0
\(184\) 2.49525 0.183952
\(185\) 24.5476 1.80477
\(186\) 0 0
\(187\) −0.983088 −0.0718905
\(188\) 10.3969 0.758274
\(189\) 0 0
\(190\) 0 0
\(191\) 3.26857 0.236505 0.118253 0.992984i \(-0.462271\pi\)
0.118253 + 0.992984i \(0.462271\pi\)
\(192\) 0 0
\(193\) −1.59358 −0.114708 −0.0573541 0.998354i \(-0.518266\pi\)
−0.0573541 + 0.998354i \(0.518266\pi\)
\(194\) −0.0888306 −0.00637766
\(195\) 0 0
\(196\) −0.0451868 −0.00322763
\(197\) 21.2686 1.51532 0.757661 0.652648i \(-0.226342\pi\)
0.757661 + 0.652648i \(0.226342\pi\)
\(198\) 0 0
\(199\) −17.8280 −1.26379 −0.631897 0.775053i \(-0.717723\pi\)
−0.631897 + 0.775053i \(0.717723\pi\)
\(200\) −4.00505 −0.283200
\(201\) 0 0
\(202\) −9.17530 −0.645572
\(203\) 16.1976 1.13685
\(204\) 0 0
\(205\) 21.6040 1.50889
\(206\) 6.30541 0.439319
\(207\) 0 0
\(208\) 0.0614894 0.00426352
\(209\) 0 0
\(210\) 0 0
\(211\) 21.0847 1.45153 0.725766 0.687942i \(-0.241486\pi\)
0.725766 + 0.687942i \(0.241486\pi\)
\(212\) 1.85204 0.127199
\(213\) 0 0
\(214\) 11.3200 0.773816
\(215\) 28.5895 1.94978
\(216\) 0 0
\(217\) 5.36453 0.364168
\(218\) −11.2395 −0.761233
\(219\) 0 0
\(220\) 1.27807 0.0861672
\(221\) 3.50711 0.235914
\(222\) 0 0
\(223\) 19.7246 1.32086 0.660429 0.750888i \(-0.270374\pi\)
0.660429 + 0.750888i \(0.270374\pi\)
\(224\) −14.9564 −0.999314
\(225\) 0 0
\(226\) −9.68004 −0.643907
\(227\) 26.4020 1.75236 0.876180 0.481983i \(-0.160083\pi\)
0.876180 + 0.481983i \(0.160083\pi\)
\(228\) 0 0
\(229\) −5.87164 −0.388009 −0.194005 0.981001i \(-0.562148\pi\)
−0.194005 + 0.981001i \(0.562148\pi\)
\(230\) 1.95811 0.129114
\(231\) 0 0
\(232\) 17.3259 1.13750
\(233\) 25.9881 1.70254 0.851270 0.524728i \(-0.175833\pi\)
0.851270 + 0.524728i \(0.175833\pi\)
\(234\) 0 0
\(235\) 21.4611 1.39997
\(236\) 4.55943 0.296794
\(237\) 0 0
\(238\) 5.57337 0.361268
\(239\) −8.36959 −0.541383 −0.270692 0.962666i \(-0.587252\pi\)
−0.270692 + 0.962666i \(0.587252\pi\)
\(240\) 0 0
\(241\) −10.8794 −0.700803 −0.350401 0.936600i \(-0.613955\pi\)
−0.350401 + 0.936600i \(0.613955\pi\)
\(242\) −9.52435 −0.612248
\(243\) 0 0
\(244\) 3.07873 0.197095
\(245\) −0.0932736 −0.00595903
\(246\) 0 0
\(247\) 0 0
\(248\) 5.73824 0.364378
\(249\) 0 0
\(250\) 7.99050 0.505364
\(251\) −6.19934 −0.391299 −0.195649 0.980674i \(-0.562681\pi\)
−0.195649 + 0.980674i \(0.562681\pi\)
\(252\) 0 0
\(253\) −0.361844 −0.0227490
\(254\) −4.87763 −0.306050
\(255\) 0 0
\(256\) −16.1010 −1.00631
\(257\) −16.9213 −1.05552 −0.527760 0.849394i \(-0.676968\pi\)
−0.527760 + 0.849394i \(0.676968\pi\)
\(258\) 0 0
\(259\) 25.7169 1.59797
\(260\) −4.55943 −0.282764
\(261\) 0 0
\(262\) −17.2267 −1.06427
\(263\) 14.6013 0.900356 0.450178 0.892939i \(-0.351361\pi\)
0.450178 + 0.892939i \(0.351361\pi\)
\(264\) 0 0
\(265\) 3.82295 0.234842
\(266\) 0 0
\(267\) 0 0
\(268\) 5.98545 0.365620
\(269\) 17.2567 1.05216 0.526080 0.850435i \(-0.323661\pi\)
0.526080 + 0.850435i \(0.323661\pi\)
\(270\) 0 0
\(271\) −4.63041 −0.281278 −0.140639 0.990061i \(-0.544916\pi\)
−0.140639 + 0.990061i \(0.544916\pi\)
\(272\) 0.100081 0.00606829
\(273\) 0 0
\(274\) 16.9753 1.02552
\(275\) 0.580785 0.0350227
\(276\) 0 0
\(277\) −4.72369 −0.283819 −0.141909 0.989880i \(-0.545324\pi\)
−0.141909 + 0.989880i \(0.545324\pi\)
\(278\) 2.79467 0.167613
\(279\) 0 0
\(280\) −19.0591 −1.13900
\(281\) −32.6509 −1.94779 −0.973896 0.226994i \(-0.927110\pi\)
−0.973896 + 0.226994i \(0.927110\pi\)
\(282\) 0 0
\(283\) −9.78106 −0.581424 −0.290712 0.956811i \(-0.593892\pi\)
−0.290712 + 0.956811i \(0.593892\pi\)
\(284\) −12.3550 −0.733137
\(285\) 0 0
\(286\) −0.531155 −0.0314079
\(287\) 22.6331 1.33599
\(288\) 0 0
\(289\) −11.2918 −0.664223
\(290\) 13.5963 0.798400
\(291\) 0 0
\(292\) 12.5722 0.735734
\(293\) 4.13516 0.241579 0.120789 0.992678i \(-0.461457\pi\)
0.120789 + 0.992678i \(0.461457\pi\)
\(294\) 0 0
\(295\) 9.41147 0.547957
\(296\) 27.5084 1.59889
\(297\) 0 0
\(298\) 9.24216 0.535384
\(299\) 1.29086 0.0746523
\(300\) 0 0
\(301\) 29.9513 1.72636
\(302\) 8.43882 0.485599
\(303\) 0 0
\(304\) 0 0
\(305\) 6.35504 0.363888
\(306\) 0 0
\(307\) −6.22668 −0.355375 −0.177688 0.984087i \(-0.556862\pi\)
−0.177688 + 0.984087i \(0.556862\pi\)
\(308\) 1.33895 0.0762935
\(309\) 0 0
\(310\) 4.50299 0.255753
\(311\) −2.58853 −0.146782 −0.0733909 0.997303i \(-0.523382\pi\)
−0.0733909 + 0.997303i \(0.523382\pi\)
\(312\) 0 0
\(313\) −20.6723 −1.16847 −0.584234 0.811585i \(-0.698605\pi\)
−0.584234 + 0.811585i \(0.698605\pi\)
\(314\) −13.5270 −0.763375
\(315\) 0 0
\(316\) −19.8966 −1.11927
\(317\) 9.13610 0.513134 0.256567 0.966526i \(-0.417409\pi\)
0.256567 + 0.966526i \(0.417409\pi\)
\(318\) 0 0
\(319\) −2.51249 −0.140672
\(320\) −12.7665 −0.713670
\(321\) 0 0
\(322\) 2.05138 0.114319
\(323\) 0 0
\(324\) 0 0
\(325\) −2.07192 −0.114929
\(326\) 16.1780 0.896016
\(327\) 0 0
\(328\) 24.2098 1.33676
\(329\) 22.4834 1.23955
\(330\) 0 0
\(331\) 16.0942 0.884618 0.442309 0.896863i \(-0.354160\pi\)
0.442309 + 0.896863i \(0.354160\pi\)
\(332\) 6.91622 0.379577
\(333\) 0 0
\(334\) −20.1334 −1.10165
\(335\) 12.3550 0.675028
\(336\) 0 0
\(337\) −20.4397 −1.11342 −0.556712 0.830706i \(-0.687937\pi\)
−0.556712 + 0.830706i \(0.687937\pi\)
\(338\) −9.53714 −0.518752
\(339\) 0 0
\(340\) −7.42097 −0.402459
\(341\) −0.832119 −0.0450618
\(342\) 0 0
\(343\) 18.4712 0.997352
\(344\) 32.0378 1.72736
\(345\) 0 0
\(346\) 9.52198 0.511905
\(347\) −22.0847 −1.18557 −0.592785 0.805361i \(-0.701972\pi\)
−0.592785 + 0.805361i \(0.701972\pi\)
\(348\) 0 0
\(349\) −18.5253 −0.991636 −0.495818 0.868427i \(-0.665132\pi\)
−0.495818 + 0.868427i \(0.665132\pi\)
\(350\) −3.29261 −0.175998
\(351\) 0 0
\(352\) 2.31996 0.123654
\(353\) 31.1088 1.65575 0.827876 0.560911i \(-0.189549\pi\)
0.827876 + 0.560911i \(0.189549\pi\)
\(354\) 0 0
\(355\) −25.5030 −1.35356
\(356\) 1.96646 0.104222
\(357\) 0 0
\(358\) −5.76382 −0.304628
\(359\) −17.0009 −0.897275 −0.448637 0.893714i \(-0.648091\pi\)
−0.448637 + 0.893714i \(0.648091\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 4.92808 0.259014
\(363\) 0 0
\(364\) −4.77662 −0.250363
\(365\) 25.9513 1.35835
\(366\) 0 0
\(367\) 22.9932 1.20023 0.600117 0.799912i \(-0.295121\pi\)
0.600117 + 0.799912i \(0.295121\pi\)
\(368\) 0.0368366 0.00192024
\(369\) 0 0
\(370\) 21.5868 1.12224
\(371\) 4.00505 0.207932
\(372\) 0 0
\(373\) 3.42696 0.177441 0.0887205 0.996057i \(-0.471722\pi\)
0.0887205 + 0.996057i \(0.471722\pi\)
\(374\) −0.864513 −0.0447029
\(375\) 0 0
\(376\) 24.0496 1.24026
\(377\) 8.96316 0.461626
\(378\) 0 0
\(379\) −12.1898 −0.626150 −0.313075 0.949728i \(-0.601359\pi\)
−0.313075 + 0.949728i \(0.601359\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.87433 0.147064
\(383\) −9.26176 −0.473254 −0.236627 0.971601i \(-0.576042\pi\)
−0.236627 + 0.971601i \(0.576042\pi\)
\(384\) 0 0
\(385\) 2.76382 0.140857
\(386\) −1.40137 −0.0713278
\(387\) 0 0
\(388\) 0.123913 0.00629070
\(389\) −36.4739 −1.84930 −0.924650 0.380818i \(-0.875642\pi\)
−0.924650 + 0.380818i \(0.875642\pi\)
\(390\) 0 0
\(391\) 2.10101 0.106253
\(392\) −0.104524 −0.00527925
\(393\) 0 0
\(394\) 18.7033 0.942257
\(395\) −41.0702 −2.06646
\(396\) 0 0
\(397\) −15.6682 −0.786364 −0.393182 0.919461i \(-0.628626\pi\)
−0.393182 + 0.919461i \(0.628626\pi\)
\(398\) −15.6777 −0.785851
\(399\) 0 0
\(400\) −0.0591253 −0.00295627
\(401\) −9.23854 −0.461351 −0.230675 0.973031i \(-0.574094\pi\)
−0.230675 + 0.973031i \(0.574094\pi\)
\(402\) 0 0
\(403\) 2.96854 0.147874
\(404\) 12.7989 0.636769
\(405\) 0 0
\(406\) 14.2439 0.706914
\(407\) −3.98907 −0.197731
\(408\) 0 0
\(409\) 16.0077 0.791532 0.395766 0.918351i \(-0.370479\pi\)
0.395766 + 0.918351i \(0.370479\pi\)
\(410\) 18.9982 0.938256
\(411\) 0 0
\(412\) −8.79561 −0.433328
\(413\) 9.85978 0.485168
\(414\) 0 0
\(415\) 14.2763 0.700797
\(416\) −8.27631 −0.405780
\(417\) 0 0
\(418\) 0 0
\(419\) 20.9828 1.02508 0.512538 0.858665i \(-0.328706\pi\)
0.512538 + 0.858665i \(0.328706\pi\)
\(420\) 0 0
\(421\) −19.8898 −0.969370 −0.484685 0.874689i \(-0.661066\pi\)
−0.484685 + 0.874689i \(0.661066\pi\)
\(422\) 18.5416 0.902590
\(423\) 0 0
\(424\) 4.28405 0.208052
\(425\) −3.37227 −0.163579
\(426\) 0 0
\(427\) 6.65776 0.322191
\(428\) −15.7906 −0.763265
\(429\) 0 0
\(430\) 25.1411 1.21241
\(431\) −37.8949 −1.82533 −0.912666 0.408707i \(-0.865980\pi\)
−0.912666 + 0.408707i \(0.865980\pi\)
\(432\) 0 0
\(433\) 2.01960 0.0970558 0.0485279 0.998822i \(-0.484547\pi\)
0.0485279 + 0.998822i \(0.484547\pi\)
\(434\) 4.71749 0.226447
\(435\) 0 0
\(436\) 15.6783 0.750854
\(437\) 0 0
\(438\) 0 0
\(439\) −31.3482 −1.49617 −0.748085 0.663603i \(-0.769026\pi\)
−0.748085 + 0.663603i \(0.769026\pi\)
\(440\) 2.95636 0.140939
\(441\) 0 0
\(442\) 3.08410 0.146696
\(443\) 17.6486 0.838510 0.419255 0.907869i \(-0.362291\pi\)
0.419255 + 0.907869i \(0.362291\pi\)
\(444\) 0 0
\(445\) 4.05913 0.192421
\(446\) 17.3455 0.821335
\(447\) 0 0
\(448\) −13.3746 −0.631892
\(449\) −12.2686 −0.578990 −0.289495 0.957180i \(-0.593487\pi\)
−0.289495 + 0.957180i \(0.593487\pi\)
\(450\) 0 0
\(451\) −3.51073 −0.165314
\(452\) 13.5030 0.635127
\(453\) 0 0
\(454\) 23.2175 1.08965
\(455\) −9.85978 −0.462234
\(456\) 0 0
\(457\) 19.1875 0.897552 0.448776 0.893644i \(-0.351860\pi\)
0.448776 + 0.893644i \(0.351860\pi\)
\(458\) −5.16344 −0.241272
\(459\) 0 0
\(460\) −2.73143 −0.127354
\(461\) 39.4739 1.83848 0.919241 0.393694i \(-0.128803\pi\)
0.919241 + 0.393694i \(0.128803\pi\)
\(462\) 0 0
\(463\) 14.1857 0.659267 0.329633 0.944109i \(-0.393075\pi\)
0.329633 + 0.944109i \(0.393075\pi\)
\(464\) 0.255777 0.0118742
\(465\) 0 0
\(466\) 22.8536 1.05867
\(467\) 29.7870 1.37838 0.689190 0.724581i \(-0.257967\pi\)
0.689190 + 0.724581i \(0.257967\pi\)
\(468\) 0 0
\(469\) 12.9436 0.597678
\(470\) 18.8726 0.870527
\(471\) 0 0
\(472\) 10.5466 0.485448
\(473\) −4.64590 −0.213619
\(474\) 0 0
\(475\) 0 0
\(476\) −7.77446 −0.356342
\(477\) 0 0
\(478\) −7.36009 −0.336643
\(479\) −0.391874 −0.0179052 −0.00895258 0.999960i \(-0.502850\pi\)
−0.00895258 + 0.999960i \(0.502850\pi\)
\(480\) 0 0
\(481\) 14.2308 0.648869
\(482\) −9.56717 −0.435773
\(483\) 0 0
\(484\) 13.2858 0.603900
\(485\) 0.255777 0.0116143
\(486\) 0 0
\(487\) −24.2327 −1.09809 −0.549043 0.835794i \(-0.685008\pi\)
−0.549043 + 0.835794i \(0.685008\pi\)
\(488\) 7.12155 0.322377
\(489\) 0 0
\(490\) −0.0820234 −0.00370544
\(491\) 34.0779 1.53791 0.768957 0.639300i \(-0.220776\pi\)
0.768957 + 0.639300i \(0.220776\pi\)
\(492\) 0 0
\(493\) 14.5885 0.657034
\(494\) 0 0
\(495\) 0 0
\(496\) 0.0847118 0.00380367
\(497\) −26.7178 −1.19846
\(498\) 0 0
\(499\) −29.5006 −1.32063 −0.660315 0.750989i \(-0.729577\pi\)
−0.660315 + 0.750989i \(0.729577\pi\)
\(500\) −11.1462 −0.498473
\(501\) 0 0
\(502\) −5.45161 −0.243317
\(503\) −23.3155 −1.03959 −0.519794 0.854292i \(-0.673991\pi\)
−0.519794 + 0.854292i \(0.673991\pi\)
\(504\) 0 0
\(505\) 26.4192 1.17564
\(506\) −0.318201 −0.0141457
\(507\) 0 0
\(508\) 6.80396 0.301877
\(509\) 6.55674 0.290622 0.145311 0.989386i \(-0.453582\pi\)
0.145311 + 0.989386i \(0.453582\pi\)
\(510\) 0 0
\(511\) 27.1875 1.20270
\(512\) −0.473897 −0.0209435
\(513\) 0 0
\(514\) −14.8803 −0.656343
\(515\) −18.1557 −0.800036
\(516\) 0 0
\(517\) −3.48751 −0.153381
\(518\) 22.6150 0.993648
\(519\) 0 0
\(520\) −10.5466 −0.462501
\(521\) 12.4611 0.545931 0.272965 0.962024i \(-0.411996\pi\)
0.272965 + 0.962024i \(0.411996\pi\)
\(522\) 0 0
\(523\) −26.9213 −1.17719 −0.588593 0.808430i \(-0.700318\pi\)
−0.588593 + 0.808430i \(0.700318\pi\)
\(524\) 24.0300 1.04976
\(525\) 0 0
\(526\) 12.8402 0.559859
\(527\) 4.83162 0.210469
\(528\) 0 0
\(529\) −22.2267 −0.966377
\(530\) 3.36184 0.146029
\(531\) 0 0
\(532\) 0 0
\(533\) 12.5243 0.542490
\(534\) 0 0
\(535\) −32.5945 −1.40918
\(536\) 13.8452 0.598023
\(537\) 0 0
\(538\) 15.1753 0.654254
\(539\) 0.0151573 0.000652872 0
\(540\) 0 0
\(541\) −27.0378 −1.16244 −0.581222 0.813745i \(-0.697425\pi\)
−0.581222 + 0.813745i \(0.697425\pi\)
\(542\) −4.07192 −0.174904
\(543\) 0 0
\(544\) −13.4706 −0.577547
\(545\) 32.3628 1.38627
\(546\) 0 0
\(547\) −0.443258 −0.0189524 −0.00947618 0.999955i \(-0.503016\pi\)
−0.00947618 + 0.999955i \(0.503016\pi\)
\(548\) −23.6794 −1.01154
\(549\) 0 0
\(550\) 0.510734 0.0217778
\(551\) 0 0
\(552\) 0 0
\(553\) −43.0265 −1.82967
\(554\) −4.15394 −0.176484
\(555\) 0 0
\(556\) −3.89838 −0.165328
\(557\) 28.4902 1.20717 0.603584 0.797299i \(-0.293739\pi\)
0.603584 + 0.797299i \(0.293739\pi\)
\(558\) 0 0
\(559\) 16.5740 0.701005
\(560\) −0.281364 −0.0118898
\(561\) 0 0
\(562\) −28.7128 −1.21117
\(563\) 1.98452 0.0836375 0.0418187 0.999125i \(-0.486685\pi\)
0.0418187 + 0.999125i \(0.486685\pi\)
\(564\) 0 0
\(565\) 27.8726 1.17261
\(566\) −8.60132 −0.361540
\(567\) 0 0
\(568\) −28.5790 −1.19915
\(569\) −11.7638 −0.493165 −0.246583 0.969122i \(-0.579308\pi\)
−0.246583 + 0.969122i \(0.579308\pi\)
\(570\) 0 0
\(571\) 3.64227 0.152424 0.0762122 0.997092i \(-0.475717\pi\)
0.0762122 + 0.997092i \(0.475717\pi\)
\(572\) 0.740925 0.0309796
\(573\) 0 0
\(574\) 19.9032 0.830744
\(575\) −1.24123 −0.0517628
\(576\) 0 0
\(577\) 29.3182 1.22053 0.610266 0.792196i \(-0.291062\pi\)
0.610266 + 0.792196i \(0.291062\pi\)
\(578\) −9.92984 −0.413027
\(579\) 0 0
\(580\) −18.9659 −0.787514
\(581\) 14.9564 0.620494
\(582\) 0 0
\(583\) −0.621244 −0.0257293
\(584\) 29.0814 1.20340
\(585\) 0 0
\(586\) 3.63640 0.150218
\(587\) 6.83574 0.282141 0.141071 0.990000i \(-0.454946\pi\)
0.141071 + 0.990000i \(0.454946\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 8.27631 0.340730
\(591\) 0 0
\(592\) 0.406097 0.0166905
\(593\) 12.1189 0.497662 0.248831 0.968547i \(-0.419954\pi\)
0.248831 + 0.968547i \(0.419954\pi\)
\(594\) 0 0
\(595\) −16.0479 −0.657899
\(596\) −12.8922 −0.528084
\(597\) 0 0
\(598\) 1.13516 0.0464203
\(599\) −29.3327 −1.19850 −0.599252 0.800561i \(-0.704535\pi\)
−0.599252 + 0.800561i \(0.704535\pi\)
\(600\) 0 0
\(601\) −0.820260 −0.0334591 −0.0167295 0.999860i \(-0.505325\pi\)
−0.0167295 + 0.999860i \(0.505325\pi\)
\(602\) 26.3387 1.07349
\(603\) 0 0
\(604\) −11.7716 −0.478978
\(605\) 27.4243 1.11496
\(606\) 0 0
\(607\) −32.5654 −1.32179 −0.660895 0.750479i \(-0.729823\pi\)
−0.660895 + 0.750479i \(0.729823\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 5.58853 0.226273
\(611\) 12.4415 0.503329
\(612\) 0 0
\(613\) 7.98276 0.322421 0.161210 0.986920i \(-0.448460\pi\)
0.161210 + 0.986920i \(0.448460\pi\)
\(614\) −5.47565 −0.220979
\(615\) 0 0
\(616\) 3.09718 0.124789
\(617\) −40.5066 −1.63073 −0.815367 0.578944i \(-0.803465\pi\)
−0.815367 + 0.578944i \(0.803465\pi\)
\(618\) 0 0
\(619\) −11.4074 −0.458500 −0.229250 0.973368i \(-0.573627\pi\)
−0.229250 + 0.973368i \(0.573627\pi\)
\(620\) −6.28136 −0.252266
\(621\) 0 0
\(622\) −2.27631 −0.0912718
\(623\) 4.25248 0.170372
\(624\) 0 0
\(625\) −30.0651 −1.20260
\(626\) −18.1789 −0.726576
\(627\) 0 0
\(628\) 18.8693 0.752966
\(629\) 23.1622 0.923537
\(630\) 0 0
\(631\) 1.07697 0.0428735 0.0214368 0.999770i \(-0.493176\pi\)
0.0214368 + 0.999770i \(0.493176\pi\)
\(632\) −46.0238 −1.83073
\(633\) 0 0
\(634\) 8.03415 0.319077
\(635\) 14.0446 0.557342
\(636\) 0 0
\(637\) −0.0540729 −0.00214245
\(638\) −2.20945 −0.0874728
\(639\) 0 0
\(640\) 17.3259 0.684868
\(641\) 4.67593 0.184688 0.0923440 0.995727i \(-0.470564\pi\)
0.0923440 + 0.995727i \(0.470564\pi\)
\(642\) 0 0
\(643\) −22.6168 −0.891920 −0.445960 0.895053i \(-0.647138\pi\)
−0.445960 + 0.895053i \(0.647138\pi\)
\(644\) −2.86154 −0.112760
\(645\) 0 0
\(646\) 0 0
\(647\) 22.0479 0.866791 0.433396 0.901204i \(-0.357315\pi\)
0.433396 + 0.901204i \(0.357315\pi\)
\(648\) 0 0
\(649\) −1.52940 −0.0600342
\(650\) −1.82201 −0.0714653
\(651\) 0 0
\(652\) −22.5672 −0.883799
\(653\) −38.9796 −1.52539 −0.762694 0.646759i \(-0.776124\pi\)
−0.762694 + 0.646759i \(0.776124\pi\)
\(654\) 0 0
\(655\) 49.6023 1.93812
\(656\) 0.357401 0.0139542
\(657\) 0 0
\(658\) 19.7716 0.770776
\(659\) 15.7929 0.615205 0.307602 0.951515i \(-0.400473\pi\)
0.307602 + 0.951515i \(0.400473\pi\)
\(660\) 0 0
\(661\) −41.0155 −1.59532 −0.797659 0.603109i \(-0.793928\pi\)
−0.797659 + 0.603109i \(0.793928\pi\)
\(662\) 14.1530 0.550072
\(663\) 0 0
\(664\) 15.9982 0.620852
\(665\) 0 0
\(666\) 0 0
\(667\) 5.36959 0.207911
\(668\) 28.0847 1.08663
\(669\) 0 0
\(670\) 10.8648 0.419745
\(671\) −1.03272 −0.0398676
\(672\) 0 0
\(673\) −30.2891 −1.16756 −0.583780 0.811912i \(-0.698427\pi\)
−0.583780 + 0.811912i \(0.698427\pi\)
\(674\) −17.9744 −0.692349
\(675\) 0 0
\(676\) 13.3037 0.511679
\(677\) 2.71419 0.104315 0.0521575 0.998639i \(-0.483390\pi\)
0.0521575 + 0.998639i \(0.483390\pi\)
\(678\) 0 0
\(679\) 0.267961 0.0102834
\(680\) −17.1658 −0.658278
\(681\) 0 0
\(682\) −0.731754 −0.0280203
\(683\) 32.8803 1.25813 0.629065 0.777353i \(-0.283438\pi\)
0.629065 + 0.777353i \(0.283438\pi\)
\(684\) 0 0
\(685\) −48.8786 −1.86755
\(686\) 16.2433 0.620172
\(687\) 0 0
\(688\) 0.472964 0.0180316
\(689\) 2.21625 0.0844325
\(690\) 0 0
\(691\) −45.4020 −1.72717 −0.863586 0.504201i \(-0.831787\pi\)
−0.863586 + 0.504201i \(0.831787\pi\)
\(692\) −13.2825 −0.504925
\(693\) 0 0
\(694\) −19.4210 −0.737210
\(695\) −8.04694 −0.305238
\(696\) 0 0
\(697\) 20.3847 0.772127
\(698\) −16.2909 −0.616618
\(699\) 0 0
\(700\) 4.59297 0.173598
\(701\) 1.62031 0.0611983 0.0305991 0.999532i \(-0.490258\pi\)
0.0305991 + 0.999532i \(0.490258\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 2.07461 0.0781897
\(705\) 0 0
\(706\) 27.3566 1.02958
\(707\) 27.6777 1.04093
\(708\) 0 0
\(709\) 36.2449 1.36120 0.680602 0.732653i \(-0.261718\pi\)
0.680602 + 0.732653i \(0.261718\pi\)
\(710\) −22.4270 −0.841669
\(711\) 0 0
\(712\) 4.54872 0.170470
\(713\) 1.77837 0.0666005
\(714\) 0 0
\(715\) 1.52940 0.0571963
\(716\) 8.04013 0.300474
\(717\) 0 0
\(718\) −14.9504 −0.557943
\(719\) 6.22256 0.232062 0.116031 0.993246i \(-0.462983\pi\)
0.116031 + 0.993246i \(0.462983\pi\)
\(720\) 0 0
\(721\) −19.0205 −0.708362
\(722\) 0 0
\(723\) 0 0
\(724\) −6.87433 −0.255483
\(725\) −8.61856 −0.320085
\(726\) 0 0
\(727\) 16.2026 0.600923 0.300461 0.953794i \(-0.402859\pi\)
0.300461 + 0.953794i \(0.402859\pi\)
\(728\) −11.0490 −0.409504
\(729\) 0 0
\(730\) 22.8212 0.844650
\(731\) 26.9760 0.997742
\(732\) 0 0
\(733\) 19.7050 0.727822 0.363911 0.931434i \(-0.381441\pi\)
0.363911 + 0.931434i \(0.381441\pi\)
\(734\) 20.2199 0.746329
\(735\) 0 0
\(736\) −4.95811 −0.182758
\(737\) −2.00774 −0.0739561
\(738\) 0 0
\(739\) 19.2371 0.707649 0.353824 0.935312i \(-0.384881\pi\)
0.353824 + 0.935312i \(0.384881\pi\)
\(740\) −30.1121 −1.10694
\(741\) 0 0
\(742\) 3.52198 0.129296
\(743\) 15.0473 0.552031 0.276015 0.961153i \(-0.410986\pi\)
0.276015 + 0.961153i \(0.410986\pi\)
\(744\) 0 0
\(745\) −26.6117 −0.974979
\(746\) 3.01361 0.110336
\(747\) 0 0
\(748\) 1.20594 0.0440934
\(749\) −34.1471 −1.24771
\(750\) 0 0
\(751\) −27.3236 −0.997051 −0.498526 0.866875i \(-0.666125\pi\)
−0.498526 + 0.866875i \(0.666125\pi\)
\(752\) 0.355037 0.0129469
\(753\) 0 0
\(754\) 7.88207 0.287048
\(755\) −24.2986 −0.884317
\(756\) 0 0
\(757\) −7.32501 −0.266232 −0.133116 0.991100i \(-0.542498\pi\)
−0.133116 + 0.991100i \(0.542498\pi\)
\(758\) −10.7196 −0.389352
\(759\) 0 0
\(760\) 0 0
\(761\) 23.1830 0.840384 0.420192 0.907435i \(-0.361963\pi\)
0.420192 + 0.907435i \(0.361963\pi\)
\(762\) 0 0
\(763\) 33.9044 1.22742
\(764\) −4.00950 −0.145058
\(765\) 0 0
\(766\) −8.14466 −0.294278
\(767\) 5.45605 0.197007
\(768\) 0 0
\(769\) −4.46791 −0.161117 −0.0805585 0.996750i \(-0.525670\pi\)
−0.0805585 + 0.996750i \(0.525670\pi\)
\(770\) 2.43047 0.0875879
\(771\) 0 0
\(772\) 1.95481 0.0703553
\(773\) −3.97864 −0.143102 −0.0715510 0.997437i \(-0.522795\pi\)
−0.0715510 + 0.997437i \(0.522795\pi\)
\(774\) 0 0
\(775\) −2.85441 −0.102533
\(776\) 0.286628 0.0102893
\(777\) 0 0
\(778\) −32.0746 −1.14993
\(779\) 0 0
\(780\) 0 0
\(781\) 4.14433 0.148296
\(782\) 1.84760 0.0660701
\(783\) 0 0
\(784\) −0.00154305 −5.51090e−5 0
\(785\) 38.9495 1.39017
\(786\) 0 0
\(787\) −33.3732 −1.18963 −0.594813 0.803864i \(-0.702774\pi\)
−0.594813 + 0.803864i \(0.702774\pi\)
\(788\) −26.0898 −0.929409
\(789\) 0 0
\(790\) −36.1165 −1.28497
\(791\) 29.2003 1.03824
\(792\) 0 0
\(793\) 3.68416 0.130828
\(794\) −13.7784 −0.488976
\(795\) 0 0
\(796\) 21.8693 0.775136
\(797\) 3.56036 0.126115 0.0630573 0.998010i \(-0.479915\pi\)
0.0630573 + 0.998010i \(0.479915\pi\)
\(798\) 0 0
\(799\) 20.2499 0.716390
\(800\) 7.95811 0.281362
\(801\) 0 0
\(802\) −8.12424 −0.286877
\(803\) −4.21719 −0.148821
\(804\) 0 0
\(805\) −5.90673 −0.208185
\(806\) 2.61049 0.0919506
\(807\) 0 0
\(808\) 29.6058 1.04153
\(809\) −38.4953 −1.35342 −0.676710 0.736249i \(-0.736595\pi\)
−0.676710 + 0.736249i \(0.736595\pi\)
\(810\) 0 0
\(811\) −12.9067 −0.453216 −0.226608 0.973986i \(-0.572764\pi\)
−0.226608 + 0.973986i \(0.572764\pi\)
\(812\) −19.8693 −0.697275
\(813\) 0 0
\(814\) −3.50793 −0.122953
\(815\) −46.5827 −1.63172
\(816\) 0 0
\(817\) 0 0
\(818\) 14.0770 0.492190
\(819\) 0 0
\(820\) −26.5012 −0.925463
\(821\) 43.3441 1.51272 0.756360 0.654156i \(-0.226976\pi\)
0.756360 + 0.654156i \(0.226976\pi\)
\(822\) 0 0
\(823\) −13.5047 −0.470746 −0.235373 0.971905i \(-0.575631\pi\)
−0.235373 + 0.971905i \(0.575631\pi\)
\(824\) −20.3455 −0.708771
\(825\) 0 0
\(826\) 8.67055 0.301687
\(827\) −16.6435 −0.578752 −0.289376 0.957215i \(-0.593448\pi\)
−0.289376 + 0.957215i \(0.593448\pi\)
\(828\) 0 0
\(829\) −48.8667 −1.69721 −0.848605 0.529026i \(-0.822557\pi\)
−0.848605 + 0.529026i \(0.822557\pi\)
\(830\) 12.5544 0.435769
\(831\) 0 0
\(832\) −7.40104 −0.256585
\(833\) −0.0880095 −0.00304935
\(834\) 0 0
\(835\) 57.9718 2.00620
\(836\) 0 0
\(837\) 0 0
\(838\) 18.4519 0.637411
\(839\) −36.2121 −1.25018 −0.625091 0.780552i \(-0.714938\pi\)
−0.625091 + 0.780552i \(0.714938\pi\)
\(840\) 0 0
\(841\) 8.28405 0.285657
\(842\) −17.4908 −0.602773
\(843\) 0 0
\(844\) −25.8642 −0.890283
\(845\) 27.4611 0.944691
\(846\) 0 0
\(847\) 28.7306 0.987195
\(848\) 0.0632441 0.00217181
\(849\) 0 0
\(850\) −2.96553 −0.101717
\(851\) 8.52528 0.292243
\(852\) 0 0
\(853\) 50.6408 1.73391 0.866955 0.498387i \(-0.166074\pi\)
0.866955 + 0.498387i \(0.166074\pi\)
\(854\) 5.85473 0.200345
\(855\) 0 0
\(856\) −36.5259 −1.24843
\(857\) −44.1611 −1.50851 −0.754257 0.656580i \(-0.772003\pi\)
−0.754257 + 0.656580i \(0.772003\pi\)
\(858\) 0 0
\(859\) −4.63404 −0.158111 −0.0790556 0.996870i \(-0.525190\pi\)
−0.0790556 + 0.996870i \(0.525190\pi\)
\(860\) −35.0702 −1.19588
\(861\) 0 0
\(862\) −33.3242 −1.13503
\(863\) 46.2404 1.57404 0.787021 0.616926i \(-0.211622\pi\)
0.787021 + 0.616926i \(0.211622\pi\)
\(864\) 0 0
\(865\) −27.4175 −0.932222
\(866\) 1.77601 0.0603512
\(867\) 0 0
\(868\) −6.58057 −0.223359
\(869\) 6.67406 0.226402
\(870\) 0 0
\(871\) 7.16250 0.242692
\(872\) 36.2662 1.22813
\(873\) 0 0
\(874\) 0 0
\(875\) −24.1037 −0.814854
\(876\) 0 0
\(877\) −20.9709 −0.708137 −0.354069 0.935219i \(-0.615202\pi\)
−0.354069 + 0.935219i \(0.615202\pi\)
\(878\) −27.5672 −0.930347
\(879\) 0 0
\(880\) 0.0436438 0.00147123
\(881\) 17.3960 0.586086 0.293043 0.956099i \(-0.405332\pi\)
0.293043 + 0.956099i \(0.405332\pi\)
\(882\) 0 0
\(883\) 15.7324 0.529436 0.264718 0.964326i \(-0.414721\pi\)
0.264718 + 0.964326i \(0.414721\pi\)
\(884\) −4.30211 −0.144696
\(885\) 0 0
\(886\) 15.5199 0.521401
\(887\) 23.1114 0.776006 0.388003 0.921658i \(-0.373165\pi\)
0.388003 + 0.921658i \(0.373165\pi\)
\(888\) 0 0
\(889\) 14.7136 0.493478
\(890\) 3.56953 0.119651
\(891\) 0 0
\(892\) −24.1958 −0.810136
\(893\) 0 0
\(894\) 0 0
\(895\) 16.5963 0.554752
\(896\) 18.1513 0.606391
\(897\) 0 0
\(898\) −10.7888 −0.360027
\(899\) 12.3482 0.411837
\(900\) 0 0
\(901\) 3.60719 0.120173
\(902\) −3.08729 −0.102795
\(903\) 0 0
\(904\) 31.2344 1.03884
\(905\) −14.1898 −0.471686
\(906\) 0 0
\(907\) 18.5871 0.617174 0.308587 0.951196i \(-0.400144\pi\)
0.308587 + 0.951196i \(0.400144\pi\)
\(908\) −32.3868 −1.07479
\(909\) 0 0
\(910\) −8.67055 −0.287426
\(911\) −4.35410 −0.144258 −0.0721289 0.997395i \(-0.522979\pi\)
−0.0721289 + 0.997395i \(0.522979\pi\)
\(912\) 0 0
\(913\) −2.31996 −0.0767793
\(914\) 16.8732 0.558115
\(915\) 0 0
\(916\) 7.20264 0.237982
\(917\) 51.9650 1.71604
\(918\) 0 0
\(919\) −7.82976 −0.258280 −0.129140 0.991626i \(-0.541222\pi\)
−0.129140 + 0.991626i \(0.541222\pi\)
\(920\) −6.31820 −0.208305
\(921\) 0 0
\(922\) 34.7128 1.14320
\(923\) −14.7847 −0.486644
\(924\) 0 0
\(925\) −13.6837 −0.449916
\(926\) 12.4747 0.409945
\(927\) 0 0
\(928\) −34.4270 −1.13012
\(929\) −2.43882 −0.0800149 −0.0400075 0.999199i \(-0.512738\pi\)
−0.0400075 + 0.999199i \(0.512738\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −31.8792 −1.04424
\(933\) 0 0
\(934\) 26.1943 0.857103
\(935\) 2.48927 0.0814077
\(936\) 0 0
\(937\) −45.1046 −1.47350 −0.736752 0.676163i \(-0.763642\pi\)
−0.736752 + 0.676163i \(0.763642\pi\)
\(938\) 11.3824 0.371648
\(939\) 0 0
\(940\) −26.3259 −0.858658
\(941\) 54.4371 1.77460 0.887299 0.461195i \(-0.152579\pi\)
0.887299 + 0.461195i \(0.152579\pi\)
\(942\) 0 0
\(943\) 7.50299 0.244331
\(944\) 0.155697 0.00506750
\(945\) 0 0
\(946\) −4.08553 −0.132832
\(947\) 10.7368 0.348899 0.174450 0.984666i \(-0.444185\pi\)
0.174450 + 0.984666i \(0.444185\pi\)
\(948\) 0 0
\(949\) 15.0446 0.488368
\(950\) 0 0
\(951\) 0 0
\(952\) −17.9835 −0.582848
\(953\) −9.42190 −0.305205 −0.152603 0.988288i \(-0.548765\pi\)
−0.152603 + 0.988288i \(0.548765\pi\)
\(954\) 0 0
\(955\) −8.27631 −0.267815
\(956\) 10.2668 0.332053
\(957\) 0 0
\(958\) −0.344608 −0.0111338
\(959\) −51.2069 −1.65356
\(960\) 0 0
\(961\) −26.9103 −0.868076
\(962\) 12.5144 0.403479
\(963\) 0 0
\(964\) 13.3455 0.429831
\(965\) 4.03508 0.129894
\(966\) 0 0
\(967\) 27.4029 0.881218 0.440609 0.897699i \(-0.354762\pi\)
0.440609 + 0.897699i \(0.354762\pi\)
\(968\) 30.7320 0.987765
\(969\) 0 0
\(970\) 0.224927 0.00722197
\(971\) −20.0942 −0.644854 −0.322427 0.946594i \(-0.604499\pi\)
−0.322427 + 0.946594i \(0.604499\pi\)
\(972\) 0 0
\(973\) −8.43025 −0.270262
\(974\) −21.3099 −0.682812
\(975\) 0 0
\(976\) 0.105133 0.00336523
\(977\) −14.1274 −0.451976 −0.225988 0.974130i \(-0.572561\pi\)
−0.225988 + 0.974130i \(0.572561\pi\)
\(978\) 0 0
\(979\) −0.659623 −0.0210817
\(980\) 0.114417 0.00365492
\(981\) 0 0
\(982\) 29.9676 0.956305
\(983\) 33.2550 1.06067 0.530334 0.847789i \(-0.322066\pi\)
0.530334 + 0.847789i \(0.322066\pi\)
\(984\) 0 0
\(985\) −53.8539 −1.71593
\(986\) 12.8289 0.408557
\(987\) 0 0
\(988\) 0 0
\(989\) 9.92902 0.315724
\(990\) 0 0
\(991\) −27.0642 −0.859722 −0.429861 0.902895i \(-0.641437\pi\)
−0.429861 + 0.902895i \(0.641437\pi\)
\(992\) −11.4020 −0.362013
\(993\) 0 0
\(994\) −23.4953 −0.745224
\(995\) 45.1421 1.43110
\(996\) 0 0
\(997\) −54.5049 −1.72619 −0.863093 0.505045i \(-0.831476\pi\)
−0.863093 + 0.505045i \(0.831476\pi\)
\(998\) −25.9424 −0.821193
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9747.2.a.u.1.3 3
3.2 odd 2 9747.2.a.bd.1.1 3
19.6 even 9 513.2.y.c.55.1 yes 6
19.16 even 9 513.2.y.c.28.1 yes 6
19.18 odd 2 9747.2.a.bb.1.1 3
57.35 odd 18 513.2.y.a.28.1 6
57.44 odd 18 513.2.y.a.55.1 yes 6
57.56 even 2 9747.2.a.v.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.y.a.28.1 6 57.35 odd 18
513.2.y.a.55.1 yes 6 57.44 odd 18
513.2.y.c.28.1 yes 6 19.16 even 9
513.2.y.c.55.1 yes 6 19.6 even 9
9747.2.a.u.1.3 3 1.1 even 1 trivial
9747.2.a.v.1.3 3 57.56 even 2
9747.2.a.bb.1.1 3 19.18 odd 2
9747.2.a.bd.1.1 3 3.2 odd 2