Properties

Label 513.2.t.a.179.13
Level $513$
Weight $2$
Character 513.179
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(179,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.13
Character \(\chi\) \(=\) 513.179
Dual form 513.2.t.a.278.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.55091 q^{2} +0.405316 q^{4} +(1.63223 - 0.942368i) q^{5} +(-2.41078 - 4.17560i) q^{7} -2.47321 q^{8} +(2.53144 - 1.46153i) q^{10} +(2.70914 - 1.56412i) q^{11} -3.37811i q^{13} +(-3.73890 - 6.47597i) q^{14} -4.64635 q^{16} +(3.06986 + 1.77238i) q^{17} +(4.35881 - 0.0276906i) q^{19} +(0.661569 - 0.381957i) q^{20} +(4.20163 - 2.42581i) q^{22} +4.32627i q^{23} +(-0.723884 + 1.25380i) q^{25} -5.23914i q^{26} +(-0.977130 - 1.69244i) q^{28} +(-1.13606 + 1.96771i) q^{29} +(1.96133 + 1.13238i) q^{31} -2.25965 q^{32} +(4.76106 + 2.74880i) q^{34} +(-7.86990 - 4.54369i) q^{35} +4.36294i q^{37} +(6.76012 - 0.0429455i) q^{38} +(-4.03684 + 2.33067i) q^{40} +(-2.81964 - 4.88376i) q^{41} +9.03545 q^{43} +(1.09806 - 0.633964i) q^{44} +6.70964i q^{46} +(-8.23996 - 4.75734i) q^{47} +(-8.12375 + 14.0707i) q^{49} +(-1.12268 + 1.94453i) q^{50} -1.36920i q^{52} +(4.04616 + 7.00816i) q^{53} +(2.94796 - 5.10601i) q^{55} +(5.96237 + 10.3271i) q^{56} +(-1.76192 + 3.05174i) q^{58} +(-1.14377 - 1.98107i) q^{59} +(5.33757 - 9.24494i) q^{61} +(3.04185 + 1.75621i) q^{62} +5.78820 q^{64} +(-3.18342 - 5.51385i) q^{65} -8.57097i q^{67} +(1.24426 + 0.718375i) q^{68} +(-12.2055 - 7.04685i) q^{70} +(0.454871 - 0.787860i) q^{71} +(-1.23937 + 2.14665i) q^{73} +6.76652i q^{74} +(1.76670 - 0.0112234i) q^{76} +(-13.0623 - 7.54152i) q^{77} -0.526031i q^{79} +(-7.58391 + 4.37857i) q^{80} +(-4.37301 - 7.57427i) q^{82} +(-1.65409 + 0.954990i) q^{83} +6.68095 q^{85} +14.0132 q^{86} +(-6.70026 + 3.86840i) q^{88} +(7.48128 + 12.9580i) q^{89} +(-14.1056 + 8.14389i) q^{91} +1.75351i q^{92} +(-12.7794 - 7.37820i) q^{94} +(7.08849 - 4.15280i) q^{95} +13.4775i q^{97} +(-12.5992 + 21.8224i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{2} + 30 q^{4} + 3 q^{5} - q^{7} + 12 q^{8} - 6 q^{10} + 9 q^{11} + 3 q^{14} + 18 q^{16} - 27 q^{17} + q^{19} - 9 q^{20} - 6 q^{22} + 11 q^{25} + 2 q^{28} + 12 q^{29} - 12 q^{31} + 30 q^{32}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.55091 1.09666 0.548329 0.836263i \(-0.315264\pi\)
0.548329 + 0.836263i \(0.315264\pi\)
\(3\) 0 0
\(4\) 0.405316 0.202658
\(5\) 1.63223 0.942368i 0.729955 0.421440i −0.0884504 0.996081i \(-0.528191\pi\)
0.818406 + 0.574641i \(0.194858\pi\)
\(6\) 0 0
\(7\) −2.41078 4.17560i −0.911190 1.57823i −0.812385 0.583121i \(-0.801831\pi\)
−0.0988049 0.995107i \(-0.531502\pi\)
\(8\) −2.47321 −0.874411
\(9\) 0 0
\(10\) 2.53144 1.46153i 0.800511 0.462175i
\(11\) 2.70914 1.56412i 0.816836 0.471600i −0.0324882 0.999472i \(-0.510343\pi\)
0.849324 + 0.527872i \(0.177010\pi\)
\(12\) 0 0
\(13\) 3.37811i 0.936919i −0.883485 0.468460i \(-0.844809\pi\)
0.883485 0.468460i \(-0.155191\pi\)
\(14\) −3.73890 6.47597i −0.999264 1.73078i
\(15\) 0 0
\(16\) −4.64635 −1.16159
\(17\) 3.06986 + 1.77238i 0.744549 + 0.429866i 0.823721 0.566995i \(-0.191894\pi\)
−0.0791717 + 0.996861i \(0.525228\pi\)
\(18\) 0 0
\(19\) 4.35881 0.0276906i 0.999980 0.00635265i
\(20\) 0.661569 0.381957i 0.147931 0.0854082i
\(21\) 0 0
\(22\) 4.20163 2.42581i 0.895790 0.517184i
\(23\) 4.32627i 0.902089i 0.892501 + 0.451044i \(0.148948\pi\)
−0.892501 + 0.451044i \(0.851052\pi\)
\(24\) 0 0
\(25\) −0.723884 + 1.25380i −0.144777 + 0.250761i
\(26\) 5.23914i 1.02748i
\(27\) 0 0
\(28\) −0.977130 1.69244i −0.184660 0.319841i
\(29\) −1.13606 + 1.96771i −0.210961 + 0.365394i −0.952015 0.306050i \(-0.900992\pi\)
0.741055 + 0.671444i \(0.234326\pi\)
\(30\) 0 0
\(31\) 1.96133 + 1.13238i 0.352266 + 0.203381i 0.665683 0.746235i \(-0.268140\pi\)
−0.313417 + 0.949616i \(0.601474\pi\)
\(32\) −2.25965 −0.399453
\(33\) 0 0
\(34\) 4.76106 + 2.74880i 0.816516 + 0.471416i
\(35\) −7.86990 4.54369i −1.33026 0.768024i
\(36\) 0 0
\(37\) 4.36294i 0.717263i 0.933479 + 0.358631i \(0.116756\pi\)
−0.933479 + 0.358631i \(0.883244\pi\)
\(38\) 6.76012 0.0429455i 1.09664 0.00696669i
\(39\) 0 0
\(40\) −4.03684 + 2.33067i −0.638281 + 0.368512i
\(41\) −2.81964 4.88376i −0.440354 0.762716i 0.557361 0.830270i \(-0.311814\pi\)
−0.997716 + 0.0675541i \(0.978480\pi\)
\(42\) 0 0
\(43\) 9.03545 1.37789 0.688947 0.724812i \(-0.258073\pi\)
0.688947 + 0.724812i \(0.258073\pi\)
\(44\) 1.09806 0.633964i 0.165538 0.0955737i
\(45\) 0 0
\(46\) 6.70964i 0.989283i
\(47\) −8.23996 4.75734i −1.20192 0.693930i −0.240940 0.970540i \(-0.577456\pi\)
−0.960982 + 0.276610i \(0.910789\pi\)
\(48\) 0 0
\(49\) −8.12375 + 14.0707i −1.16054 + 2.01011i
\(50\) −1.12268 + 1.94453i −0.158771 + 0.274999i
\(51\) 0 0
\(52\) 1.36920i 0.189874i
\(53\) 4.04616 + 7.00816i 0.555783 + 0.962644i 0.997842 + 0.0656585i \(0.0209148\pi\)
−0.442059 + 0.896986i \(0.645752\pi\)
\(54\) 0 0
\(55\) 2.94796 5.10601i 0.397503 0.688495i
\(56\) 5.96237 + 10.3271i 0.796755 + 1.38002i
\(57\) 0 0
\(58\) −1.76192 + 3.05174i −0.231352 + 0.400713i
\(59\) −1.14377 1.98107i −0.148906 0.257913i 0.781917 0.623382i \(-0.214242\pi\)
−0.930823 + 0.365469i \(0.880909\pi\)
\(60\) 0 0
\(61\) 5.33757 9.24494i 0.683406 1.18369i −0.290529 0.956866i \(-0.593831\pi\)
0.973935 0.226827i \(-0.0728352\pi\)
\(62\) 3.04185 + 1.75621i 0.386315 + 0.223039i
\(63\) 0 0
\(64\) 5.78820 0.723524
\(65\) −3.18342 5.51385i −0.394855 0.683909i
\(66\) 0 0
\(67\) 8.57097i 1.04711i −0.851992 0.523555i \(-0.824605\pi\)
0.851992 0.523555i \(-0.175395\pi\)
\(68\) 1.24426 + 0.718375i 0.150889 + 0.0871158i
\(69\) 0 0
\(70\) −12.2055 7.04685i −1.45884 0.842259i
\(71\) 0.454871 0.787860i 0.0539833 0.0935018i −0.837771 0.546022i \(-0.816142\pi\)
0.891754 + 0.452520i \(0.149475\pi\)
\(72\) 0 0
\(73\) −1.23937 + 2.14665i −0.145057 + 0.251246i −0.929394 0.369089i \(-0.879670\pi\)
0.784337 + 0.620335i \(0.213003\pi\)
\(74\) 6.76652i 0.786592i
\(75\) 0 0
\(76\) 1.76670 0.0112234i 0.202654 0.00128742i
\(77\) −13.0623 7.54152i −1.48859 0.859436i
\(78\) 0 0
\(79\) 0.526031i 0.0591831i −0.999562 0.0295915i \(-0.990579\pi\)
0.999562 0.0295915i \(-0.00942065\pi\)
\(80\) −7.58391 + 4.37857i −0.847907 + 0.489540i
\(81\) 0 0
\(82\) −4.37301 7.57427i −0.482918 0.836438i
\(83\) −1.65409 + 0.954990i −0.181560 + 0.104824i −0.588025 0.808842i \(-0.700095\pi\)
0.406465 + 0.913666i \(0.366761\pi\)
\(84\) 0 0
\(85\) 6.68095 0.724650
\(86\) 14.0132 1.51108
\(87\) 0 0
\(88\) −6.70026 + 3.86840i −0.714250 + 0.412373i
\(89\) 7.48128 + 12.9580i 0.793014 + 1.37354i 0.924093 + 0.382169i \(0.124823\pi\)
−0.131079 + 0.991372i \(0.541844\pi\)
\(90\) 0 0
\(91\) −14.1056 + 8.14389i −1.47867 + 0.853712i
\(92\) 1.75351i 0.182816i
\(93\) 0 0
\(94\) −12.7794 7.37820i −1.31810 0.761004i
\(95\) 7.08849 4.15280i 0.727263 0.426069i
\(96\) 0 0
\(97\) 13.4775i 1.36844i 0.729277 + 0.684219i \(0.239857\pi\)
−0.729277 + 0.684219i \(0.760143\pi\)
\(98\) −12.5992 + 21.8224i −1.27271 + 2.20440i
\(99\) 0 0
\(100\) −0.293402 + 0.508187i −0.0293402 + 0.0508187i
\(101\) 12.8098 + 7.39575i 1.27462 + 0.735904i 0.975855 0.218421i \(-0.0700907\pi\)
0.298769 + 0.954325i \(0.403424\pi\)
\(102\) 0 0
\(103\) −6.03192 3.48253i −0.594343 0.343144i 0.172470 0.985015i \(-0.444825\pi\)
−0.766813 + 0.641871i \(0.778159\pi\)
\(104\) 8.35477i 0.819252i
\(105\) 0 0
\(106\) 6.27523 + 10.8690i 0.609504 + 1.05569i
\(107\) −6.21001 −0.600344 −0.300172 0.953885i \(-0.597044\pi\)
−0.300172 + 0.953885i \(0.597044\pi\)
\(108\) 0 0
\(109\) −2.64165 1.52516i −0.253025 0.146084i 0.368124 0.929777i \(-0.380000\pi\)
−0.621148 + 0.783693i \(0.713334\pi\)
\(110\) 4.57201 7.91896i 0.435924 0.755043i
\(111\) 0 0
\(112\) 11.2013 + 19.4013i 1.05843 + 1.83325i
\(113\) −6.17578 + 10.6968i −0.580969 + 1.00627i 0.414396 + 0.910097i \(0.363993\pi\)
−0.995365 + 0.0961706i \(0.969341\pi\)
\(114\) 0 0
\(115\) 4.07694 + 7.06146i 0.380176 + 0.658485i
\(116\) −0.460463 + 0.797545i −0.0427529 + 0.0740502i
\(117\) 0 0
\(118\) −1.77388 3.07245i −0.163299 0.282842i
\(119\) 17.0913i 1.56676i
\(120\) 0 0
\(121\) −0.607046 + 1.05143i −0.0551860 + 0.0955849i
\(122\) 8.27808 14.3381i 0.749462 1.29811i
\(123\) 0 0
\(124\) 0.794960 + 0.458971i 0.0713895 + 0.0412168i
\(125\) 12.1523i 1.08694i
\(126\) 0 0
\(127\) 3.35067 1.93451i 0.297324 0.171660i −0.343916 0.939000i \(-0.611754\pi\)
0.641240 + 0.767340i \(0.278420\pi\)
\(128\) 13.4963 1.19291
\(129\) 0 0
\(130\) −4.93720 8.55148i −0.433021 0.750014i
\(131\) 11.3165 6.53360i 0.988730 0.570843i 0.0838353 0.996480i \(-0.473283\pi\)
0.904894 + 0.425636i \(0.139950\pi\)
\(132\) 0 0
\(133\) −10.6238 18.1339i −0.921198 1.57241i
\(134\) 13.2928i 1.14832i
\(135\) 0 0
\(136\) −7.59239 4.38347i −0.651042 0.375879i
\(137\) −0.780648 0.450707i −0.0666953 0.0385065i 0.466282 0.884636i \(-0.345593\pi\)
−0.532977 + 0.846130i \(0.678927\pi\)
\(138\) 0 0
\(139\) 19.3657 1.64258 0.821289 0.570513i \(-0.193256\pi\)
0.821289 + 0.570513i \(0.193256\pi\)
\(140\) −3.18980 1.84163i −0.269587 0.155646i
\(141\) 0 0
\(142\) 0.705464 1.22190i 0.0592012 0.102540i
\(143\) −5.28378 9.15177i −0.441851 0.765309i
\(144\) 0 0
\(145\) 4.28234i 0.355629i
\(146\) −1.92215 + 3.32925i −0.159078 + 0.275531i
\(147\) 0 0
\(148\) 1.76837i 0.145359i
\(149\) −1.64502 + 0.949750i −0.134765 + 0.0778065i −0.565867 0.824497i \(-0.691458\pi\)
0.431102 + 0.902303i \(0.358125\pi\)
\(150\) 0 0
\(151\) 3.36348 1.94190i 0.273716 0.158030i −0.356859 0.934158i \(-0.616152\pi\)
0.630575 + 0.776128i \(0.282819\pi\)
\(152\) −10.7802 + 0.0684845i −0.874393 + 0.00555483i
\(153\) 0 0
\(154\) −20.2584 11.6962i −1.63247 0.942507i
\(155\) 4.26846 0.342851
\(156\) 0 0
\(157\) −8.27272 14.3288i −0.660235 1.14356i −0.980554 0.196251i \(-0.937123\pi\)
0.320319 0.947310i \(-0.396210\pi\)
\(158\) 0.815825i 0.0649036i
\(159\) 0 0
\(160\) −3.68827 + 2.12942i −0.291583 + 0.168346i
\(161\) 18.0648 10.4297i 1.42370 0.821975i
\(162\) 0 0
\(163\) 10.2238 0.800787 0.400394 0.916343i \(-0.368873\pi\)
0.400394 + 0.916343i \(0.368873\pi\)
\(164\) −1.14285 1.97947i −0.0892414 0.154571i
\(165\) 0 0
\(166\) −2.56534 + 1.48110i −0.199109 + 0.114956i
\(167\) −7.06803 −0.546940 −0.273470 0.961880i \(-0.588171\pi\)
−0.273470 + 0.961880i \(0.588171\pi\)
\(168\) 0 0
\(169\) 1.58837 0.122183
\(170\) 10.3615 0.794693
\(171\) 0 0
\(172\) 3.66222 0.279241
\(173\) −12.9998 −0.988359 −0.494179 0.869360i \(-0.664531\pi\)
−0.494179 + 0.869360i \(0.664531\pi\)
\(174\) 0 0
\(175\) 6.98050 0.527677
\(176\) −12.5876 + 7.26746i −0.948827 + 0.547805i
\(177\) 0 0
\(178\) 11.6028 + 20.0966i 0.869665 + 1.50630i
\(179\) 8.63956 0.645751 0.322875 0.946442i \(-0.395351\pi\)
0.322875 + 0.946442i \(0.395351\pi\)
\(180\) 0 0
\(181\) −2.06491 + 1.19217i −0.153483 + 0.0886137i −0.574775 0.818312i \(-0.694910\pi\)
0.421291 + 0.906925i \(0.361577\pi\)
\(182\) −21.8765 + 12.6304i −1.62160 + 0.936229i
\(183\) 0 0
\(184\) 10.6998i 0.788797i
\(185\) 4.11150 + 7.12132i 0.302283 + 0.523570i
\(186\) 0 0
\(187\) 11.0889 0.810900
\(188\) −3.33979 1.92823i −0.243579 0.140631i
\(189\) 0 0
\(190\) 10.9936 6.44062i 0.797559 0.467251i
\(191\) −6.46514 + 3.73265i −0.467801 + 0.270085i −0.715319 0.698798i \(-0.753718\pi\)
0.247518 + 0.968883i \(0.420385\pi\)
\(192\) 0 0
\(193\) −6.94286 + 4.00846i −0.499758 + 0.288535i −0.728614 0.684925i \(-0.759835\pi\)
0.228856 + 0.973460i \(0.426502\pi\)
\(194\) 20.9024i 1.50071i
\(195\) 0 0
\(196\) −3.29269 + 5.70310i −0.235192 + 0.407364i
\(197\) 8.19380i 0.583784i −0.956451 0.291892i \(-0.905715\pi\)
0.956451 0.291892i \(-0.0942848\pi\)
\(198\) 0 0
\(199\) 2.17911 + 3.77433i 0.154473 + 0.267555i 0.932867 0.360221i \(-0.117299\pi\)
−0.778394 + 0.627776i \(0.783965\pi\)
\(200\) 1.79031 3.10092i 0.126594 0.219268i
\(201\) 0 0
\(202\) 19.8668 + 11.4701i 1.39783 + 0.807035i
\(203\) 10.9552 0.768901
\(204\) 0 0
\(205\) −9.20461 5.31428i −0.642878 0.371166i
\(206\) −9.35496 5.40109i −0.651791 0.376312i
\(207\) 0 0
\(208\) 15.6959i 1.08831i
\(209\) 11.7653 6.89273i 0.813824 0.476780i
\(210\) 0 0
\(211\) −11.4815 + 6.62887i −0.790421 + 0.456350i −0.840111 0.542415i \(-0.817510\pi\)
0.0496895 + 0.998765i \(0.484177\pi\)
\(212\) 1.63998 + 2.84052i 0.112634 + 0.195088i
\(213\) 0 0
\(214\) −9.63115 −0.658372
\(215\) 14.7479 8.51473i 1.00580 0.580700i
\(216\) 0 0
\(217\) 10.9197i 0.741274i
\(218\) −4.09696 2.36538i −0.277481 0.160204i
\(219\) 0 0
\(220\) 1.19486 2.06955i 0.0805571 0.139529i
\(221\) 5.98730 10.3703i 0.402749 0.697582i
\(222\) 0 0
\(223\) 3.61894i 0.242342i 0.992632 + 0.121171i \(0.0386649\pi\)
−0.992632 + 0.121171i \(0.961335\pi\)
\(224\) 5.44752 + 9.43538i 0.363978 + 0.630428i
\(225\) 0 0
\(226\) −9.57807 + 16.5897i −0.637124 + 1.10353i
\(227\) −10.1964 17.6606i −0.676757 1.17218i −0.975952 0.217985i \(-0.930052\pi\)
0.299196 0.954192i \(-0.403282\pi\)
\(228\) 0 0
\(229\) −2.72459 + 4.71913i −0.180046 + 0.311849i −0.941896 0.335905i \(-0.890958\pi\)
0.761850 + 0.647754i \(0.224291\pi\)
\(230\) 6.32295 + 10.9517i 0.416923 + 0.722132i
\(231\) 0 0
\(232\) 2.80971 4.86655i 0.184466 0.319505i
\(233\) −22.2854 12.8665i −1.45996 0.842910i −0.460955 0.887424i \(-0.652493\pi\)
−0.999009 + 0.0445134i \(0.985826\pi\)
\(234\) 0 0
\(235\) −17.9327 −1.16980
\(236\) −0.463589 0.802959i −0.0301771 0.0522682i
\(237\) 0 0
\(238\) 26.5071i 1.71820i
\(239\) −10.5130 6.06970i −0.680032 0.392616i 0.119835 0.992794i \(-0.461763\pi\)
−0.799867 + 0.600177i \(0.795097\pi\)
\(240\) 0 0
\(241\) 16.5011 + 9.52691i 1.06293 + 0.613682i 0.926241 0.376932i \(-0.123021\pi\)
0.136688 + 0.990614i \(0.456354\pi\)
\(242\) −0.941472 + 1.63068i −0.0605201 + 0.104824i
\(243\) 0 0
\(244\) 2.16340 3.74712i 0.138498 0.239885i
\(245\) 30.6223i 1.95638i
\(246\) 0 0
\(247\) −0.0935418 14.7245i −0.00595192 0.936900i
\(248\) −4.85079 2.80060i −0.308025 0.177838i
\(249\) 0 0
\(250\) 18.8472i 1.19200i
\(251\) 7.74070 4.46909i 0.488589 0.282087i −0.235400 0.971899i \(-0.575640\pi\)
0.723989 + 0.689812i \(0.242307\pi\)
\(252\) 0 0
\(253\) 6.76681 + 11.7205i 0.425426 + 0.736859i
\(254\) 5.19659 3.00025i 0.326063 0.188253i
\(255\) 0 0
\(256\) 9.35506 0.584692
\(257\) −5.86083 −0.365588 −0.182794 0.983151i \(-0.558514\pi\)
−0.182794 + 0.983151i \(0.558514\pi\)
\(258\) 0 0
\(259\) 18.2179 10.5181i 1.13200 0.653563i
\(260\) −1.29029 2.23485i −0.0800206 0.138600i
\(261\) 0 0
\(262\) 17.5509 10.1330i 1.08430 0.626020i
\(263\) 5.96426i 0.367772i 0.982948 + 0.183886i \(0.0588677\pi\)
−0.982948 + 0.183886i \(0.941132\pi\)
\(264\) 0 0
\(265\) 13.2085 + 7.62595i 0.811394 + 0.468458i
\(266\) −16.4765 28.1240i −1.01024 1.72439i
\(267\) 0 0
\(268\) 3.47395i 0.212205i
\(269\) 4.25123 7.36335i 0.259202 0.448951i −0.706826 0.707387i \(-0.749874\pi\)
0.966028 + 0.258436i \(0.0832071\pi\)
\(270\) 0 0
\(271\) 3.84391 6.65785i 0.233501 0.404436i −0.725335 0.688396i \(-0.758315\pi\)
0.958836 + 0.283960i \(0.0916485\pi\)
\(272\) −14.2636 8.23511i −0.864859 0.499327i
\(273\) 0 0
\(274\) −1.21071 0.699006i −0.0731419 0.0422285i
\(275\) 4.52897i 0.273107i
\(276\) 0 0
\(277\) −15.3659 26.6146i −0.923249 1.59911i −0.794353 0.607456i \(-0.792190\pi\)
−0.128895 0.991658i \(-0.541143\pi\)
\(278\) 30.0344 1.80135
\(279\) 0 0
\(280\) 19.4639 + 11.2375i 1.16319 + 0.671569i
\(281\) −14.8241 + 25.6760i −0.884329 + 1.53170i −0.0378481 + 0.999284i \(0.512050\pi\)
−0.846481 + 0.532419i \(0.821283\pi\)
\(282\) 0 0
\(283\) 11.2597 + 19.5024i 0.669322 + 1.15930i 0.978094 + 0.208164i \(0.0667486\pi\)
−0.308772 + 0.951136i \(0.599918\pi\)
\(284\) 0.184367 0.319333i 0.0109402 0.0189489i
\(285\) 0 0
\(286\) −8.19465 14.1936i −0.484560 0.839282i
\(287\) −13.5951 + 23.5474i −0.802493 + 1.38996i
\(288\) 0 0
\(289\) −2.21732 3.84052i −0.130431 0.225913i
\(290\) 6.64151i 0.390003i
\(291\) 0 0
\(292\) −0.502336 + 0.870072i −0.0293970 + 0.0509171i
\(293\) −1.43273 + 2.48156i −0.0837010 + 0.144974i −0.904837 0.425758i \(-0.860007\pi\)
0.821136 + 0.570733i \(0.193341\pi\)
\(294\) 0 0
\(295\) −3.73379 2.15571i −0.217390 0.125510i
\(296\) 10.7905i 0.627183i
\(297\) 0 0
\(298\) −2.55127 + 1.47297i −0.147791 + 0.0853271i
\(299\) 14.6146 0.845184
\(300\) 0 0
\(301\) −21.7825 37.7284i −1.25552 2.17463i
\(302\) 5.21644 3.01172i 0.300173 0.173305i
\(303\) 0 0
\(304\) −20.2526 + 0.128660i −1.16156 + 0.00737916i
\(305\) 20.1198i 1.15206i
\(306\) 0 0
\(307\) −15.6503 9.03569i −0.893208 0.515694i −0.0182175 0.999834i \(-0.505799\pi\)
−0.874990 + 0.484140i \(0.839132\pi\)
\(308\) −5.29436 3.05670i −0.301674 0.174172i
\(309\) 0 0
\(310\) 6.61999 0.375990
\(311\) −9.80717 5.66217i −0.556114 0.321072i 0.195470 0.980710i \(-0.437377\pi\)
−0.751584 + 0.659637i \(0.770710\pi\)
\(312\) 0 0
\(313\) −0.739097 + 1.28015i −0.0417762 + 0.0723586i −0.886157 0.463384i \(-0.846635\pi\)
0.844381 + 0.535743i \(0.179968\pi\)
\(314\) −12.8302 22.2226i −0.724052 1.25409i
\(315\) 0 0
\(316\) 0.213209i 0.0119939i
\(317\) 9.11745 15.7919i 0.512087 0.886961i −0.487815 0.872947i \(-0.662206\pi\)
0.999902 0.0140137i \(-0.00446084\pi\)
\(318\) 0 0
\(319\) 7.10773i 0.397956i
\(320\) 9.44767 5.45461i 0.528141 0.304922i
\(321\) 0 0
\(322\) 28.0168 16.1755i 1.56131 0.901425i
\(323\) 13.4300 + 7.64047i 0.747265 + 0.425127i
\(324\) 0 0
\(325\) 4.23548 + 2.44536i 0.234942 + 0.135644i
\(326\) 15.8561 0.878190
\(327\) 0 0
\(328\) 6.97356 + 12.0786i 0.385051 + 0.666927i
\(329\) 45.8757i 2.52921i
\(330\) 0 0
\(331\) −26.0644 + 15.0483i −1.43263 + 0.827128i −0.997321 0.0731549i \(-0.976693\pi\)
−0.435306 + 0.900282i \(0.643360\pi\)
\(332\) −0.670430 + 0.387073i −0.0367946 + 0.0212434i
\(333\) 0 0
\(334\) −10.9619 −0.599806
\(335\) −8.07701 13.9898i −0.441294 0.764344i
\(336\) 0 0
\(337\) −3.15674 + 1.82254i −0.171958 + 0.0992802i −0.583509 0.812107i \(-0.698321\pi\)
0.411551 + 0.911387i \(0.364987\pi\)
\(338\) 2.46342 0.133993
\(339\) 0 0
\(340\) 2.70790 0.146856
\(341\) 7.08470 0.383658
\(342\) 0 0
\(343\) 44.5874 2.40749
\(344\) −22.3466 −1.20485
\(345\) 0 0
\(346\) −20.1615 −1.08389
\(347\) −6.61837 + 3.82112i −0.355293 + 0.205128i −0.667014 0.745045i \(-0.732428\pi\)
0.311721 + 0.950174i \(0.399095\pi\)
\(348\) 0 0
\(349\) −3.85492 6.67692i −0.206349 0.357407i 0.744212 0.667943i \(-0.232825\pi\)
−0.950562 + 0.310535i \(0.899492\pi\)
\(350\) 10.8261 0.578681
\(351\) 0 0
\(352\) −6.12170 + 3.53437i −0.326288 + 0.188382i
\(353\) 14.8975 8.60109i 0.792915 0.457790i −0.0480728 0.998844i \(-0.515308\pi\)
0.840988 + 0.541054i \(0.181975\pi\)
\(354\) 0 0
\(355\) 1.71463i 0.0910029i
\(356\) 3.03228 + 5.25207i 0.160711 + 0.278359i
\(357\) 0 0
\(358\) 13.3992 0.708167
\(359\) −0.986080 0.569313i −0.0520433 0.0300472i 0.473753 0.880658i \(-0.342899\pi\)
−0.525796 + 0.850611i \(0.676232\pi\)
\(360\) 0 0
\(361\) 18.9985 0.241396i 0.999919 0.0127050i
\(362\) −3.20248 + 1.84895i −0.168319 + 0.0971788i
\(363\) 0 0
\(364\) −5.71724 + 3.30085i −0.299665 + 0.173012i
\(365\) 4.67176i 0.244531i
\(366\) 0 0
\(367\) −0.351324 + 0.608511i −0.0183390 + 0.0317640i −0.875049 0.484034i \(-0.839171\pi\)
0.856710 + 0.515798i \(0.172504\pi\)
\(368\) 20.1014i 1.04786i
\(369\) 0 0
\(370\) 6.37655 + 11.0445i 0.331501 + 0.574177i
\(371\) 19.5088 33.7903i 1.01285 1.75430i
\(372\) 0 0
\(373\) 8.13834 + 4.69867i 0.421387 + 0.243288i 0.695671 0.718361i \(-0.255107\pi\)
−0.274283 + 0.961649i \(0.588441\pi\)
\(374\) 17.1978 0.889279
\(375\) 0 0
\(376\) 20.3791 + 11.7659i 1.05097 + 0.606780i
\(377\) 6.64714 + 3.83773i 0.342345 + 0.197653i
\(378\) 0 0
\(379\) 24.1334i 1.23965i −0.784740 0.619825i \(-0.787204\pi\)
0.784740 0.619825i \(-0.212796\pi\)
\(380\) 2.87308 1.68320i 0.147386 0.0863463i
\(381\) 0 0
\(382\) −10.0268 + 5.78900i −0.513018 + 0.296191i
\(383\) 14.4398 + 25.0105i 0.737841 + 1.27798i 0.953466 + 0.301501i \(0.0974878\pi\)
−0.215625 + 0.976476i \(0.569179\pi\)
\(384\) 0 0
\(385\) −28.4275 −1.44880
\(386\) −10.7677 + 6.21676i −0.548063 + 0.316425i
\(387\) 0 0
\(388\) 5.46267i 0.277325i
\(389\) −33.5426 19.3658i −1.70068 0.981886i −0.945075 0.326855i \(-0.894011\pi\)
−0.755602 0.655031i \(-0.772655\pi\)
\(390\) 0 0
\(391\) −7.66780 + 13.2810i −0.387777 + 0.671650i
\(392\) 20.0917 34.7999i 1.01478 1.75766i
\(393\) 0 0
\(394\) 12.7078i 0.640211i
\(395\) −0.495715 0.858603i −0.0249421 0.0432010i
\(396\) 0 0
\(397\) −11.2189 + 19.4316i −0.563058 + 0.975246i 0.434169 + 0.900831i \(0.357042\pi\)
−0.997227 + 0.0744143i \(0.976291\pi\)
\(398\) 3.37960 + 5.85364i 0.169404 + 0.293416i
\(399\) 0 0
\(400\) 3.36342 5.82561i 0.168171 0.291280i
\(401\) 2.32062 + 4.01943i 0.115886 + 0.200721i 0.918134 0.396271i \(-0.129696\pi\)
−0.802248 + 0.596992i \(0.796363\pi\)
\(402\) 0 0
\(403\) 3.82529 6.62560i 0.190551 0.330045i
\(404\) 5.19202 + 2.99762i 0.258313 + 0.149137i
\(405\) 0 0
\(406\) 16.9904 0.843221
\(407\) 6.82417 + 11.8198i 0.338261 + 0.585886i
\(408\) 0 0
\(409\) 19.2118i 0.949960i 0.879997 + 0.474980i \(0.157545\pi\)
−0.879997 + 0.474980i \(0.842455\pi\)
\(410\) −14.2755 8.24197i −0.705017 0.407042i
\(411\) 0 0
\(412\) −2.44484 1.41153i −0.120448 0.0695410i
\(413\) −5.51476 + 9.55185i −0.271364 + 0.470016i
\(414\) 0 0
\(415\) −1.79990 + 3.11753i −0.0883538 + 0.153033i
\(416\) 7.63334i 0.374255i
\(417\) 0 0
\(418\) 18.2469 10.6900i 0.892486 0.522865i
\(419\) −9.67554 5.58618i −0.472681 0.272903i 0.244680 0.969604i \(-0.421317\pi\)
−0.717361 + 0.696701i \(0.754650\pi\)
\(420\) 0 0
\(421\) 16.4137i 0.799955i 0.916525 + 0.399978i \(0.130982\pi\)
−0.916525 + 0.399978i \(0.869018\pi\)
\(422\) −17.8068 + 10.2808i −0.866822 + 0.500460i
\(423\) 0 0
\(424\) −10.0070 17.3326i −0.485983 0.841747i
\(425\) −4.44444 + 2.56600i −0.215587 + 0.124469i
\(426\) 0 0
\(427\) −51.4709 −2.49085
\(428\) −2.51702 −0.121665
\(429\) 0 0
\(430\) 22.8727 13.2056i 1.10302 0.636829i
\(431\) −17.2912 29.9492i −0.832888 1.44260i −0.895738 0.444581i \(-0.853352\pi\)
0.0628504 0.998023i \(-0.479981\pi\)
\(432\) 0 0
\(433\) −14.9639 + 8.63943i −0.719121 + 0.415185i −0.814429 0.580263i \(-0.802950\pi\)
0.0953081 + 0.995448i \(0.469616\pi\)
\(434\) 16.9354i 0.812924i
\(435\) 0 0
\(436\) −1.07071 0.618172i −0.0512775 0.0296051i
\(437\) 0.119797 + 18.8574i 0.00573066 + 0.902071i
\(438\) 0 0
\(439\) 29.1698i 1.39220i 0.717946 + 0.696099i \(0.245083\pi\)
−0.717946 + 0.696099i \(0.754917\pi\)
\(440\) −7.29091 + 12.6282i −0.347581 + 0.602027i
\(441\) 0 0
\(442\) 9.28575 16.0834i 0.441678 0.765009i
\(443\) 6.71346 + 3.87602i 0.318966 + 0.184155i 0.650932 0.759136i \(-0.274378\pi\)
−0.331966 + 0.943291i \(0.607712\pi\)
\(444\) 0 0
\(445\) 24.4223 + 14.1002i 1.15773 + 0.668416i
\(446\) 5.61264i 0.265766i
\(447\) 0 0
\(448\) −13.9541 24.1692i −0.659268 1.14189i
\(449\) 21.5509 1.01705 0.508526 0.861047i \(-0.330191\pi\)
0.508526 + 0.861047i \(0.330191\pi\)
\(450\) 0 0
\(451\) −15.2776 8.82053i −0.719394 0.415343i
\(452\) −2.50314 + 4.33557i −0.117738 + 0.203928i
\(453\) 0 0
\(454\) −15.8136 27.3900i −0.742170 1.28548i
\(455\) −15.3491 + 26.5854i −0.719576 + 1.24634i
\(456\) 0 0
\(457\) −1.05039 1.81932i −0.0491350 0.0851044i 0.840412 0.541948i \(-0.182313\pi\)
−0.889547 + 0.456844i \(0.848980\pi\)
\(458\) −4.22559 + 7.31894i −0.197449 + 0.341992i
\(459\) 0 0
\(460\) 1.65245 + 2.86213i 0.0770458 + 0.133447i
\(461\) 25.9098i 1.20674i 0.797461 + 0.603370i \(0.206176\pi\)
−0.797461 + 0.603370i \(0.793824\pi\)
\(462\) 0 0
\(463\) 9.23702 15.9990i 0.429281 0.743536i −0.567529 0.823354i \(-0.692100\pi\)
0.996809 + 0.0798177i \(0.0254338\pi\)
\(464\) 5.27852 9.14267i 0.245049 0.424438i
\(465\) 0 0
\(466\) −34.5626 19.9547i −1.60108 0.924384i
\(467\) 29.7747i 1.37781i 0.724852 + 0.688905i \(0.241908\pi\)
−0.724852 + 0.688905i \(0.758092\pi\)
\(468\) 0 0
\(469\) −35.7889 + 20.6627i −1.65258 + 0.954117i
\(470\) −27.8119 −1.28287
\(471\) 0 0
\(472\) 2.82878 + 4.89959i 0.130205 + 0.225522i
\(473\) 24.4783 14.1326i 1.12551 0.649815i
\(474\) 0 0
\(475\) −3.12055 + 5.48514i −0.143181 + 0.251675i
\(476\) 6.92739i 0.317516i
\(477\) 0 0
\(478\) −16.3048 9.41355i −0.745762 0.430566i
\(479\) −12.7572 7.36537i −0.582891 0.336532i 0.179390 0.983778i \(-0.442587\pi\)
−0.762282 + 0.647246i \(0.775921\pi\)
\(480\) 0 0
\(481\) 14.7385 0.672017
\(482\) 25.5917 + 14.7754i 1.16567 + 0.673000i
\(483\) 0 0
\(484\) −0.246045 + 0.426163i −0.0111839 + 0.0193711i
\(485\) 12.7008 + 21.9985i 0.576714 + 0.998898i
\(486\) 0 0
\(487\) 14.0498i 0.636658i 0.947980 + 0.318329i \(0.103122\pi\)
−0.947980 + 0.318329i \(0.896878\pi\)
\(488\) −13.2009 + 22.8647i −0.597577 + 1.03503i
\(489\) 0 0
\(490\) 47.4923i 2.14548i
\(491\) −14.3849 + 8.30510i −0.649180 + 0.374804i −0.788142 0.615494i \(-0.788957\pi\)
0.138962 + 0.990298i \(0.455623\pi\)
\(492\) 0 0
\(493\) −6.97506 + 4.02706i −0.314141 + 0.181369i
\(494\) −0.145075 22.8364i −0.00652722 1.02746i
\(495\) 0 0
\(496\) −9.11304 5.26142i −0.409188 0.236245i
\(497\) −4.38638 −0.196756
\(498\) 0 0
\(499\) 11.2873 + 19.5502i 0.505288 + 0.875185i 0.999981 + 0.00611735i \(0.00194723\pi\)
−0.494693 + 0.869068i \(0.664719\pi\)
\(500\) 4.92554i 0.220277i
\(501\) 0 0
\(502\) 12.0051 6.93116i 0.535814 0.309353i
\(503\) 25.4796 14.7107i 1.13608 0.655917i 0.190624 0.981663i \(-0.438949\pi\)
0.945457 + 0.325746i \(0.105616\pi\)
\(504\) 0 0
\(505\) 27.8781 1.24056
\(506\) 10.4947 + 18.1774i 0.466546 + 0.808082i
\(507\) 0 0
\(508\) 1.35808 0.784090i 0.0602552 0.0347883i
\(509\) 31.2421 1.38478 0.692391 0.721522i \(-0.256557\pi\)
0.692391 + 0.721522i \(0.256557\pi\)
\(510\) 0 0
\(511\) 11.9514 0.528698
\(512\) −12.4837 −0.551705
\(513\) 0 0
\(514\) −9.08961 −0.400925
\(515\) −13.1273 −0.578459
\(516\) 0 0
\(517\) −29.7643 −1.30903
\(518\) 28.2543 16.3126i 1.24142 0.716735i
\(519\) 0 0
\(520\) 7.87327 + 13.6369i 0.345266 + 0.598018i
\(521\) 0.424924 0.0186163 0.00930814 0.999957i \(-0.497037\pi\)
0.00930814 + 0.999957i \(0.497037\pi\)
\(522\) 0 0
\(523\) 31.0533 17.9286i 1.35787 0.783964i 0.368530 0.929616i \(-0.379861\pi\)
0.989336 + 0.145652i \(0.0465278\pi\)
\(524\) 4.58677 2.64817i 0.200374 0.115686i
\(525\) 0 0
\(526\) 9.25002i 0.403320i
\(527\) 4.01401 + 6.95246i 0.174853 + 0.302854i
\(528\) 0 0
\(529\) 4.28342 0.186236
\(530\) 20.4852 + 11.8271i 0.889821 + 0.513738i
\(531\) 0 0
\(532\) −4.30599 7.34996i −0.186688 0.318661i
\(533\) −16.4979 + 9.52506i −0.714603 + 0.412576i
\(534\) 0 0
\(535\) −10.1362 + 5.85211i −0.438224 + 0.253009i
\(536\) 21.1978i 0.915605i
\(537\) 0 0
\(538\) 6.59327 11.4199i 0.284256 0.492346i
\(539\) 50.8261i 2.18924i
\(540\) 0 0
\(541\) 9.92108 + 17.1838i 0.426541 + 0.738790i 0.996563 0.0828391i \(-0.0263988\pi\)
−0.570022 + 0.821629i \(0.693065\pi\)
\(542\) 5.96155 10.3257i 0.256071 0.443527i
\(543\) 0 0
\(544\) −6.93679 4.00496i −0.297413 0.171711i
\(545\) −5.74905 −0.246262
\(546\) 0 0
\(547\) −17.8362 10.2978i −0.762622 0.440300i 0.0676143 0.997712i \(-0.478461\pi\)
−0.830236 + 0.557411i \(0.811795\pi\)
\(548\) −0.316409 0.182679i −0.0135163 0.00780366i
\(549\) 0 0
\(550\) 7.02401i 0.299505i
\(551\) −4.89737 + 8.60833i −0.208635 + 0.366727i
\(552\) 0 0
\(553\) −2.19649 + 1.26815i −0.0934043 + 0.0539270i
\(554\) −23.8311 41.2767i −1.01249 1.75368i
\(555\) 0 0
\(556\) 7.84923 0.332882
\(557\) 9.85951 5.69239i 0.417761 0.241194i −0.276358 0.961055i \(-0.589128\pi\)
0.694119 + 0.719860i \(0.255794\pi\)
\(558\) 0 0
\(559\) 30.5228i 1.29098i
\(560\) 36.5663 + 21.1116i 1.54521 + 0.892127i
\(561\) 0 0
\(562\) −22.9907 + 39.8211i −0.969806 + 1.67975i
\(563\) −22.3588 + 38.7266i −0.942311 + 1.63213i −0.181263 + 0.983435i \(0.558018\pi\)
−0.761048 + 0.648695i \(0.775315\pi\)
\(564\) 0 0
\(565\) 23.2794i 0.979374i
\(566\) 17.4628 + 30.2465i 0.734017 + 1.27135i
\(567\) 0 0
\(568\) −1.12499 + 1.94854i −0.0472036 + 0.0817590i
\(569\) −0.560747 0.971242i −0.0235077 0.0407166i 0.854032 0.520220i \(-0.174150\pi\)
−0.877540 + 0.479504i \(0.840817\pi\)
\(570\) 0 0
\(571\) 9.40145 16.2838i 0.393438 0.681455i −0.599462 0.800403i \(-0.704619\pi\)
0.992900 + 0.118948i \(0.0379522\pi\)
\(572\) −2.14160 3.70936i −0.0895448 0.155096i
\(573\) 0 0
\(574\) −21.0847 + 36.5198i −0.880060 + 1.52431i
\(575\) −5.42429 3.13171i −0.226208 0.130601i
\(576\) 0 0
\(577\) −23.2617 −0.968397 −0.484199 0.874958i \(-0.660889\pi\)
−0.484199 + 0.874958i \(0.660889\pi\)
\(578\) −3.43887 5.95629i −0.143038 0.247749i
\(579\) 0 0
\(580\) 1.73570i 0.0720711i
\(581\) 7.97531 + 4.60455i 0.330872 + 0.191029i
\(582\) 0 0
\(583\) 21.9232 + 12.6574i 0.907967 + 0.524215i
\(584\) 3.06521 5.30911i 0.126839 0.219692i
\(585\) 0 0
\(586\) −2.22203 + 3.84867i −0.0917913 + 0.158987i
\(587\) 6.50799i 0.268613i 0.990940 + 0.134307i \(0.0428807\pi\)
−0.990940 + 0.134307i \(0.957119\pi\)
\(588\) 0 0
\(589\) 8.58044 + 4.88150i 0.353551 + 0.201139i
\(590\) −5.79077 3.34330i −0.238402 0.137642i
\(591\) 0 0
\(592\) 20.2717i 0.833164i
\(593\) −8.23530 + 4.75465i −0.338183 + 0.195250i −0.659468 0.751732i \(-0.729219\pi\)
0.321285 + 0.946983i \(0.395885\pi\)
\(594\) 0 0
\(595\) −16.1063 27.8970i −0.660294 1.14366i
\(596\) −0.666751 + 0.384949i −0.0273112 + 0.0157681i
\(597\) 0 0
\(598\) 22.6659 0.926878
\(599\) −36.5823 −1.49471 −0.747355 0.664424i \(-0.768677\pi\)
−0.747355 + 0.664424i \(0.768677\pi\)
\(600\) 0 0
\(601\) −39.1747 + 22.6175i −1.59797 + 0.922587i −0.606089 + 0.795397i \(0.707263\pi\)
−0.991878 + 0.127190i \(0.959404\pi\)
\(602\) −33.7827 58.5133i −1.37688 2.38483i
\(603\) 0 0
\(604\) 1.36327 0.787085i 0.0554707 0.0320261i
\(605\) 2.28824i 0.0930303i
\(606\) 0 0
\(607\) −29.9152 17.2715i −1.21422 0.701030i −0.250544 0.968105i \(-0.580609\pi\)
−0.963676 + 0.267075i \(0.913943\pi\)
\(608\) −9.84938 + 0.0625710i −0.399445 + 0.00253759i
\(609\) 0 0
\(610\) 31.2040i 1.26341i
\(611\) −16.0708 + 27.8355i −0.650156 + 1.12610i
\(612\) 0 0
\(613\) −5.78197 + 10.0147i −0.233531 + 0.404488i −0.958845 0.283930i \(-0.908362\pi\)
0.725313 + 0.688419i \(0.241695\pi\)
\(614\) −24.2721 14.0135i −0.979543 0.565540i
\(615\) 0 0
\(616\) 32.3058 + 18.6517i 1.30164 + 0.751500i
\(617\) 34.7791i 1.40015i −0.714067 0.700077i \(-0.753149\pi\)
0.714067 0.700077i \(-0.246851\pi\)
\(618\) 0 0
\(619\) 8.34985 + 14.4624i 0.335609 + 0.581291i 0.983602 0.180355i \(-0.0577247\pi\)
−0.647993 + 0.761646i \(0.724391\pi\)
\(620\) 1.73008 0.0694816
\(621\) 0 0
\(622\) −15.2100 8.78151i −0.609866 0.352107i
\(623\) 36.0715 62.4776i 1.44517 2.50311i
\(624\) 0 0
\(625\) 7.83257 + 13.5664i 0.313303 + 0.542656i
\(626\) −1.14627 + 1.98540i −0.0458142 + 0.0793526i
\(627\) 0 0
\(628\) −3.35307 5.80768i −0.133802 0.231752i
\(629\) −7.73279 + 13.3936i −0.308327 + 0.534038i
\(630\) 0 0
\(631\) 14.7130 + 25.4837i 0.585717 + 1.01449i 0.994786 + 0.101988i \(0.0325202\pi\)
−0.409069 + 0.912503i \(0.634146\pi\)
\(632\) 1.30098i 0.0517503i
\(633\) 0 0
\(634\) 14.1403 24.4918i 0.561584 0.972693i
\(635\) 3.64605 6.31514i 0.144689 0.250609i
\(636\) 0 0
\(637\) 47.5325 + 27.4429i 1.88331 + 1.08733i
\(638\) 11.0234i 0.436422i
\(639\) 0 0
\(640\) 22.0290 12.7184i 0.870772 0.502741i
\(641\) −29.8671 −1.17968 −0.589840 0.807520i \(-0.700809\pi\)
−0.589840 + 0.807520i \(0.700809\pi\)
\(642\) 0 0
\(643\) −9.93240 17.2034i −0.391696 0.678437i 0.600978 0.799266i \(-0.294778\pi\)
−0.992673 + 0.120829i \(0.961445\pi\)
\(644\) 7.32194 4.22732i 0.288525 0.166580i
\(645\) 0 0
\(646\) 20.8287 + 11.8497i 0.819494 + 0.466219i
\(647\) 29.2696i 1.15071i −0.817905 0.575353i \(-0.804865\pi\)
0.817905 0.575353i \(-0.195135\pi\)
\(648\) 0 0
\(649\) −6.19726 3.57799i −0.243264 0.140448i
\(650\) 6.56885 + 3.79253i 0.257651 + 0.148755i
\(651\) 0 0
\(652\) 4.14386 0.162286
\(653\) −15.4957 8.94643i −0.606393 0.350101i 0.165160 0.986267i \(-0.447186\pi\)
−0.771552 + 0.636166i \(0.780519\pi\)
\(654\) 0 0
\(655\) 12.3141 21.3287i 0.481152 0.833380i
\(656\) 13.1011 + 22.6917i 0.511510 + 0.885962i
\(657\) 0 0
\(658\) 71.1490i 2.77368i
\(659\) −10.9352 + 18.9404i −0.425977 + 0.737813i −0.996511 0.0834604i \(-0.973403\pi\)
0.570534 + 0.821274i \(0.306736\pi\)
\(660\) 0 0
\(661\) 4.09721i 0.159363i 0.996820 + 0.0796816i \(0.0253903\pi\)
−0.996820 + 0.0796816i \(0.974610\pi\)
\(662\) −40.4234 + 23.3385i −1.57110 + 0.907076i
\(663\) 0 0
\(664\) 4.09091 2.36189i 0.158758 0.0916591i
\(665\) −34.4292 19.5872i −1.33511 0.759558i
\(666\) 0 0
\(667\) −8.51283 4.91489i −0.329618 0.190305i
\(668\) −2.86479 −0.110842
\(669\) 0 0
\(670\) −12.5267 21.6969i −0.483949 0.838224i
\(671\) 33.3944i 1.28918i
\(672\) 0 0
\(673\) 20.9877 12.1172i 0.809015 0.467085i −0.0375989 0.999293i \(-0.511971\pi\)
0.846614 + 0.532208i \(0.178638\pi\)
\(674\) −4.89581 + 2.82660i −0.188579 + 0.108876i
\(675\) 0 0
\(676\) 0.643794 0.0247613
\(677\) 10.2196 + 17.7009i 0.392773 + 0.680302i 0.992814 0.119667i \(-0.0381826\pi\)
−0.600041 + 0.799969i \(0.704849\pi\)
\(678\) 0 0
\(679\) 56.2768 32.4914i 2.15971 1.24691i
\(680\) −16.5234 −0.633642
\(681\) 0 0
\(682\) 10.9877 0.420741
\(683\) −26.3929 −1.00990 −0.504949 0.863149i \(-0.668489\pi\)
−0.504949 + 0.863149i \(0.668489\pi\)
\(684\) 0 0
\(685\) −1.69893 −0.0649128
\(686\) 69.1510 2.64020
\(687\) 0 0
\(688\) −41.9819 −1.60054
\(689\) 23.6743 13.6684i 0.901920 0.520724i
\(690\) 0 0
\(691\) 2.05478 + 3.55898i 0.0781674 + 0.135390i 0.902459 0.430775i \(-0.141760\pi\)
−0.824292 + 0.566165i \(0.808426\pi\)
\(692\) −5.26904 −0.200299
\(693\) 0 0
\(694\) −10.2645 + 5.92621i −0.389635 + 0.224956i
\(695\) 31.6093 18.2496i 1.19901 0.692248i
\(696\) 0 0
\(697\) 19.9899i 0.757173i
\(698\) −5.97863 10.3553i −0.226295 0.391954i
\(699\) 0 0
\(700\) 2.82931 0.106938
\(701\) −17.9358 10.3552i −0.677424 0.391111i 0.121460 0.992596i \(-0.461242\pi\)
−0.798884 + 0.601485i \(0.794576\pi\)
\(702\) 0 0
\(703\) 0.120812 + 19.0172i 0.00455652 + 0.717248i
\(704\) 15.6810 9.05344i 0.591001 0.341214i
\(705\) 0 0
\(706\) 23.1047 13.3395i 0.869556 0.502039i
\(707\) 71.3181i 2.68220i
\(708\) 0 0
\(709\) −6.04698 + 10.4737i −0.227099 + 0.393347i −0.956947 0.290262i \(-0.906258\pi\)
0.729848 + 0.683610i \(0.239591\pi\)
\(710\) 2.65923i 0.0997990i
\(711\) 0 0
\(712\) −18.5028 32.0477i −0.693420 1.20104i
\(713\) −4.89896 + 8.48525i −0.183468 + 0.317775i
\(714\) 0 0
\(715\) −17.2487 9.95853i −0.645064 0.372428i
\(716\) 3.50175 0.130867
\(717\) 0 0
\(718\) −1.52932 0.882953i −0.0570737 0.0329515i
\(719\) −19.5960 11.3137i −0.730807 0.421932i 0.0879104 0.996128i \(-0.471981\pi\)
−0.818717 + 0.574197i \(0.805314\pi\)
\(720\) 0 0
\(721\) 33.5825i 1.25068i
\(722\) 29.4649 0.374383i 1.09657 0.0139331i
\(723\) 0 0
\(724\) −0.836941 + 0.483208i −0.0311047 + 0.0179583i
\(725\) −1.64475 2.84878i −0.0610844 0.105801i
\(726\) 0 0
\(727\) −38.6937 −1.43507 −0.717536 0.696522i \(-0.754730\pi\)
−0.717536 + 0.696522i \(0.754730\pi\)
\(728\) 34.8862 20.1415i 1.29297 0.746495i
\(729\) 0 0
\(730\) 7.24548i 0.268167i
\(731\) 27.7375 + 16.0143i 1.02591 + 0.592309i
\(732\) 0 0
\(733\) −12.7820 + 22.1391i −0.472114 + 0.817725i −0.999491 0.0319066i \(-0.989842\pi\)
0.527377 + 0.849631i \(0.323175\pi\)
\(734\) −0.544871 + 0.943745i −0.0201116 + 0.0348343i
\(735\) 0 0
\(736\) 9.77584i 0.360342i
\(737\) −13.4060 23.2199i −0.493818 0.855318i
\(738\) 0 0
\(739\) 17.9188 31.0363i 0.659154 1.14169i −0.321681 0.946848i \(-0.604248\pi\)
0.980835 0.194840i \(-0.0624187\pi\)
\(740\) 1.66646 + 2.88639i 0.0612602 + 0.106106i
\(741\) 0 0
\(742\) 30.2564 52.4056i 1.11075 1.92387i
\(743\) 6.70454 + 11.6126i 0.245966 + 0.426025i 0.962403 0.271627i \(-0.0875617\pi\)
−0.716437 + 0.697652i \(0.754228\pi\)
\(744\) 0 0
\(745\) −1.79003 + 3.10042i −0.0655816 + 0.113591i
\(746\) 12.6218 + 7.28721i 0.462118 + 0.266804i
\(747\) 0 0
\(748\) 4.49451 0.164335
\(749\) 14.9710 + 25.9305i 0.547028 + 0.947480i
\(750\) 0 0
\(751\) 42.9817i 1.56842i −0.620493 0.784212i \(-0.713067\pi\)
0.620493 0.784212i \(-0.286933\pi\)
\(752\) 38.2858 + 22.1043i 1.39614 + 0.806061i
\(753\) 0 0
\(754\) 10.3091 + 5.95196i 0.375435 + 0.216758i
\(755\) 3.65998 6.33927i 0.133200 0.230710i
\(756\) 0 0
\(757\) 9.39734 16.2767i 0.341552 0.591586i −0.643169 0.765724i \(-0.722381\pi\)
0.984721 + 0.174139i \(0.0557141\pi\)
\(758\) 37.4287i 1.35947i
\(759\) 0 0
\(760\) −17.5313 + 10.2707i −0.635927 + 0.372559i
\(761\) 30.5686 + 17.6488i 1.10811 + 0.639769i 0.938340 0.345715i \(-0.112363\pi\)
0.169772 + 0.985483i \(0.445697\pi\)
\(762\) 0 0
\(763\) 14.7073i 0.532441i
\(764\) −2.62043 + 1.51290i −0.0948037 + 0.0547349i
\(765\) 0 0
\(766\) 22.3948 + 38.7890i 0.809159 + 1.40150i
\(767\) −6.69227 + 3.86378i −0.241644 + 0.139513i
\(768\) 0 0
\(769\) 50.3388 1.81526 0.907632 0.419767i \(-0.137888\pi\)
0.907632 + 0.419767i \(0.137888\pi\)
\(770\) −44.0885 −1.58884
\(771\) 0 0
\(772\) −2.81405 + 1.62469i −0.101280 + 0.0584740i
\(773\) 15.2092 + 26.3432i 0.547039 + 0.947499i 0.998476 + 0.0551956i \(0.0175782\pi\)
−0.451437 + 0.892303i \(0.649088\pi\)
\(774\) 0 0
\(775\) −2.83955 + 1.63942i −0.102000 + 0.0588896i
\(776\) 33.3328i 1.19658i
\(777\) 0 0
\(778\) −52.0215 30.0346i −1.86506 1.07679i
\(779\) −12.4255 21.2093i −0.445191 0.759903i
\(780\) 0 0
\(781\) 2.84590i 0.101834i
\(782\) −11.8920 + 20.5976i −0.425259 + 0.736570i
\(783\) 0 0
\(784\) 37.7458 65.3776i 1.34806 2.33491i
\(785\) −27.0060 15.5919i −0.963884 0.556499i
\(786\) 0 0
\(787\) 21.5905 + 12.4653i 0.769619 + 0.444340i 0.832739 0.553666i \(-0.186772\pi\)
−0.0631196 + 0.998006i \(0.520105\pi\)
\(788\) 3.32108i 0.118309i
\(789\) 0 0
\(790\) −0.768808 1.33161i −0.0273530 0.0473767i
\(791\) 59.5539 2.11749
\(792\) 0 0
\(793\) −31.2304 18.0309i −1.10902 0.640296i
\(794\) −17.3994 + 30.1367i −0.617482 + 1.06951i
\(795\) 0 0
\(796\) 0.883229 + 1.52980i 0.0313052 + 0.0542222i
\(797\) 22.8991 39.6625i 0.811129 1.40492i −0.100945 0.994892i \(-0.532187\pi\)
0.912074 0.410025i \(-0.134480\pi\)
\(798\) 0 0
\(799\) −16.8637 29.2087i −0.596594 1.03333i
\(800\) 1.63572 2.83315i 0.0578315 0.100167i
\(801\) 0 0
\(802\) 3.59906 + 6.23376i 0.127087 + 0.220122i
\(803\) 7.75409i 0.273636i
\(804\) 0 0
\(805\) 19.6572 34.0473i 0.692826 1.20001i
\(806\) 5.93268 10.2757i 0.208970 0.361946i
\(807\) 0 0
\(808\) −31.6813 18.2912i −1.11454 0.643483i
\(809\) 28.2911i 0.994662i −0.867561 0.497331i \(-0.834314\pi\)
0.867561 0.497331i \(-0.165686\pi\)
\(810\) 0 0
\(811\) 8.53722 4.92896i 0.299782 0.173079i −0.342563 0.939495i \(-0.611295\pi\)
0.642345 + 0.766416i \(0.277962\pi\)
\(812\) 4.44030 0.155824
\(813\) 0 0
\(814\) 10.5837 + 18.3314i 0.370957 + 0.642517i
\(815\) 16.6875 9.63456i 0.584539 0.337484i
\(816\) 0 0
\(817\) 39.3838 0.250197i 1.37787 0.00875328i
\(818\) 29.7957i 1.04178i
\(819\) 0 0
\(820\) −3.73078 2.15397i −0.130284 0.0752198i
\(821\) 35.3705 + 20.4211i 1.23444 + 0.712703i 0.967952 0.251136i \(-0.0808041\pi\)
0.266486 + 0.963839i \(0.414137\pi\)
\(822\) 0 0
\(823\) −36.6191 −1.27646 −0.638231 0.769845i \(-0.720334\pi\)
−0.638231 + 0.769845i \(0.720334\pi\)
\(824\) 14.9182 + 8.61303i 0.519700 + 0.300049i
\(825\) 0 0
\(826\) −8.55289 + 14.8140i −0.297593 + 0.515446i
\(827\) 19.3427 + 33.5025i 0.672611 + 1.16500i 0.977161 + 0.212500i \(0.0681606\pi\)
−0.304550 + 0.952496i \(0.598506\pi\)
\(828\) 0 0
\(829\) 19.0627i 0.662076i −0.943617 0.331038i \(-0.892601\pi\)
0.943617 0.331038i \(-0.107399\pi\)
\(830\) −2.79149 + 4.83500i −0.0968939 + 0.167825i
\(831\) 0 0
\(832\) 19.5532i 0.677884i
\(833\) −49.8775 + 28.7968i −1.72815 + 0.997749i
\(834\) 0 0
\(835\) −11.5366 + 6.66068i −0.399242 + 0.230502i
\(836\) 4.76867 2.79374i 0.164928 0.0966234i
\(837\) 0 0
\(838\) −15.0059 8.66365i −0.518370 0.299281i
\(839\) 6.76647 0.233604 0.116802 0.993155i \(-0.462736\pi\)
0.116802 + 0.993155i \(0.462736\pi\)
\(840\) 0 0
\(841\) 11.9187 + 20.6439i 0.410991 + 0.711858i
\(842\) 25.4562i 0.877277i
\(843\) 0 0
\(844\) −4.65365 + 2.68679i −0.160185 + 0.0924830i
\(845\) 2.59259 1.49683i 0.0891879 0.0514927i
\(846\) 0 0
\(847\) 5.85382 0.201140
\(848\) −18.7999 32.5624i −0.645591 1.11820i
\(849\) 0 0
\(850\) −6.89291 + 3.97962i −0.236425 + 0.136500i
\(851\) −18.8752 −0.647035
\(852\) 0 0
\(853\) 4.02737 0.137895 0.0689473 0.997620i \(-0.478036\pi\)
0.0689473 + 0.997620i \(0.478036\pi\)
\(854\) −79.8266 −2.73161
\(855\) 0 0
\(856\) 15.3586 0.524947
\(857\) 18.6163 0.635921 0.317960 0.948104i \(-0.397002\pi\)
0.317960 + 0.948104i \(0.397002\pi\)
\(858\) 0 0
\(859\) 35.0162 1.19474 0.597369 0.801967i \(-0.296213\pi\)
0.597369 + 0.801967i \(0.296213\pi\)
\(860\) 5.97758 3.45116i 0.203834 0.117683i
\(861\) 0 0
\(862\) −26.8171 46.4485i −0.913393 1.58204i
\(863\) −7.92119 −0.269640 −0.134820 0.990870i \(-0.543046\pi\)
−0.134820 + 0.990870i \(0.543046\pi\)
\(864\) 0 0
\(865\) −21.2187 + 12.2506i −0.721458 + 0.416534i
\(866\) −23.2077 + 13.3990i −0.788630 + 0.455315i
\(867\) 0 0
\(868\) 4.42591i 0.150225i
\(869\) −0.822776 1.42509i −0.0279108 0.0483429i
\(870\) 0 0
\(871\) −28.9537 −0.981058
\(872\) 6.53336 + 3.77204i 0.221248 + 0.127737i
\(873\) 0 0
\(874\) 0.185794 + 29.2461i 0.00628457 + 0.989263i
\(875\) 50.7433 29.2967i 1.71544 0.990408i
\(876\) 0 0
\(877\) 36.5066 21.0771i 1.23274 0.711723i 0.265140 0.964210i \(-0.414582\pi\)
0.967600 + 0.252487i \(0.0812485\pi\)
\(878\) 45.2397i 1.52677i
\(879\) 0 0
\(880\) −13.6972 + 23.7243i −0.461734 + 0.799747i
\(881\) 45.4405i 1.53093i −0.643478 0.765464i \(-0.722509\pi\)
0.643478 0.765464i \(-0.277491\pi\)
\(882\) 0 0
\(883\) 9.23912 + 16.0026i 0.310921 + 0.538531i 0.978562 0.205952i \(-0.0660292\pi\)
−0.667641 + 0.744483i \(0.732696\pi\)
\(884\) 2.42675 4.20326i 0.0816205 0.141371i
\(885\) 0 0
\(886\) 10.4120 + 6.01134i 0.349796 + 0.201955i
\(887\) −6.44133 −0.216279 −0.108139 0.994136i \(-0.534489\pi\)
−0.108139 + 0.994136i \(0.534489\pi\)
\(888\) 0 0
\(889\) −16.1555 9.32738i −0.541838 0.312830i
\(890\) 37.8768 + 21.8682i 1.26963 + 0.733023i
\(891\) 0 0
\(892\) 1.46681i 0.0491126i
\(893\) −36.0482 20.5082i −1.20631 0.686281i
\(894\) 0 0
\(895\) 14.1017 8.14164i 0.471369 0.272145i
\(896\) −32.5365 56.3549i −1.08697 1.88269i
\(897\) 0 0
\(898\) 33.4235 1.11536
\(899\) −4.45637 + 2.57289i −0.148628 + 0.0858106i
\(900\) 0 0
\(901\) 28.6854i 0.955648i
\(902\) −23.6942 13.6798i −0.788929 0.455489i
\(903\) 0 0
\(904\) 15.2740 26.4553i 0.508005 0.879891i
\(905\) −2.24694 + 3.89181i −0.0746907 + 0.129368i
\(906\) 0 0
\(907\) 4.67863i 0.155351i −0.996979 0.0776757i \(-0.975250\pi\)
0.996979 0.0776757i \(-0.0247499\pi\)
\(908\) −4.13275 7.15814i −0.137150 0.237551i
\(909\) 0 0
\(910\) −23.8050 + 41.2315i −0.789129 + 1.36681i
\(911\) −0.563718 0.976388i −0.0186768 0.0323492i 0.856536 0.516087i \(-0.172612\pi\)
−0.875213 + 0.483738i \(0.839279\pi\)
\(912\) 0 0
\(913\) −2.98744 + 5.17440i −0.0988699 + 0.171248i
\(914\) −1.62905 2.82160i −0.0538843 0.0933304i
\(915\) 0 0
\(916\) −1.10432 + 1.91274i −0.0364878 + 0.0631987i
\(917\) −54.5634 31.5022i −1.80184 1.04029i
\(918\) 0 0
\(919\) 5.71119 0.188395 0.0941974 0.995554i \(-0.469972\pi\)
0.0941974 + 0.995554i \(0.469972\pi\)
\(920\) −10.0831 17.4645i −0.332430 0.575786i
\(921\) 0 0
\(922\) 40.1837i 1.32338i
\(923\) −2.66148 1.53661i −0.0876037 0.0505780i
\(924\) 0 0
\(925\) −5.47027 3.15826i −0.179861 0.103843i
\(926\) 14.3258 24.8130i 0.470774 0.815404i
\(927\) 0 0
\(928\) 2.56709 4.44633i 0.0842689 0.145958i
\(929\) 28.9821i 0.950873i 0.879750 + 0.475437i \(0.157710\pi\)
−0.879750 + 0.475437i \(0.842290\pi\)
\(930\) 0 0
\(931\) −35.0203 + 61.5567i −1.14774 + 2.01744i
\(932\) −9.03263 5.21499i −0.295873 0.170823i
\(933\) 0 0
\(934\) 46.1779i 1.51099i
\(935\) 18.0996 10.4498i 0.591921 0.341745i
\(936\) 0 0
\(937\) −15.0321 26.0364i −0.491079 0.850573i 0.508869 0.860844i \(-0.330064\pi\)
−0.999947 + 0.0102711i \(0.996731\pi\)
\(938\) −55.5053 + 32.0460i −1.81231 + 1.04634i
\(939\) 0 0
\(940\) −7.26841 −0.237069
\(941\) 24.4750 0.797862 0.398931 0.916981i \(-0.369381\pi\)
0.398931 + 0.916981i \(0.369381\pi\)
\(942\) 0 0
\(943\) 21.1285 12.1985i 0.688038 0.397239i
\(944\) 5.31436 + 9.20474i 0.172968 + 0.299589i
\(945\) 0 0
\(946\) 37.9636 21.9183i 1.23430 0.712625i
\(947\) 19.0059i 0.617608i −0.951126 0.308804i \(-0.900071\pi\)
0.951126 0.308804i \(-0.0999287\pi\)
\(948\) 0 0
\(949\) 7.25161 + 4.18672i 0.235397 + 0.135907i
\(950\) −4.83969 + 8.50694i −0.157020 + 0.276002i
\(951\) 0 0
\(952\) 42.2704i 1.36999i
\(953\) −0.925412 + 1.60286i −0.0299770 + 0.0519217i −0.880625 0.473814i \(-0.842877\pi\)
0.850648 + 0.525736i \(0.176210\pi\)
\(954\) 0 0
\(955\) −7.03506 + 12.1851i −0.227649 + 0.394300i
\(956\) −4.26110 2.46015i −0.137814 0.0795669i
\(957\) 0 0
\(958\) −19.7852 11.4230i −0.639232 0.369061i
\(959\) 4.34623i 0.140347i
\(960\) 0 0
\(961\) −12.9354 22.4049i −0.417273 0.722737i
\(962\) 22.8580 0.736973
\(963\) 0 0
\(964\) 6.68816 + 3.86141i 0.215411 + 0.124368i
\(965\) −7.55489 + 13.0855i −0.243201 + 0.421236i
\(966\) 0 0
\(967\) 21.6020 + 37.4158i 0.694674 + 1.20321i 0.970290 + 0.241943i \(0.0777848\pi\)
−0.275616 + 0.961268i \(0.588882\pi\)
\(968\) 1.50135 2.60041i 0.0482552 0.0835805i
\(969\) 0 0
\(970\) 19.6978 + 34.1176i 0.632458 + 1.09545i
\(971\) −14.9198 + 25.8419i −0.478801 + 0.829307i −0.999705 0.0243082i \(-0.992262\pi\)
0.520904 + 0.853615i \(0.325595\pi\)
\(972\) 0 0
\(973\) −46.6865 80.8634i −1.49670 2.59236i
\(974\) 21.7900i 0.698196i
\(975\) 0 0
\(976\) −24.8002 + 42.9552i −0.793836 + 1.37496i
\(977\) −9.91018 + 17.1649i −0.317055 + 0.549155i −0.979872 0.199626i \(-0.936027\pi\)
0.662817 + 0.748781i \(0.269361\pi\)
\(978\) 0 0
\(979\) 40.5356 + 23.4033i 1.29552 + 0.747972i
\(980\) 12.4117i 0.396477i
\(981\) 0 0
\(982\) −22.3096 + 12.8805i −0.711928 + 0.411032i
\(983\) −1.00171 −0.0319497 −0.0159749 0.999872i \(-0.505085\pi\)
−0.0159749 + 0.999872i \(0.505085\pi\)
\(984\) 0 0
\(985\) −7.72158 13.3742i −0.246030 0.426136i
\(986\) −10.8177 + 6.24559i −0.344505 + 0.198900i
\(987\) 0 0
\(988\) −0.0379140 5.96810i −0.00120621 0.189870i
\(989\) 39.0898i 1.24298i
\(990\) 0 0
\(991\) −22.2607 12.8522i −0.707133 0.408264i 0.102865 0.994695i \(-0.467199\pi\)
−0.809999 + 0.586432i \(0.800532\pi\)
\(992\) −4.43192 2.55877i −0.140714 0.0812411i
\(993\) 0 0
\(994\) −6.80288 −0.215774
\(995\) 7.11362 + 4.10705i 0.225517 + 0.130202i
\(996\) 0 0
\(997\) −7.67734 + 13.2975i −0.243144 + 0.421137i −0.961608 0.274426i \(-0.911512\pi\)
0.718464 + 0.695564i \(0.244845\pi\)
\(998\) 17.5055 + 30.3205i 0.554128 + 0.959779i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.t.a.179.13 36
3.2 odd 2 171.2.t.a.122.6 yes 36
9.2 odd 6 513.2.k.a.8.13 36
9.7 even 3 171.2.k.a.65.6 yes 36
19.12 odd 6 513.2.k.a.449.13 36
57.50 even 6 171.2.k.a.50.6 36
171.88 odd 6 171.2.t.a.164.6 yes 36
171.164 even 6 inner 513.2.t.a.278.13 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.6 36 57.50 even 6
171.2.k.a.65.6 yes 36 9.7 even 3
171.2.t.a.122.6 yes 36 3.2 odd 2
171.2.t.a.164.6 yes 36 171.88 odd 6
513.2.k.a.8.13 36 9.2 odd 6
513.2.k.a.449.13 36 19.12 odd 6
513.2.t.a.179.13 36 1.1 even 1 trivial
513.2.t.a.278.13 36 171.164 even 6 inner