Properties

Label 513.2.t.a.278.13
Level $513$
Weight $2$
Character 513.278
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(179,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 278.13
Character \(\chi\) \(=\) 513.278
Dual form 513.2.t.a.179.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.55091 q^{2} +0.405316 q^{4} +(1.63223 + 0.942368i) q^{5} +(-2.41078 + 4.17560i) q^{7} -2.47321 q^{8} +(2.53144 + 1.46153i) q^{10} +(2.70914 + 1.56412i) q^{11} +3.37811i q^{13} +(-3.73890 + 6.47597i) q^{14} -4.64635 q^{16} +(3.06986 - 1.77238i) q^{17} +(4.35881 + 0.0276906i) q^{19} +(0.661569 + 0.381957i) q^{20} +(4.20163 + 2.42581i) q^{22} -4.32627i q^{23} +(-0.723884 - 1.25380i) q^{25} +5.23914i q^{26} +(-0.977130 + 1.69244i) q^{28} +(-1.13606 - 1.96771i) q^{29} +(1.96133 - 1.13238i) q^{31} -2.25965 q^{32} +(4.76106 - 2.74880i) q^{34} +(-7.86990 + 4.54369i) q^{35} -4.36294i q^{37} +(6.76012 + 0.0429455i) q^{38} +(-4.03684 - 2.33067i) q^{40} +(-2.81964 + 4.88376i) q^{41} +9.03545 q^{43} +(1.09806 + 0.633964i) q^{44} -6.70964i q^{46} +(-8.23996 + 4.75734i) q^{47} +(-8.12375 - 14.0707i) q^{49} +(-1.12268 - 1.94453i) q^{50} +1.36920i q^{52} +(4.04616 - 7.00816i) q^{53} +(2.94796 + 5.10601i) q^{55} +(5.96237 - 10.3271i) q^{56} +(-1.76192 - 3.05174i) q^{58} +(-1.14377 + 1.98107i) q^{59} +(5.33757 + 9.24494i) q^{61} +(3.04185 - 1.75621i) q^{62} +5.78820 q^{64} +(-3.18342 + 5.51385i) q^{65} +8.57097i q^{67} +(1.24426 - 0.718375i) q^{68} +(-12.2055 + 7.04685i) q^{70} +(0.454871 + 0.787860i) q^{71} +(-1.23937 - 2.14665i) q^{73} -6.76652i q^{74} +(1.76670 + 0.0112234i) q^{76} +(-13.0623 + 7.54152i) q^{77} +0.526031i q^{79} +(-7.58391 - 4.37857i) q^{80} +(-4.37301 + 7.57427i) q^{82} +(-1.65409 - 0.954990i) q^{83} +6.68095 q^{85} +14.0132 q^{86} +(-6.70026 - 3.86840i) q^{88} +(7.48128 - 12.9580i) q^{89} +(-14.1056 - 8.14389i) q^{91} -1.75351i q^{92} +(-12.7794 + 7.37820i) q^{94} +(7.08849 + 4.15280i) q^{95} -13.4775i q^{97} +(-12.5992 - 21.8224i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{2} + 30 q^{4} + 3 q^{5} - q^{7} + 12 q^{8} - 6 q^{10} + 9 q^{11} + 3 q^{14} + 18 q^{16} - 27 q^{17} + q^{19} - 9 q^{20} - 6 q^{22} + 11 q^{25} + 2 q^{28} + 12 q^{29} - 12 q^{31} + 30 q^{32}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55091 1.09666 0.548329 0.836263i \(-0.315264\pi\)
0.548329 + 0.836263i \(0.315264\pi\)
\(3\) 0 0
\(4\) 0.405316 0.202658
\(5\) 1.63223 + 0.942368i 0.729955 + 0.421440i 0.818406 0.574641i \(-0.194858\pi\)
−0.0884504 + 0.996081i \(0.528191\pi\)
\(6\) 0 0
\(7\) −2.41078 + 4.17560i −0.911190 + 1.57823i −0.0988049 + 0.995107i \(0.531502\pi\)
−0.812385 + 0.583121i \(0.801831\pi\)
\(8\) −2.47321 −0.874411
\(9\) 0 0
\(10\) 2.53144 + 1.46153i 0.800511 + 0.462175i
\(11\) 2.70914 + 1.56412i 0.816836 + 0.471600i 0.849324 0.527872i \(-0.177010\pi\)
−0.0324882 + 0.999472i \(0.510343\pi\)
\(12\) 0 0
\(13\) 3.37811i 0.936919i 0.883485 + 0.468460i \(0.155191\pi\)
−0.883485 + 0.468460i \(0.844809\pi\)
\(14\) −3.73890 + 6.47597i −0.999264 + 1.73078i
\(15\) 0 0
\(16\) −4.64635 −1.16159
\(17\) 3.06986 1.77238i 0.744549 0.429866i −0.0791717 0.996861i \(-0.525228\pi\)
0.823721 + 0.566995i \(0.191894\pi\)
\(18\) 0 0
\(19\) 4.35881 + 0.0276906i 0.999980 + 0.00635265i
\(20\) 0.661569 + 0.381957i 0.147931 + 0.0854082i
\(21\) 0 0
\(22\) 4.20163 + 2.42581i 0.895790 + 0.517184i
\(23\) 4.32627i 0.902089i −0.892501 0.451044i \(-0.851052\pi\)
0.892501 0.451044i \(-0.148948\pi\)
\(24\) 0 0
\(25\) −0.723884 1.25380i −0.144777 0.250761i
\(26\) 5.23914i 1.02748i
\(27\) 0 0
\(28\) −0.977130 + 1.69244i −0.184660 + 0.319841i
\(29\) −1.13606 1.96771i −0.210961 0.365394i 0.741055 0.671444i \(-0.234326\pi\)
−0.952015 + 0.306050i \(0.900992\pi\)
\(30\) 0 0
\(31\) 1.96133 1.13238i 0.352266 0.203381i −0.313417 0.949616i \(-0.601474\pi\)
0.665683 + 0.746235i \(0.268140\pi\)
\(32\) −2.25965 −0.399453
\(33\) 0 0
\(34\) 4.76106 2.74880i 0.816516 0.471416i
\(35\) −7.86990 + 4.54369i −1.33026 + 0.768024i
\(36\) 0 0
\(37\) 4.36294i 0.717263i −0.933479 0.358631i \(-0.883244\pi\)
0.933479 0.358631i \(-0.116756\pi\)
\(38\) 6.76012 + 0.0429455i 1.09664 + 0.00696669i
\(39\) 0 0
\(40\) −4.03684 2.33067i −0.638281 0.368512i
\(41\) −2.81964 + 4.88376i −0.440354 + 0.762716i −0.997716 0.0675541i \(-0.978480\pi\)
0.557361 + 0.830270i \(0.311814\pi\)
\(42\) 0 0
\(43\) 9.03545 1.37789 0.688947 0.724812i \(-0.258073\pi\)
0.688947 + 0.724812i \(0.258073\pi\)
\(44\) 1.09806 + 0.633964i 0.165538 + 0.0955737i
\(45\) 0 0
\(46\) 6.70964i 0.989283i
\(47\) −8.23996 + 4.75734i −1.20192 + 0.693930i −0.960982 0.276610i \(-0.910789\pi\)
−0.240940 + 0.970540i \(0.577456\pi\)
\(48\) 0 0
\(49\) −8.12375 14.0707i −1.16054 2.01011i
\(50\) −1.12268 1.94453i −0.158771 0.274999i
\(51\) 0 0
\(52\) 1.36920i 0.189874i
\(53\) 4.04616 7.00816i 0.555783 0.962644i −0.442059 0.896986i \(-0.645752\pi\)
0.997842 0.0656585i \(-0.0209148\pi\)
\(54\) 0 0
\(55\) 2.94796 + 5.10601i 0.397503 + 0.688495i
\(56\) 5.96237 10.3271i 0.796755 1.38002i
\(57\) 0 0
\(58\) −1.76192 3.05174i −0.231352 0.400713i
\(59\) −1.14377 + 1.98107i −0.148906 + 0.257913i −0.930823 0.365469i \(-0.880909\pi\)
0.781917 + 0.623382i \(0.214242\pi\)
\(60\) 0 0
\(61\) 5.33757 + 9.24494i 0.683406 + 1.18369i 0.973935 + 0.226827i \(0.0728352\pi\)
−0.290529 + 0.956866i \(0.593831\pi\)
\(62\) 3.04185 1.75621i 0.386315 0.223039i
\(63\) 0 0
\(64\) 5.78820 0.723524
\(65\) −3.18342 + 5.51385i −0.394855 + 0.683909i
\(66\) 0 0
\(67\) 8.57097i 1.04711i 0.851992 + 0.523555i \(0.175395\pi\)
−0.851992 + 0.523555i \(0.824605\pi\)
\(68\) 1.24426 0.718375i 0.150889 0.0871158i
\(69\) 0 0
\(70\) −12.2055 + 7.04685i −1.45884 + 0.842259i
\(71\) 0.454871 + 0.787860i 0.0539833 + 0.0935018i 0.891754 0.452520i \(-0.149475\pi\)
−0.837771 + 0.546022i \(0.816142\pi\)
\(72\) 0 0
\(73\) −1.23937 2.14665i −0.145057 0.251246i 0.784337 0.620335i \(-0.213003\pi\)
−0.929394 + 0.369089i \(0.879670\pi\)
\(74\) 6.76652i 0.786592i
\(75\) 0 0
\(76\) 1.76670 + 0.0112234i 0.202654 + 0.00128742i
\(77\) −13.0623 + 7.54152i −1.48859 + 0.859436i
\(78\) 0 0
\(79\) 0.526031i 0.0591831i 0.999562 + 0.0295915i \(0.00942065\pi\)
−0.999562 + 0.0295915i \(0.990579\pi\)
\(80\) −7.58391 4.37857i −0.847907 0.489540i
\(81\) 0 0
\(82\) −4.37301 + 7.57427i −0.482918 + 0.836438i
\(83\) −1.65409 0.954990i −0.181560 0.104824i 0.406465 0.913666i \(-0.366761\pi\)
−0.588025 + 0.808842i \(0.700095\pi\)
\(84\) 0 0
\(85\) 6.68095 0.724650
\(86\) 14.0132 1.51108
\(87\) 0 0
\(88\) −6.70026 3.86840i −0.714250 0.412373i
\(89\) 7.48128 12.9580i 0.793014 1.37354i −0.131079 0.991372i \(-0.541844\pi\)
0.924093 0.382169i \(-0.124823\pi\)
\(90\) 0 0
\(91\) −14.1056 8.14389i −1.47867 0.853712i
\(92\) 1.75351i 0.182816i
\(93\) 0 0
\(94\) −12.7794 + 7.37820i −1.31810 + 0.761004i
\(95\) 7.08849 + 4.15280i 0.727263 + 0.426069i
\(96\) 0 0
\(97\) 13.4775i 1.36844i −0.729277 0.684219i \(-0.760143\pi\)
0.729277 0.684219i \(-0.239857\pi\)
\(98\) −12.5992 21.8224i −1.27271 2.20440i
\(99\) 0 0
\(100\) −0.293402 0.508187i −0.0293402 0.0508187i
\(101\) 12.8098 7.39575i 1.27462 0.735904i 0.298769 0.954325i \(-0.403424\pi\)
0.975855 + 0.218421i \(0.0700907\pi\)
\(102\) 0 0
\(103\) −6.03192 + 3.48253i −0.594343 + 0.343144i −0.766813 0.641871i \(-0.778159\pi\)
0.172470 + 0.985015i \(0.444825\pi\)
\(104\) 8.35477i 0.819252i
\(105\) 0 0
\(106\) 6.27523 10.8690i 0.609504 1.05569i
\(107\) −6.21001 −0.600344 −0.300172 0.953885i \(-0.597044\pi\)
−0.300172 + 0.953885i \(0.597044\pi\)
\(108\) 0 0
\(109\) −2.64165 + 1.52516i −0.253025 + 0.146084i −0.621148 0.783693i \(-0.713334\pi\)
0.368124 + 0.929777i \(0.380000\pi\)
\(110\) 4.57201 + 7.91896i 0.435924 + 0.755043i
\(111\) 0 0
\(112\) 11.2013 19.4013i 1.05843 1.83325i
\(113\) −6.17578 10.6968i −0.580969 1.00627i −0.995365 0.0961706i \(-0.969341\pi\)
0.414396 0.910097i \(-0.363993\pi\)
\(114\) 0 0
\(115\) 4.07694 7.06146i 0.380176 0.658485i
\(116\) −0.460463 0.797545i −0.0427529 0.0740502i
\(117\) 0 0
\(118\) −1.77388 + 3.07245i −0.163299 + 0.282842i
\(119\) 17.0913i 1.56676i
\(120\) 0 0
\(121\) −0.607046 1.05143i −0.0551860 0.0955849i
\(122\) 8.27808 + 14.3381i 0.749462 + 1.29811i
\(123\) 0 0
\(124\) 0.794960 0.458971i 0.0713895 0.0412168i
\(125\) 12.1523i 1.08694i
\(126\) 0 0
\(127\) 3.35067 + 1.93451i 0.297324 + 0.171660i 0.641240 0.767340i \(-0.278420\pi\)
−0.343916 + 0.939000i \(0.611754\pi\)
\(128\) 13.4963 1.19291
\(129\) 0 0
\(130\) −4.93720 + 8.55148i −0.433021 + 0.750014i
\(131\) 11.3165 + 6.53360i 0.988730 + 0.570843i 0.904894 0.425636i \(-0.139950\pi\)
0.0838353 + 0.996480i \(0.473283\pi\)
\(132\) 0 0
\(133\) −10.6238 + 18.1339i −0.921198 + 1.57241i
\(134\) 13.2928i 1.14832i
\(135\) 0 0
\(136\) −7.59239 + 4.38347i −0.651042 + 0.375879i
\(137\) −0.780648 + 0.450707i −0.0666953 + 0.0385065i −0.532977 0.846130i \(-0.678927\pi\)
0.466282 + 0.884636i \(0.345593\pi\)
\(138\) 0 0
\(139\) 19.3657 1.64258 0.821289 0.570513i \(-0.193256\pi\)
0.821289 + 0.570513i \(0.193256\pi\)
\(140\) −3.18980 + 1.84163i −0.269587 + 0.155646i
\(141\) 0 0
\(142\) 0.705464 + 1.22190i 0.0592012 + 0.102540i
\(143\) −5.28378 + 9.15177i −0.441851 + 0.765309i
\(144\) 0 0
\(145\) 4.28234i 0.355629i
\(146\) −1.92215 3.32925i −0.159078 0.275531i
\(147\) 0 0
\(148\) 1.76837i 0.145359i
\(149\) −1.64502 0.949750i −0.134765 0.0778065i 0.431102 0.902303i \(-0.358125\pi\)
−0.565867 + 0.824497i \(0.691458\pi\)
\(150\) 0 0
\(151\) 3.36348 + 1.94190i 0.273716 + 0.158030i 0.630575 0.776128i \(-0.282819\pi\)
−0.356859 + 0.934158i \(0.616152\pi\)
\(152\) −10.7802 0.0684845i −0.874393 0.00555483i
\(153\) 0 0
\(154\) −20.2584 + 11.6962i −1.63247 + 0.942507i
\(155\) 4.26846 0.342851
\(156\) 0 0
\(157\) −8.27272 + 14.3288i −0.660235 + 1.14356i 0.320319 + 0.947310i \(0.396210\pi\)
−0.980554 + 0.196251i \(0.937123\pi\)
\(158\) 0.815825i 0.0649036i
\(159\) 0 0
\(160\) −3.68827 2.12942i −0.291583 0.168346i
\(161\) 18.0648 + 10.4297i 1.42370 + 0.821975i
\(162\) 0 0
\(163\) 10.2238 0.800787 0.400394 0.916343i \(-0.368873\pi\)
0.400394 + 0.916343i \(0.368873\pi\)
\(164\) −1.14285 + 1.97947i −0.0892414 + 0.154571i
\(165\) 0 0
\(166\) −2.56534 1.48110i −0.199109 0.114956i
\(167\) −7.06803 −0.546940 −0.273470 0.961880i \(-0.588171\pi\)
−0.273470 + 0.961880i \(0.588171\pi\)
\(168\) 0 0
\(169\) 1.58837 0.122183
\(170\) 10.3615 0.794693
\(171\) 0 0
\(172\) 3.66222 0.279241
\(173\) −12.9998 −0.988359 −0.494179 0.869360i \(-0.664531\pi\)
−0.494179 + 0.869360i \(0.664531\pi\)
\(174\) 0 0
\(175\) 6.98050 0.527677
\(176\) −12.5876 7.26746i −0.948827 0.547805i
\(177\) 0 0
\(178\) 11.6028 20.0966i 0.869665 1.50630i
\(179\) 8.63956 0.645751 0.322875 0.946442i \(-0.395351\pi\)
0.322875 + 0.946442i \(0.395351\pi\)
\(180\) 0 0
\(181\) −2.06491 1.19217i −0.153483 0.0886137i 0.421291 0.906925i \(-0.361577\pi\)
−0.574775 + 0.818312i \(0.694910\pi\)
\(182\) −21.8765 12.6304i −1.62160 0.936229i
\(183\) 0 0
\(184\) 10.6998i 0.788797i
\(185\) 4.11150 7.12132i 0.302283 0.523570i
\(186\) 0 0
\(187\) 11.0889 0.810900
\(188\) −3.33979 + 1.92823i −0.243579 + 0.140631i
\(189\) 0 0
\(190\) 10.9936 + 6.44062i 0.797559 + 0.467251i
\(191\) −6.46514 3.73265i −0.467801 0.270085i 0.247518 0.968883i \(-0.420385\pi\)
−0.715319 + 0.698798i \(0.753718\pi\)
\(192\) 0 0
\(193\) −6.94286 4.00846i −0.499758 0.288535i 0.228856 0.973460i \(-0.426502\pi\)
−0.728614 + 0.684925i \(0.759835\pi\)
\(194\) 20.9024i 1.50071i
\(195\) 0 0
\(196\) −3.29269 5.70310i −0.235192 0.407364i
\(197\) 8.19380i 0.583784i 0.956451 + 0.291892i \(0.0942848\pi\)
−0.956451 + 0.291892i \(0.905715\pi\)
\(198\) 0 0
\(199\) 2.17911 3.77433i 0.154473 0.267555i −0.778394 0.627776i \(-0.783965\pi\)
0.932867 + 0.360221i \(0.117299\pi\)
\(200\) 1.79031 + 3.10092i 0.126594 + 0.219268i
\(201\) 0 0
\(202\) 19.8668 11.4701i 1.39783 0.807035i
\(203\) 10.9552 0.768901
\(204\) 0 0
\(205\) −9.20461 + 5.31428i −0.642878 + 0.371166i
\(206\) −9.35496 + 5.40109i −0.651791 + 0.376312i
\(207\) 0 0
\(208\) 15.6959i 1.08831i
\(209\) 11.7653 + 6.89273i 0.813824 + 0.476780i
\(210\) 0 0
\(211\) −11.4815 6.62887i −0.790421 0.456350i 0.0496895 0.998765i \(-0.484177\pi\)
−0.840111 + 0.542415i \(0.817510\pi\)
\(212\) 1.63998 2.84052i 0.112634 0.195088i
\(213\) 0 0
\(214\) −9.63115 −0.658372
\(215\) 14.7479 + 8.51473i 1.00580 + 0.580700i
\(216\) 0 0
\(217\) 10.9197i 0.741274i
\(218\) −4.09696 + 2.36538i −0.277481 + 0.160204i
\(219\) 0 0
\(220\) 1.19486 + 2.06955i 0.0805571 + 0.139529i
\(221\) 5.98730 + 10.3703i 0.402749 + 0.697582i
\(222\) 0 0
\(223\) 3.61894i 0.242342i −0.992632 0.121171i \(-0.961335\pi\)
0.992632 0.121171i \(-0.0386649\pi\)
\(224\) 5.44752 9.43538i 0.363978 0.630428i
\(225\) 0 0
\(226\) −9.57807 16.5897i −0.637124 1.10353i
\(227\) −10.1964 + 17.6606i −0.676757 + 1.17218i 0.299196 + 0.954192i \(0.403282\pi\)
−0.975952 + 0.217985i \(0.930052\pi\)
\(228\) 0 0
\(229\) −2.72459 4.71913i −0.180046 0.311849i 0.761850 0.647754i \(-0.224291\pi\)
−0.941896 + 0.335905i \(0.890958\pi\)
\(230\) 6.32295 10.9517i 0.416923 0.722132i
\(231\) 0 0
\(232\) 2.80971 + 4.86655i 0.184466 + 0.319505i
\(233\) −22.2854 + 12.8665i −1.45996 + 0.842910i −0.999009 0.0445134i \(-0.985826\pi\)
−0.460955 + 0.887424i \(0.652493\pi\)
\(234\) 0 0
\(235\) −17.9327 −1.16980
\(236\) −0.463589 + 0.802959i −0.0301771 + 0.0522682i
\(237\) 0 0
\(238\) 26.5071i 1.71820i
\(239\) −10.5130 + 6.06970i −0.680032 + 0.392616i −0.799867 0.600177i \(-0.795097\pi\)
0.119835 + 0.992794i \(0.461763\pi\)
\(240\) 0 0
\(241\) 16.5011 9.52691i 1.06293 0.613682i 0.136688 0.990614i \(-0.456354\pi\)
0.926241 + 0.376932i \(0.123021\pi\)
\(242\) −0.941472 1.63068i −0.0605201 0.104824i
\(243\) 0 0
\(244\) 2.16340 + 3.74712i 0.138498 + 0.239885i
\(245\) 30.6223i 1.95638i
\(246\) 0 0
\(247\) −0.0935418 + 14.7245i −0.00595192 + 0.936900i
\(248\) −4.85079 + 2.80060i −0.308025 + 0.177838i
\(249\) 0 0
\(250\) 18.8472i 1.19200i
\(251\) 7.74070 + 4.46909i 0.488589 + 0.282087i 0.723989 0.689812i \(-0.242307\pi\)
−0.235400 + 0.971899i \(0.575640\pi\)
\(252\) 0 0
\(253\) 6.76681 11.7205i 0.425426 0.736859i
\(254\) 5.19659 + 3.00025i 0.326063 + 0.188253i
\(255\) 0 0
\(256\) 9.35506 0.584692
\(257\) −5.86083 −0.365588 −0.182794 0.983151i \(-0.558514\pi\)
−0.182794 + 0.983151i \(0.558514\pi\)
\(258\) 0 0
\(259\) 18.2179 + 10.5181i 1.13200 + 0.653563i
\(260\) −1.29029 + 2.23485i −0.0800206 + 0.138600i
\(261\) 0 0
\(262\) 17.5509 + 10.1330i 1.08430 + 0.626020i
\(263\) 5.96426i 0.367772i −0.982948 0.183886i \(-0.941132\pi\)
0.982948 0.183886i \(-0.0588677\pi\)
\(264\) 0 0
\(265\) 13.2085 7.62595i 0.811394 0.468458i
\(266\) −16.4765 + 28.1240i −1.01024 + 1.72439i
\(267\) 0 0
\(268\) 3.47395i 0.212205i
\(269\) 4.25123 + 7.36335i 0.259202 + 0.448951i 0.966028 0.258436i \(-0.0832071\pi\)
−0.706826 + 0.707387i \(0.749874\pi\)
\(270\) 0 0
\(271\) 3.84391 + 6.65785i 0.233501 + 0.404436i 0.958836 0.283960i \(-0.0916485\pi\)
−0.725335 + 0.688396i \(0.758315\pi\)
\(272\) −14.2636 + 8.23511i −0.864859 + 0.499327i
\(273\) 0 0
\(274\) −1.21071 + 0.699006i −0.0731419 + 0.0422285i
\(275\) 4.52897i 0.273107i
\(276\) 0 0
\(277\) −15.3659 + 26.6146i −0.923249 + 1.59911i −0.128895 + 0.991658i \(0.541143\pi\)
−0.794353 + 0.607456i \(0.792190\pi\)
\(278\) 30.0344 1.80135
\(279\) 0 0
\(280\) 19.4639 11.2375i 1.16319 0.671569i
\(281\) −14.8241 25.6760i −0.884329 1.53170i −0.846481 0.532419i \(-0.821283\pi\)
−0.0378481 0.999284i \(-0.512050\pi\)
\(282\) 0 0
\(283\) 11.2597 19.5024i 0.669322 1.15930i −0.308772 0.951136i \(-0.599918\pi\)
0.978094 0.208164i \(-0.0667486\pi\)
\(284\) 0.184367 + 0.319333i 0.0109402 + 0.0189489i
\(285\) 0 0
\(286\) −8.19465 + 14.1936i −0.484560 + 0.839282i
\(287\) −13.5951 23.5474i −0.802493 1.38996i
\(288\) 0 0
\(289\) −2.21732 + 3.84052i −0.130431 + 0.225913i
\(290\) 6.64151i 0.390003i
\(291\) 0 0
\(292\) −0.502336 0.870072i −0.0293970 0.0509171i
\(293\) −1.43273 2.48156i −0.0837010 0.144974i 0.821136 0.570733i \(-0.193341\pi\)
−0.904837 + 0.425758i \(0.860007\pi\)
\(294\) 0 0
\(295\) −3.73379 + 2.15571i −0.217390 + 0.125510i
\(296\) 10.7905i 0.627183i
\(297\) 0 0
\(298\) −2.55127 1.47297i −0.147791 0.0853271i
\(299\) 14.6146 0.845184
\(300\) 0 0
\(301\) −21.7825 + 37.7284i −1.25552 + 2.17463i
\(302\) 5.21644 + 3.01172i 0.300173 + 0.173305i
\(303\) 0 0
\(304\) −20.2526 0.128660i −1.16156 0.00737916i
\(305\) 20.1198i 1.15206i
\(306\) 0 0
\(307\) −15.6503 + 9.03569i −0.893208 + 0.515694i −0.874990 0.484140i \(-0.839132\pi\)
−0.0182175 + 0.999834i \(0.505799\pi\)
\(308\) −5.29436 + 3.05670i −0.301674 + 0.174172i
\(309\) 0 0
\(310\) 6.61999 0.375990
\(311\) −9.80717 + 5.66217i −0.556114 + 0.321072i −0.751584 0.659637i \(-0.770710\pi\)
0.195470 + 0.980710i \(0.437377\pi\)
\(312\) 0 0
\(313\) −0.739097 1.28015i −0.0417762 0.0723586i 0.844381 0.535743i \(-0.179968\pi\)
−0.886157 + 0.463384i \(0.846635\pi\)
\(314\) −12.8302 + 22.2226i −0.724052 + 1.25409i
\(315\) 0 0
\(316\) 0.213209i 0.0119939i
\(317\) 9.11745 + 15.7919i 0.512087 + 0.886961i 0.999902 + 0.0140137i \(0.00446084\pi\)
−0.487815 + 0.872947i \(0.662206\pi\)
\(318\) 0 0
\(319\) 7.10773i 0.397956i
\(320\) 9.44767 + 5.45461i 0.528141 + 0.304922i
\(321\) 0 0
\(322\) 28.0168 + 16.1755i 1.56131 + 0.901425i
\(323\) 13.4300 7.64047i 0.747265 0.425127i
\(324\) 0 0
\(325\) 4.23548 2.44536i 0.234942 0.135644i
\(326\) 15.8561 0.878190
\(327\) 0 0
\(328\) 6.97356 12.0786i 0.385051 0.666927i
\(329\) 45.8757i 2.52921i
\(330\) 0 0
\(331\) −26.0644 15.0483i −1.43263 0.827128i −0.435306 0.900282i \(-0.643360\pi\)
−0.997321 + 0.0731549i \(0.976693\pi\)
\(332\) −0.670430 0.387073i −0.0367946 0.0212434i
\(333\) 0 0
\(334\) −10.9619 −0.599806
\(335\) −8.07701 + 13.9898i −0.441294 + 0.764344i
\(336\) 0 0
\(337\) −3.15674 1.82254i −0.171958 0.0992802i 0.411551 0.911387i \(-0.364987\pi\)
−0.583509 + 0.812107i \(0.698321\pi\)
\(338\) 2.46342 0.133993
\(339\) 0 0
\(340\) 2.70790 0.146856
\(341\) 7.08470 0.383658
\(342\) 0 0
\(343\) 44.5874 2.40749
\(344\) −22.3466 −1.20485
\(345\) 0 0
\(346\) −20.1615 −1.08389
\(347\) −6.61837 3.82112i −0.355293 0.205128i 0.311721 0.950174i \(-0.399095\pi\)
−0.667014 + 0.745045i \(0.732428\pi\)
\(348\) 0 0
\(349\) −3.85492 + 6.67692i −0.206349 + 0.357407i −0.950562 0.310535i \(-0.899492\pi\)
0.744212 + 0.667943i \(0.232825\pi\)
\(350\) 10.8261 0.578681
\(351\) 0 0
\(352\) −6.12170 3.53437i −0.326288 0.188382i
\(353\) 14.8975 + 8.60109i 0.792915 + 0.457790i 0.840988 0.541054i \(-0.181975\pi\)
−0.0480728 + 0.998844i \(0.515308\pi\)
\(354\) 0 0
\(355\) 1.71463i 0.0910029i
\(356\) 3.03228 5.25207i 0.160711 0.278359i
\(357\) 0 0
\(358\) 13.3992 0.708167
\(359\) −0.986080 + 0.569313i −0.0520433 + 0.0300472i −0.525796 0.850611i \(-0.676232\pi\)
0.473753 + 0.880658i \(0.342899\pi\)
\(360\) 0 0
\(361\) 18.9985 + 0.241396i 0.999919 + 0.0127050i
\(362\) −3.20248 1.84895i −0.168319 0.0971788i
\(363\) 0 0
\(364\) −5.71724 3.30085i −0.299665 0.173012i
\(365\) 4.67176i 0.244531i
\(366\) 0 0
\(367\) −0.351324 0.608511i −0.0183390 0.0317640i 0.856710 0.515798i \(-0.172504\pi\)
−0.875049 + 0.484034i \(0.839171\pi\)
\(368\) 20.1014i 1.04786i
\(369\) 0 0
\(370\) 6.37655 11.0445i 0.331501 0.574177i
\(371\) 19.5088 + 33.7903i 1.01285 + 1.75430i
\(372\) 0 0
\(373\) 8.13834 4.69867i 0.421387 0.243288i −0.274283 0.961649i \(-0.588441\pi\)
0.695671 + 0.718361i \(0.255107\pi\)
\(374\) 17.1978 0.889279
\(375\) 0 0
\(376\) 20.3791 11.7659i 1.05097 0.606780i
\(377\) 6.64714 3.83773i 0.342345 0.197653i
\(378\) 0 0
\(379\) 24.1334i 1.23965i 0.784740 + 0.619825i \(0.212796\pi\)
−0.784740 + 0.619825i \(0.787204\pi\)
\(380\) 2.87308 + 1.68320i 0.147386 + 0.0863463i
\(381\) 0 0
\(382\) −10.0268 5.78900i −0.513018 0.296191i
\(383\) 14.4398 25.0105i 0.737841 1.27798i −0.215625 0.976476i \(-0.569179\pi\)
0.953466 0.301501i \(-0.0974878\pi\)
\(384\) 0 0
\(385\) −28.4275 −1.44880
\(386\) −10.7677 6.21676i −0.548063 0.316425i
\(387\) 0 0
\(388\) 5.46267i 0.277325i
\(389\) −33.5426 + 19.3658i −1.70068 + 0.981886i −0.755602 + 0.655031i \(0.772655\pi\)
−0.945075 + 0.326855i \(0.894011\pi\)
\(390\) 0 0
\(391\) −7.66780 13.2810i −0.387777 0.671650i
\(392\) 20.0917 + 34.7999i 1.01478 + 1.75766i
\(393\) 0 0
\(394\) 12.7078i 0.640211i
\(395\) −0.495715 + 0.858603i −0.0249421 + 0.0432010i
\(396\) 0 0
\(397\) −11.2189 19.4316i −0.563058 0.975246i −0.997227 0.0744143i \(-0.976291\pi\)
0.434169 0.900831i \(-0.357042\pi\)
\(398\) 3.37960 5.85364i 0.169404 0.293416i
\(399\) 0 0
\(400\) 3.36342 + 5.82561i 0.168171 + 0.291280i
\(401\) 2.32062 4.01943i 0.115886 0.200721i −0.802248 0.596992i \(-0.796363\pi\)
0.918134 + 0.396271i \(0.129696\pi\)
\(402\) 0 0
\(403\) 3.82529 + 6.62560i 0.190551 + 0.330045i
\(404\) 5.19202 2.99762i 0.258313 0.149137i
\(405\) 0 0
\(406\) 16.9904 0.843221
\(407\) 6.82417 11.8198i 0.338261 0.585886i
\(408\) 0 0
\(409\) 19.2118i 0.949960i −0.879997 0.474980i \(-0.842455\pi\)
0.879997 0.474980i \(-0.157545\pi\)
\(410\) −14.2755 + 8.24197i −0.705017 + 0.407042i
\(411\) 0 0
\(412\) −2.44484 + 1.41153i −0.120448 + 0.0695410i
\(413\) −5.51476 9.55185i −0.271364 0.470016i
\(414\) 0 0
\(415\) −1.79990 3.11753i −0.0883538 0.153033i
\(416\) 7.63334i 0.374255i
\(417\) 0 0
\(418\) 18.2469 + 10.6900i 0.892486 + 0.522865i
\(419\) −9.67554 + 5.58618i −0.472681 + 0.272903i −0.717361 0.696701i \(-0.754650\pi\)
0.244680 + 0.969604i \(0.421317\pi\)
\(420\) 0 0
\(421\) 16.4137i 0.799955i −0.916525 0.399978i \(-0.869018\pi\)
0.916525 0.399978i \(-0.130982\pi\)
\(422\) −17.8068 10.2808i −0.866822 0.500460i
\(423\) 0 0
\(424\) −10.0070 + 17.3326i −0.485983 + 0.841747i
\(425\) −4.44444 2.56600i −0.215587 0.124469i
\(426\) 0 0
\(427\) −51.4709 −2.49085
\(428\) −2.51702 −0.121665
\(429\) 0 0
\(430\) 22.8727 + 13.2056i 1.10302 + 0.636829i
\(431\) −17.2912 + 29.9492i −0.832888 + 1.44260i 0.0628504 + 0.998023i \(0.479981\pi\)
−0.895738 + 0.444581i \(0.853352\pi\)
\(432\) 0 0
\(433\) −14.9639 8.63943i −0.719121 0.415185i 0.0953081 0.995448i \(-0.469616\pi\)
−0.814429 + 0.580263i \(0.802950\pi\)
\(434\) 16.9354i 0.812924i
\(435\) 0 0
\(436\) −1.07071 + 0.618172i −0.0512775 + 0.0296051i
\(437\) 0.119797 18.8574i 0.00573066 0.902071i
\(438\) 0 0
\(439\) 29.1698i 1.39220i −0.717946 0.696099i \(-0.754917\pi\)
0.717946 0.696099i \(-0.245083\pi\)
\(440\) −7.29091 12.6282i −0.347581 0.602027i
\(441\) 0 0
\(442\) 9.28575 + 16.0834i 0.441678 + 0.765009i
\(443\) 6.71346 3.87602i 0.318966 0.184155i −0.331966 0.943291i \(-0.607712\pi\)
0.650932 + 0.759136i \(0.274378\pi\)
\(444\) 0 0
\(445\) 24.4223 14.1002i 1.15773 0.668416i
\(446\) 5.61264i 0.265766i
\(447\) 0 0
\(448\) −13.9541 + 24.1692i −0.659268 + 1.14189i
\(449\) 21.5509 1.01705 0.508526 0.861047i \(-0.330191\pi\)
0.508526 + 0.861047i \(0.330191\pi\)
\(450\) 0 0
\(451\) −15.2776 + 8.82053i −0.719394 + 0.415343i
\(452\) −2.50314 4.33557i −0.117738 0.203928i
\(453\) 0 0
\(454\) −15.8136 + 27.3900i −0.742170 + 1.28548i
\(455\) −15.3491 26.5854i −0.719576 1.24634i
\(456\) 0 0
\(457\) −1.05039 + 1.81932i −0.0491350 + 0.0851044i −0.889547 0.456844i \(-0.848980\pi\)
0.840412 + 0.541948i \(0.182313\pi\)
\(458\) −4.22559 7.31894i −0.197449 0.341992i
\(459\) 0 0
\(460\) 1.65245 2.86213i 0.0770458 0.133447i
\(461\) 25.9098i 1.20674i −0.797461 0.603370i \(-0.793824\pi\)
0.797461 0.603370i \(-0.206176\pi\)
\(462\) 0 0
\(463\) 9.23702 + 15.9990i 0.429281 + 0.743536i 0.996809 0.0798177i \(-0.0254338\pi\)
−0.567529 + 0.823354i \(0.692100\pi\)
\(464\) 5.27852 + 9.14267i 0.245049 + 0.424438i
\(465\) 0 0
\(466\) −34.5626 + 19.9547i −1.60108 + 0.924384i
\(467\) 29.7747i 1.37781i −0.724852 0.688905i \(-0.758092\pi\)
0.724852 0.688905i \(-0.241908\pi\)
\(468\) 0 0
\(469\) −35.7889 20.6627i −1.65258 0.954117i
\(470\) −27.8119 −1.28287
\(471\) 0 0
\(472\) 2.82878 4.89959i 0.130205 0.225522i
\(473\) 24.4783 + 14.1326i 1.12551 + 0.649815i
\(474\) 0 0
\(475\) −3.12055 5.48514i −0.143181 0.251675i
\(476\) 6.92739i 0.317516i
\(477\) 0 0
\(478\) −16.3048 + 9.41355i −0.745762 + 0.430566i
\(479\) −12.7572 + 7.36537i −0.582891 + 0.336532i −0.762282 0.647246i \(-0.775921\pi\)
0.179390 + 0.983778i \(0.442587\pi\)
\(480\) 0 0
\(481\) 14.7385 0.672017
\(482\) 25.5917 14.7754i 1.16567 0.673000i
\(483\) 0 0
\(484\) −0.246045 0.426163i −0.0111839 0.0193711i
\(485\) 12.7008 21.9985i 0.576714 0.998898i
\(486\) 0 0
\(487\) 14.0498i 0.636658i −0.947980 0.318329i \(-0.896878\pi\)
0.947980 0.318329i \(-0.103122\pi\)
\(488\) −13.2009 22.8647i −0.597577 1.03503i
\(489\) 0 0
\(490\) 47.4923i 2.14548i
\(491\) −14.3849 8.30510i −0.649180 0.374804i 0.138962 0.990298i \(-0.455623\pi\)
−0.788142 + 0.615494i \(0.788957\pi\)
\(492\) 0 0
\(493\) −6.97506 4.02706i −0.314141 0.181369i
\(494\) −0.145075 + 22.8364i −0.00652722 + 1.02746i
\(495\) 0 0
\(496\) −9.11304 + 5.26142i −0.409188 + 0.236245i
\(497\) −4.38638 −0.196756
\(498\) 0 0
\(499\) 11.2873 19.5502i 0.505288 0.875185i −0.494693 0.869068i \(-0.664719\pi\)
0.999981 0.00611735i \(-0.00194723\pi\)
\(500\) 4.92554i 0.220277i
\(501\) 0 0
\(502\) 12.0051 + 6.93116i 0.535814 + 0.309353i
\(503\) 25.4796 + 14.7107i 1.13608 + 0.655917i 0.945457 0.325746i \(-0.105616\pi\)
0.190624 + 0.981663i \(0.438949\pi\)
\(504\) 0 0
\(505\) 27.8781 1.24056
\(506\) 10.4947 18.1774i 0.466546 0.808082i
\(507\) 0 0
\(508\) 1.35808 + 0.784090i 0.0602552 + 0.0347883i
\(509\) 31.2421 1.38478 0.692391 0.721522i \(-0.256557\pi\)
0.692391 + 0.721522i \(0.256557\pi\)
\(510\) 0 0
\(511\) 11.9514 0.528698
\(512\) −12.4837 −0.551705
\(513\) 0 0
\(514\) −9.08961 −0.400925
\(515\) −13.1273 −0.578459
\(516\) 0 0
\(517\) −29.7643 −1.30903
\(518\) 28.2543 + 16.3126i 1.24142 + 0.716735i
\(519\) 0 0
\(520\) 7.87327 13.6369i 0.345266 0.598018i
\(521\) 0.424924 0.0186163 0.00930814 0.999957i \(-0.497037\pi\)
0.00930814 + 0.999957i \(0.497037\pi\)
\(522\) 0 0
\(523\) 31.0533 + 17.9286i 1.35787 + 0.783964i 0.989336 0.145652i \(-0.0465278\pi\)
0.368530 + 0.929616i \(0.379861\pi\)
\(524\) 4.58677 + 2.64817i 0.200374 + 0.115686i
\(525\) 0 0
\(526\) 9.25002i 0.403320i
\(527\) 4.01401 6.95246i 0.174853 0.302854i
\(528\) 0 0
\(529\) 4.28342 0.186236
\(530\) 20.4852 11.8271i 0.889821 0.513738i
\(531\) 0 0
\(532\) −4.30599 + 7.34996i −0.186688 + 0.318661i
\(533\) −16.4979 9.52506i −0.714603 0.412576i
\(534\) 0 0
\(535\) −10.1362 5.85211i −0.438224 0.253009i
\(536\) 21.1978i 0.915605i
\(537\) 0 0
\(538\) 6.59327 + 11.4199i 0.284256 + 0.492346i
\(539\) 50.8261i 2.18924i
\(540\) 0 0
\(541\) 9.92108 17.1838i 0.426541 0.738790i −0.570022 0.821629i \(-0.693065\pi\)
0.996563 + 0.0828391i \(0.0263988\pi\)
\(542\) 5.96155 + 10.3257i 0.256071 + 0.443527i
\(543\) 0 0
\(544\) −6.93679 + 4.00496i −0.297413 + 0.171711i
\(545\) −5.74905 −0.246262
\(546\) 0 0
\(547\) −17.8362 + 10.2978i −0.762622 + 0.440300i −0.830236 0.557411i \(-0.811795\pi\)
0.0676143 + 0.997712i \(0.478461\pi\)
\(548\) −0.316409 + 0.182679i −0.0135163 + 0.00780366i
\(549\) 0 0
\(550\) 7.02401i 0.299505i
\(551\) −4.89737 8.60833i −0.208635 0.366727i
\(552\) 0 0
\(553\) −2.19649 1.26815i −0.0934043 0.0539270i
\(554\) −23.8311 + 41.2767i −1.01249 + 1.75368i
\(555\) 0 0
\(556\) 7.84923 0.332882
\(557\) 9.85951 + 5.69239i 0.417761 + 0.241194i 0.694119 0.719860i \(-0.255794\pi\)
−0.276358 + 0.961055i \(0.589128\pi\)
\(558\) 0 0
\(559\) 30.5228i 1.29098i
\(560\) 36.5663 21.1116i 1.54521 0.892127i
\(561\) 0 0
\(562\) −22.9907 39.8211i −0.969806 1.67975i
\(563\) −22.3588 38.7266i −0.942311 1.63213i −0.761048 0.648695i \(-0.775315\pi\)
−0.181263 0.983435i \(-0.558018\pi\)
\(564\) 0 0
\(565\) 23.2794i 0.979374i
\(566\) 17.4628 30.2465i 0.734017 1.27135i
\(567\) 0 0
\(568\) −1.12499 1.94854i −0.0472036 0.0817590i
\(569\) −0.560747 + 0.971242i −0.0235077 + 0.0407166i −0.877540 0.479504i \(-0.840817\pi\)
0.854032 + 0.520220i \(0.174150\pi\)
\(570\) 0 0
\(571\) 9.40145 + 16.2838i 0.393438 + 0.681455i 0.992900 0.118948i \(-0.0379522\pi\)
−0.599462 + 0.800403i \(0.704619\pi\)
\(572\) −2.14160 + 3.70936i −0.0895448 + 0.155096i
\(573\) 0 0
\(574\) −21.0847 36.5198i −0.880060 1.52431i
\(575\) −5.42429 + 3.13171i −0.226208 + 0.130601i
\(576\) 0 0
\(577\) −23.2617 −0.968397 −0.484199 0.874958i \(-0.660889\pi\)
−0.484199 + 0.874958i \(0.660889\pi\)
\(578\) −3.43887 + 5.95629i −0.143038 + 0.247749i
\(579\) 0 0
\(580\) 1.73570i 0.0720711i
\(581\) 7.97531 4.60455i 0.330872 0.191029i
\(582\) 0 0
\(583\) 21.9232 12.6574i 0.907967 0.524215i
\(584\) 3.06521 + 5.30911i 0.126839 + 0.219692i
\(585\) 0 0
\(586\) −2.22203 3.84867i −0.0917913 0.158987i
\(587\) 6.50799i 0.268613i −0.990940 0.134307i \(-0.957119\pi\)
0.990940 0.134307i \(-0.0428807\pi\)
\(588\) 0 0
\(589\) 8.58044 4.88150i 0.353551 0.201139i
\(590\) −5.79077 + 3.34330i −0.238402 + 0.137642i
\(591\) 0 0
\(592\) 20.2717i 0.833164i
\(593\) −8.23530 4.75465i −0.338183 0.195250i 0.321285 0.946983i \(-0.395885\pi\)
−0.659468 + 0.751732i \(0.729219\pi\)
\(594\) 0 0
\(595\) −16.1063 + 27.8970i −0.660294 + 1.14366i
\(596\) −0.666751 0.384949i −0.0273112 0.0157681i
\(597\) 0 0
\(598\) 22.6659 0.926878
\(599\) −36.5823 −1.49471 −0.747355 0.664424i \(-0.768677\pi\)
−0.747355 + 0.664424i \(0.768677\pi\)
\(600\) 0 0
\(601\) −39.1747 22.6175i −1.59797 0.922587i −0.991878 0.127190i \(-0.959404\pi\)
−0.606089 0.795397i \(-0.707263\pi\)
\(602\) −33.7827 + 58.5133i −1.37688 + 2.38483i
\(603\) 0 0
\(604\) 1.36327 + 0.787085i 0.0554707 + 0.0320261i
\(605\) 2.28824i 0.0930303i
\(606\) 0 0
\(607\) −29.9152 + 17.2715i −1.21422 + 0.701030i −0.963676 0.267075i \(-0.913943\pi\)
−0.250544 + 0.968105i \(0.580609\pi\)
\(608\) −9.84938 0.0625710i −0.399445 0.00253759i
\(609\) 0 0
\(610\) 31.2040i 1.26341i
\(611\) −16.0708 27.8355i −0.650156 1.12610i
\(612\) 0 0
\(613\) −5.78197 10.0147i −0.233531 0.404488i 0.725313 0.688419i \(-0.241695\pi\)
−0.958845 + 0.283930i \(0.908362\pi\)
\(614\) −24.2721 + 14.0135i −0.979543 + 0.565540i
\(615\) 0 0
\(616\) 32.3058 18.6517i 1.30164 0.751500i
\(617\) 34.7791i 1.40015i 0.714067 + 0.700077i \(0.246851\pi\)
−0.714067 + 0.700077i \(0.753149\pi\)
\(618\) 0 0
\(619\) 8.34985 14.4624i 0.335609 0.581291i −0.647993 0.761646i \(-0.724391\pi\)
0.983602 + 0.180355i \(0.0577247\pi\)
\(620\) 1.73008 0.0694816
\(621\) 0 0
\(622\) −15.2100 + 8.78151i −0.609866 + 0.352107i
\(623\) 36.0715 + 62.4776i 1.44517 + 2.50311i
\(624\) 0 0
\(625\) 7.83257 13.5664i 0.313303 0.542656i
\(626\) −1.14627 1.98540i −0.0458142 0.0793526i
\(627\) 0 0
\(628\) −3.35307 + 5.80768i −0.133802 + 0.231752i
\(629\) −7.73279 13.3936i −0.308327 0.534038i
\(630\) 0 0
\(631\) 14.7130 25.4837i 0.585717 1.01449i −0.409069 0.912503i \(-0.634146\pi\)
0.994786 0.101988i \(-0.0325202\pi\)
\(632\) 1.30098i 0.0517503i
\(633\) 0 0
\(634\) 14.1403 + 24.4918i 0.561584 + 0.972693i
\(635\) 3.64605 + 6.31514i 0.144689 + 0.250609i
\(636\) 0 0
\(637\) 47.5325 27.4429i 1.88331 1.08733i
\(638\) 11.0234i 0.436422i
\(639\) 0 0
\(640\) 22.0290 + 12.7184i 0.870772 + 0.502741i
\(641\) −29.8671 −1.17968 −0.589840 0.807520i \(-0.700809\pi\)
−0.589840 + 0.807520i \(0.700809\pi\)
\(642\) 0 0
\(643\) −9.93240 + 17.2034i −0.391696 + 0.678437i −0.992673 0.120829i \(-0.961445\pi\)
0.600978 + 0.799266i \(0.294778\pi\)
\(644\) 7.32194 + 4.22732i 0.288525 + 0.166580i
\(645\) 0 0
\(646\) 20.8287 11.8497i 0.819494 0.466219i
\(647\) 29.2696i 1.15071i 0.817905 + 0.575353i \(0.195135\pi\)
−0.817905 + 0.575353i \(0.804865\pi\)
\(648\) 0 0
\(649\) −6.19726 + 3.57799i −0.243264 + 0.140448i
\(650\) 6.56885 3.79253i 0.257651 0.148755i
\(651\) 0 0
\(652\) 4.14386 0.162286
\(653\) −15.4957 + 8.94643i −0.606393 + 0.350101i −0.771552 0.636166i \(-0.780519\pi\)
0.165160 + 0.986267i \(0.447186\pi\)
\(654\) 0 0
\(655\) 12.3141 + 21.3287i 0.481152 + 0.833380i
\(656\) 13.1011 22.6917i 0.511510 0.885962i
\(657\) 0 0
\(658\) 71.1490i 2.77368i
\(659\) −10.9352 18.9404i −0.425977 0.737813i 0.570534 0.821274i \(-0.306736\pi\)
−0.996511 + 0.0834604i \(0.973403\pi\)
\(660\) 0 0
\(661\) 4.09721i 0.159363i −0.996820 0.0796816i \(-0.974610\pi\)
0.996820 0.0796816i \(-0.0253903\pi\)
\(662\) −40.4234 23.3385i −1.57110 0.907076i
\(663\) 0 0
\(664\) 4.09091 + 2.36189i 0.158758 + 0.0916591i
\(665\) −34.4292 + 19.5872i −1.33511 + 0.759558i
\(666\) 0 0
\(667\) −8.51283 + 4.91489i −0.329618 + 0.190305i
\(668\) −2.86479 −0.110842
\(669\) 0 0
\(670\) −12.5267 + 21.6969i −0.483949 + 0.838224i
\(671\) 33.3944i 1.28918i
\(672\) 0 0
\(673\) 20.9877 + 12.1172i 0.809015 + 0.467085i 0.846614 0.532208i \(-0.178638\pi\)
−0.0375989 + 0.999293i \(0.511971\pi\)
\(674\) −4.89581 2.82660i −0.188579 0.108876i
\(675\) 0 0
\(676\) 0.643794 0.0247613
\(677\) 10.2196 17.7009i 0.392773 0.680302i −0.600041 0.799969i \(-0.704849\pi\)
0.992814 + 0.119667i \(0.0381826\pi\)
\(678\) 0 0
\(679\) 56.2768 + 32.4914i 2.15971 + 1.24691i
\(680\) −16.5234 −0.633642
\(681\) 0 0
\(682\) 10.9877 0.420741
\(683\) −26.3929 −1.00990 −0.504949 0.863149i \(-0.668489\pi\)
−0.504949 + 0.863149i \(0.668489\pi\)
\(684\) 0 0
\(685\) −1.69893 −0.0649128
\(686\) 69.1510 2.64020
\(687\) 0 0
\(688\) −41.9819 −1.60054
\(689\) 23.6743 + 13.6684i 0.901920 + 0.520724i
\(690\) 0 0
\(691\) 2.05478 3.55898i 0.0781674 0.135390i −0.824292 0.566165i \(-0.808426\pi\)
0.902459 + 0.430775i \(0.141760\pi\)
\(692\) −5.26904 −0.200299
\(693\) 0 0
\(694\) −10.2645 5.92621i −0.389635 0.224956i
\(695\) 31.6093 + 18.2496i 1.19901 + 0.692248i
\(696\) 0 0
\(697\) 19.9899i 0.757173i
\(698\) −5.97863 + 10.3553i −0.226295 + 0.391954i
\(699\) 0 0
\(700\) 2.82931 0.106938
\(701\) −17.9358 + 10.3552i −0.677424 + 0.391111i −0.798884 0.601485i \(-0.794576\pi\)
0.121460 + 0.992596i \(0.461242\pi\)
\(702\) 0 0
\(703\) 0.120812 19.0172i 0.00455652 0.717248i
\(704\) 15.6810 + 9.05344i 0.591001 + 0.341214i
\(705\) 0 0
\(706\) 23.1047 + 13.3395i 0.869556 + 0.502039i
\(707\) 71.3181i 2.68220i
\(708\) 0 0
\(709\) −6.04698 10.4737i −0.227099 0.393347i 0.729848 0.683610i \(-0.239591\pi\)
−0.956947 + 0.290262i \(0.906258\pi\)
\(710\) 2.65923i 0.0997990i
\(711\) 0 0
\(712\) −18.5028 + 32.0477i −0.693420 + 1.20104i
\(713\) −4.89896 8.48525i −0.183468 0.317775i
\(714\) 0 0
\(715\) −17.2487 + 9.95853i −0.645064 + 0.372428i
\(716\) 3.50175 0.130867
\(717\) 0 0
\(718\) −1.52932 + 0.882953i −0.0570737 + 0.0329515i
\(719\) −19.5960 + 11.3137i −0.730807 + 0.421932i −0.818717 0.574197i \(-0.805314\pi\)
0.0879104 + 0.996128i \(0.471981\pi\)
\(720\) 0 0
\(721\) 33.5825i 1.25068i
\(722\) 29.4649 + 0.374383i 1.09657 + 0.0139331i
\(723\) 0 0
\(724\) −0.836941 0.483208i −0.0311047 0.0179583i
\(725\) −1.64475 + 2.84878i −0.0610844 + 0.105801i
\(726\) 0 0
\(727\) −38.6937 −1.43507 −0.717536 0.696522i \(-0.754730\pi\)
−0.717536 + 0.696522i \(0.754730\pi\)
\(728\) 34.8862 + 20.1415i 1.29297 + 0.746495i
\(729\) 0 0
\(730\) 7.24548i 0.268167i
\(731\) 27.7375 16.0143i 1.02591 0.592309i
\(732\) 0 0
\(733\) −12.7820 22.1391i −0.472114 0.817725i 0.527377 0.849631i \(-0.323175\pi\)
−0.999491 + 0.0319066i \(0.989842\pi\)
\(734\) −0.544871 0.943745i −0.0201116 0.0348343i
\(735\) 0 0
\(736\) 9.77584i 0.360342i
\(737\) −13.4060 + 23.2199i −0.493818 + 0.855318i
\(738\) 0 0
\(739\) 17.9188 + 31.0363i 0.659154 + 1.14169i 0.980835 + 0.194840i \(0.0624187\pi\)
−0.321681 + 0.946848i \(0.604248\pi\)
\(740\) 1.66646 2.88639i 0.0612602 0.106106i
\(741\) 0 0
\(742\) 30.2564 + 52.4056i 1.11075 + 1.92387i
\(743\) 6.70454 11.6126i 0.245966 0.426025i −0.716437 0.697652i \(-0.754228\pi\)
0.962403 + 0.271627i \(0.0875617\pi\)
\(744\) 0 0
\(745\) −1.79003 3.10042i −0.0655816 0.113591i
\(746\) 12.6218 7.28721i 0.462118 0.266804i
\(747\) 0 0
\(748\) 4.49451 0.164335
\(749\) 14.9710 25.9305i 0.547028 0.947480i
\(750\) 0 0
\(751\) 42.9817i 1.56842i 0.620493 + 0.784212i \(0.286933\pi\)
−0.620493 + 0.784212i \(0.713067\pi\)
\(752\) 38.2858 22.1043i 1.39614 0.806061i
\(753\) 0 0
\(754\) 10.3091 5.95196i 0.375435 0.216758i
\(755\) 3.65998 + 6.33927i 0.133200 + 0.230710i
\(756\) 0 0
\(757\) 9.39734 + 16.2767i 0.341552 + 0.591586i 0.984721 0.174139i \(-0.0557141\pi\)
−0.643169 + 0.765724i \(0.722381\pi\)
\(758\) 37.4287i 1.35947i
\(759\) 0 0
\(760\) −17.5313 10.2707i −0.635927 0.372559i
\(761\) 30.5686 17.6488i 1.10811 0.639769i 0.169772 0.985483i \(-0.445697\pi\)
0.938340 + 0.345715i \(0.112363\pi\)
\(762\) 0 0
\(763\) 14.7073i 0.532441i
\(764\) −2.62043 1.51290i −0.0948037 0.0547349i
\(765\) 0 0
\(766\) 22.3948 38.7890i 0.809159 1.40150i
\(767\) −6.69227 3.86378i −0.241644 0.139513i
\(768\) 0 0
\(769\) 50.3388 1.81526 0.907632 0.419767i \(-0.137888\pi\)
0.907632 + 0.419767i \(0.137888\pi\)
\(770\) −44.0885 −1.58884
\(771\) 0 0
\(772\) −2.81405 1.62469i −0.101280 0.0584740i
\(773\) 15.2092 26.3432i 0.547039 0.947499i −0.451437 0.892303i \(-0.649088\pi\)
0.998476 0.0551956i \(-0.0175782\pi\)
\(774\) 0 0
\(775\) −2.83955 1.63942i −0.102000 0.0588896i
\(776\) 33.3328i 1.19658i
\(777\) 0 0
\(778\) −52.0215 + 30.0346i −1.86506 + 1.07679i
\(779\) −12.4255 + 21.2093i −0.445191 + 0.759903i
\(780\) 0 0
\(781\) 2.84590i 0.101834i
\(782\) −11.8920 20.5976i −0.425259 0.736570i
\(783\) 0 0
\(784\) 37.7458 + 65.3776i 1.34806 + 2.33491i
\(785\) −27.0060 + 15.5919i −0.963884 + 0.556499i
\(786\) 0 0
\(787\) 21.5905 12.4653i 0.769619 0.444340i −0.0631196 0.998006i \(-0.520105\pi\)
0.832739 + 0.553666i \(0.186772\pi\)
\(788\) 3.32108i 0.118309i
\(789\) 0 0
\(790\) −0.768808 + 1.33161i −0.0273530 + 0.0473767i
\(791\) 59.5539 2.11749
\(792\) 0 0
\(793\) −31.2304 + 18.0309i −1.10902 + 0.640296i
\(794\) −17.3994 30.1367i −0.617482 1.06951i
\(795\) 0 0
\(796\) 0.883229 1.52980i 0.0313052 0.0542222i
\(797\) 22.8991 + 39.6625i 0.811129 + 1.40492i 0.912074 + 0.410025i \(0.134480\pi\)
−0.100945 + 0.994892i \(0.532187\pi\)
\(798\) 0 0
\(799\) −16.8637 + 29.2087i −0.596594 + 1.03333i
\(800\) 1.63572 + 2.83315i 0.0578315 + 0.100167i
\(801\) 0 0
\(802\) 3.59906 6.23376i 0.127087 0.220122i
\(803\) 7.75409i 0.273636i
\(804\) 0 0
\(805\) 19.6572 + 34.0473i 0.692826 + 1.20001i
\(806\) 5.93268 + 10.2757i 0.208970 + 0.361946i
\(807\) 0 0
\(808\) −31.6813 + 18.2912i −1.11454 + 0.643483i
\(809\) 28.2911i 0.994662i 0.867561 + 0.497331i \(0.165686\pi\)
−0.867561 + 0.497331i \(0.834314\pi\)
\(810\) 0 0
\(811\) 8.53722 + 4.92896i 0.299782 + 0.173079i 0.642345 0.766416i \(-0.277962\pi\)
−0.342563 + 0.939495i \(0.611295\pi\)
\(812\) 4.44030 0.155824
\(813\) 0 0
\(814\) 10.5837 18.3314i 0.370957 0.642517i
\(815\) 16.6875 + 9.63456i 0.584539 + 0.337484i
\(816\) 0 0
\(817\) 39.3838 + 0.250197i 1.37787 + 0.00875328i
\(818\) 29.7957i 1.04178i
\(819\) 0 0
\(820\) −3.73078 + 2.15397i −0.130284 + 0.0752198i
\(821\) 35.3705 20.4211i 1.23444 0.712703i 0.266486 0.963839i \(-0.414137\pi\)
0.967952 + 0.251136i \(0.0808041\pi\)
\(822\) 0 0
\(823\) −36.6191 −1.27646 −0.638231 0.769845i \(-0.720334\pi\)
−0.638231 + 0.769845i \(0.720334\pi\)
\(824\) 14.9182 8.61303i 0.519700 0.300049i
\(825\) 0 0
\(826\) −8.55289 14.8140i −0.297593 0.515446i
\(827\) 19.3427 33.5025i 0.672611 1.16500i −0.304550 0.952496i \(-0.598506\pi\)
0.977161 0.212500i \(-0.0681606\pi\)
\(828\) 0 0
\(829\) 19.0627i 0.662076i 0.943617 + 0.331038i \(0.107399\pi\)
−0.943617 + 0.331038i \(0.892601\pi\)
\(830\) −2.79149 4.83500i −0.0968939 0.167825i
\(831\) 0 0
\(832\) 19.5532i 0.677884i
\(833\) −49.8775 28.7968i −1.72815 0.997749i
\(834\) 0 0
\(835\) −11.5366 6.66068i −0.399242 0.230502i
\(836\) 4.76867 + 2.79374i 0.164928 + 0.0966234i
\(837\) 0 0
\(838\) −15.0059 + 8.66365i −0.518370 + 0.299281i
\(839\) 6.76647 0.233604 0.116802 0.993155i \(-0.462736\pi\)
0.116802 + 0.993155i \(0.462736\pi\)
\(840\) 0 0
\(841\) 11.9187 20.6439i 0.410991 0.711858i
\(842\) 25.4562i 0.877277i
\(843\) 0 0
\(844\) −4.65365 2.68679i −0.160185 0.0924830i
\(845\) 2.59259 + 1.49683i 0.0891879 + 0.0514927i
\(846\) 0 0
\(847\) 5.85382 0.201140
\(848\) −18.7999 + 32.5624i −0.645591 + 1.11820i
\(849\) 0 0
\(850\) −6.89291 3.97962i −0.236425 0.136500i
\(851\) −18.8752 −0.647035
\(852\) 0 0
\(853\) 4.02737 0.137895 0.0689473 0.997620i \(-0.478036\pi\)
0.0689473 + 0.997620i \(0.478036\pi\)
\(854\) −79.8266 −2.73161
\(855\) 0 0
\(856\) 15.3586 0.524947
\(857\) 18.6163 0.635921 0.317960 0.948104i \(-0.397002\pi\)
0.317960 + 0.948104i \(0.397002\pi\)
\(858\) 0 0
\(859\) 35.0162 1.19474 0.597369 0.801967i \(-0.296213\pi\)
0.597369 + 0.801967i \(0.296213\pi\)
\(860\) 5.97758 + 3.45116i 0.203834 + 0.117683i
\(861\) 0 0
\(862\) −26.8171 + 46.4485i −0.913393 + 1.58204i
\(863\) −7.92119 −0.269640 −0.134820 0.990870i \(-0.543046\pi\)
−0.134820 + 0.990870i \(0.543046\pi\)
\(864\) 0 0
\(865\) −21.2187 12.2506i −0.721458 0.416534i
\(866\) −23.2077 13.3990i −0.788630 0.455315i
\(867\) 0 0
\(868\) 4.42591i 0.150225i
\(869\) −0.822776 + 1.42509i −0.0279108 + 0.0483429i
\(870\) 0 0
\(871\) −28.9537 −0.981058
\(872\) 6.53336 3.77204i 0.221248 0.127737i
\(873\) 0 0
\(874\) 0.185794 29.2461i 0.00628457 0.989263i
\(875\) 50.7433 + 29.2967i 1.71544 + 0.990408i
\(876\) 0 0
\(877\) 36.5066 + 21.0771i 1.23274 + 0.711723i 0.967600 0.252487i \(-0.0812485\pi\)
0.265140 + 0.964210i \(0.414582\pi\)
\(878\) 45.2397i 1.52677i
\(879\) 0 0
\(880\) −13.6972 23.7243i −0.461734 0.799747i
\(881\) 45.4405i 1.53093i 0.643478 + 0.765464i \(0.277491\pi\)
−0.643478 + 0.765464i \(0.722509\pi\)
\(882\) 0 0
\(883\) 9.23912 16.0026i 0.310921 0.538531i −0.667641 0.744483i \(-0.732696\pi\)
0.978562 + 0.205952i \(0.0660292\pi\)
\(884\) 2.42675 + 4.20326i 0.0816205 + 0.141371i
\(885\) 0 0
\(886\) 10.4120 6.01134i 0.349796 0.201955i
\(887\) −6.44133 −0.216279 −0.108139 0.994136i \(-0.534489\pi\)
−0.108139 + 0.994136i \(0.534489\pi\)
\(888\) 0 0
\(889\) −16.1555 + 9.32738i −0.541838 + 0.312830i
\(890\) 37.8768 21.8682i 1.26963 0.733023i
\(891\) 0 0
\(892\) 1.46681i 0.0491126i
\(893\) −36.0482 + 20.5082i −1.20631 + 0.686281i
\(894\) 0 0
\(895\) 14.1017 + 8.14164i 0.471369 + 0.272145i
\(896\) −32.5365 + 56.3549i −1.08697 + 1.88269i
\(897\) 0 0
\(898\) 33.4235 1.11536
\(899\) −4.45637 2.57289i −0.148628 0.0858106i
\(900\) 0 0
\(901\) 28.6854i 0.955648i
\(902\) −23.6942 + 13.6798i −0.788929 + 0.455489i
\(903\) 0 0
\(904\) 15.2740 + 26.4553i 0.508005 + 0.879891i
\(905\) −2.24694 3.89181i −0.0746907 0.129368i
\(906\) 0 0
\(907\) 4.67863i 0.155351i 0.996979 + 0.0776757i \(0.0247499\pi\)
−0.996979 + 0.0776757i \(0.975250\pi\)
\(908\) −4.13275 + 7.15814i −0.137150 + 0.237551i
\(909\) 0 0
\(910\) −23.8050 41.2315i −0.789129 1.36681i
\(911\) −0.563718 + 0.976388i −0.0186768 + 0.0323492i −0.875213 0.483738i \(-0.839279\pi\)
0.856536 + 0.516087i \(0.172612\pi\)
\(912\) 0 0
\(913\) −2.98744 5.17440i −0.0988699 0.171248i
\(914\) −1.62905 + 2.82160i −0.0538843 + 0.0933304i
\(915\) 0 0
\(916\) −1.10432 1.91274i −0.0364878 0.0631987i
\(917\) −54.5634 + 31.5022i −1.80184 + 1.04029i
\(918\) 0 0
\(919\) 5.71119 0.188395 0.0941974 0.995554i \(-0.469972\pi\)
0.0941974 + 0.995554i \(0.469972\pi\)
\(920\) −10.0831 + 17.4645i −0.332430 + 0.575786i
\(921\) 0 0
\(922\) 40.1837i 1.32338i
\(923\) −2.66148 + 1.53661i −0.0876037 + 0.0505780i
\(924\) 0 0
\(925\) −5.47027 + 3.15826i −0.179861 + 0.103843i
\(926\) 14.3258 + 24.8130i 0.470774 + 0.815404i
\(927\) 0 0
\(928\) 2.56709 + 4.44633i 0.0842689 + 0.145958i
\(929\) 28.9821i 0.950873i −0.879750 0.475437i \(-0.842290\pi\)
0.879750 0.475437i \(-0.157710\pi\)
\(930\) 0 0
\(931\) −35.0203 61.5567i −1.14774 2.01744i
\(932\) −9.03263 + 5.21499i −0.295873 + 0.170823i
\(933\) 0 0
\(934\) 46.1779i 1.51099i
\(935\) 18.0996 + 10.4498i 0.591921 + 0.341745i
\(936\) 0 0
\(937\) −15.0321 + 26.0364i −0.491079 + 0.850573i −0.999947 0.0102711i \(-0.996731\pi\)
0.508869 + 0.860844i \(0.330064\pi\)
\(938\) −55.5053 32.0460i −1.81231 1.04634i
\(939\) 0 0
\(940\) −7.26841 −0.237069
\(941\) 24.4750 0.797862 0.398931 0.916981i \(-0.369381\pi\)
0.398931 + 0.916981i \(0.369381\pi\)
\(942\) 0 0
\(943\) 21.1285 + 12.1985i 0.688038 + 0.397239i
\(944\) 5.31436 9.20474i 0.172968 0.299589i
\(945\) 0 0
\(946\) 37.9636 + 21.9183i 1.23430 + 0.712625i
\(947\) 19.0059i 0.617608i 0.951126 + 0.308804i \(0.0999287\pi\)
−0.951126 + 0.308804i \(0.900071\pi\)
\(948\) 0 0
\(949\) 7.25161 4.18672i 0.235397 0.135907i
\(950\) −4.83969 8.50694i −0.157020 0.276002i
\(951\) 0 0
\(952\) 42.2704i 1.36999i
\(953\) −0.925412 1.60286i −0.0299770 0.0519217i 0.850648 0.525736i \(-0.176210\pi\)
−0.880625 + 0.473814i \(0.842877\pi\)
\(954\) 0 0
\(955\) −7.03506 12.1851i −0.227649 0.394300i
\(956\) −4.26110 + 2.46015i −0.137814 + 0.0795669i
\(957\) 0 0
\(958\) −19.7852 + 11.4230i −0.639232 + 0.369061i
\(959\) 4.34623i 0.140347i
\(960\) 0 0
\(961\) −12.9354 + 22.4049i −0.417273 + 0.722737i
\(962\) 22.8580 0.736973
\(963\) 0 0
\(964\) 6.68816 3.86141i 0.215411 0.124368i
\(965\) −7.55489 13.0855i −0.243201 0.421236i
\(966\) 0 0
\(967\) 21.6020 37.4158i 0.694674 1.20321i −0.275616 0.961268i \(-0.588882\pi\)
0.970290 0.241943i \(-0.0777848\pi\)
\(968\) 1.50135 + 2.60041i 0.0482552 + 0.0835805i
\(969\) 0 0
\(970\) 19.6978 34.1176i 0.632458 1.09545i
\(971\) −14.9198 25.8419i −0.478801 0.829307i 0.520904 0.853615i \(-0.325595\pi\)
−0.999705 + 0.0243082i \(0.992262\pi\)
\(972\) 0 0
\(973\) −46.6865 + 80.8634i −1.49670 + 2.59236i
\(974\) 21.7900i 0.698196i
\(975\) 0 0
\(976\) −24.8002 42.9552i −0.793836 1.37496i
\(977\) −9.91018 17.1649i −0.317055 0.549155i 0.662817 0.748781i \(-0.269361\pi\)
−0.979872 + 0.199626i \(0.936027\pi\)
\(978\) 0 0
\(979\) 40.5356 23.4033i 1.29552 0.747972i
\(980\) 12.4117i 0.396477i
\(981\) 0 0
\(982\) −22.3096 12.8805i −0.711928 0.411032i
\(983\) −1.00171 −0.0319497 −0.0159749 0.999872i \(-0.505085\pi\)
−0.0159749 + 0.999872i \(0.505085\pi\)
\(984\) 0 0
\(985\) −7.72158 + 13.3742i −0.246030 + 0.426136i
\(986\) −10.8177 6.24559i −0.344505 0.198900i
\(987\) 0 0
\(988\) −0.0379140 + 5.96810i −0.00120621 + 0.189870i
\(989\) 39.0898i 1.24298i
\(990\) 0 0
\(991\) −22.2607 + 12.8522i −0.707133 + 0.408264i −0.809999 0.586432i \(-0.800532\pi\)
0.102865 + 0.994695i \(0.467199\pi\)
\(992\) −4.43192 + 2.55877i −0.140714 + 0.0812411i
\(993\) 0 0
\(994\) −6.80288 −0.215774
\(995\) 7.11362 4.10705i 0.225517 0.130202i
\(996\) 0 0
\(997\) −7.67734 13.2975i −0.243144 0.421137i 0.718464 0.695564i \(-0.244845\pi\)
−0.961608 + 0.274426i \(0.911512\pi\)
\(998\) 17.5055 30.3205i 0.554128 0.959779i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.t.a.278.13 36
3.2 odd 2 171.2.t.a.164.6 yes 36
9.4 even 3 171.2.k.a.50.6 36
9.5 odd 6 513.2.k.a.449.13 36
19.8 odd 6 513.2.k.a.8.13 36
57.8 even 6 171.2.k.a.65.6 yes 36
171.103 odd 6 171.2.t.a.122.6 yes 36
171.122 even 6 inner 513.2.t.a.179.13 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.6 36 9.4 even 3
171.2.k.a.65.6 yes 36 57.8 even 6
171.2.t.a.122.6 yes 36 171.103 odd 6
171.2.t.a.164.6 yes 36 3.2 odd 2
513.2.k.a.8.13 36 19.8 odd 6
513.2.k.a.449.13 36 9.5 odd 6
513.2.t.a.179.13 36 171.122 even 6 inner
513.2.t.a.278.13 36 1.1 even 1 trivial