Properties

Label 513.2.k.a.8.13
Level $513$
Weight $2$
Character 513.8
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(8,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 8.13
Character \(\chi\) \(=\) 513.8
Dual form 513.2.k.a.449.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.775454 + 1.34313i) q^{2} +(-0.202658 + 0.351014i) q^{4} -1.88474i q^{5} +(-2.41078 + 4.17560i) q^{7} +2.47321 q^{8} +(2.53144 - 1.46153i) q^{10} +(2.70914 + 1.56412i) q^{11} +(2.92553 + 1.68905i) q^{13} -7.47781 q^{14} +(2.32318 + 4.02386i) q^{16} +(-3.06986 - 1.77238i) q^{17} +(4.35881 - 0.0276906i) q^{19} +(0.661569 + 0.381957i) q^{20} +4.85162i q^{22} +(3.74666 + 2.16313i) q^{23} +1.44777 q^{25} +5.23914i q^{26} +(-0.977130 - 1.69244i) q^{28} -2.27211 q^{29} +(-1.96133 + 1.13238i) q^{31} +(-1.12982 + 1.95691i) q^{32} -5.49760i q^{34} +(7.86990 + 4.54369i) q^{35} +4.36294i q^{37} +(3.41725 + 5.83296i) q^{38} -4.66135i q^{40} -5.63929 q^{41} +(-4.51773 - 7.82493i) q^{43} +(-1.09806 + 0.633964i) q^{44} +6.70964i q^{46} -9.51469i q^{47} +(-8.12375 - 14.0707i) q^{49} +(1.12268 + 1.94453i) q^{50} +(-1.18576 + 0.684601i) q^{52} +(-4.04616 - 7.00816i) q^{53} +(2.94796 - 5.10601i) q^{55} +(-5.96237 + 10.3271i) q^{56} +(-1.76192 - 3.05174i) q^{58} -2.28754 q^{59} -10.6751 q^{61} +(-3.04185 - 1.75621i) q^{62} +5.78820 q^{64} +(3.18342 - 5.51385i) q^{65} +(7.42268 + 4.28548i) q^{67} +(1.24426 - 0.718375i) q^{68} +14.0937i q^{70} +(-0.454871 + 0.787860i) q^{71} +(-1.23937 + 2.14665i) q^{73} +(-5.85998 + 3.38326i) q^{74} +(-0.873629 + 1.53562i) q^{76} +(-13.0623 + 7.54152i) q^{77} +(-0.455556 + 0.263015i) q^{79} +(7.58391 - 4.37857i) q^{80} +(-4.37301 - 7.57427i) q^{82} +(-1.65409 - 0.954990i) q^{83} +(-3.34047 + 5.78587i) q^{85} +(7.00658 - 12.1358i) q^{86} +(6.70026 + 3.86840i) q^{88} +(-7.48128 - 12.9580i) q^{89} +(-14.1056 + 8.14389i) q^{91} +(-1.51858 + 0.876753i) q^{92} +(12.7794 - 7.37820i) q^{94} +(-0.0521894 - 8.21521i) q^{95} +(11.6719 - 6.73877i) q^{97} +(12.5992 - 21.8224i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3 q^{2} - 15 q^{4} - q^{7} - 12 q^{8} - 6 q^{10} + 9 q^{11} - 6 q^{13} + 6 q^{14} - 9 q^{16} + 27 q^{17} + q^{19} - 9 q^{20} - 9 q^{23} - 22 q^{25} + 2 q^{28} + 24 q^{29} + 12 q^{31} + 15 q^{32}+ \cdots + 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.775454 + 1.34313i 0.548329 + 0.949733i 0.998389 + 0.0567353i \(0.0180691\pi\)
−0.450060 + 0.892998i \(0.648598\pi\)
\(3\) 0 0
\(4\) −0.202658 + 0.351014i −0.101329 + 0.175507i
\(5\) 1.88474i 0.842880i −0.906856 0.421440i \(-0.861525\pi\)
0.906856 0.421440i \(-0.138475\pi\)
\(6\) 0 0
\(7\) −2.41078 + 4.17560i −0.911190 + 1.57823i −0.0988049 + 0.995107i \(0.531502\pi\)
−0.812385 + 0.583121i \(0.801831\pi\)
\(8\) 2.47321 0.874411
\(9\) 0 0
\(10\) 2.53144 1.46153i 0.800511 0.462175i
\(11\) 2.70914 + 1.56412i 0.816836 + 0.471600i 0.849324 0.527872i \(-0.177010\pi\)
−0.0324882 + 0.999472i \(0.510343\pi\)
\(12\) 0 0
\(13\) 2.92553 + 1.68905i 0.811396 + 0.468460i 0.847440 0.530891i \(-0.178143\pi\)
−0.0360446 + 0.999350i \(0.511476\pi\)
\(14\) −7.47781 −1.99853
\(15\) 0 0
\(16\) 2.32318 + 4.02386i 0.580794 + 1.00596i
\(17\) −3.06986 1.77238i −0.744549 0.429866i 0.0791717 0.996861i \(-0.474772\pi\)
−0.823721 + 0.566995i \(0.808106\pi\)
\(18\) 0 0
\(19\) 4.35881 0.0276906i 0.999980 0.00635265i
\(20\) 0.661569 + 0.381957i 0.147931 + 0.0854082i
\(21\) 0 0
\(22\) 4.85162i 1.03437i
\(23\) 3.74666 + 2.16313i 0.781232 + 0.451044i 0.836867 0.547407i \(-0.184385\pi\)
−0.0556348 + 0.998451i \(0.517718\pi\)
\(24\) 0 0
\(25\) 1.44777 0.289553
\(26\) 5.23914i 1.02748i
\(27\) 0 0
\(28\) −0.977130 1.69244i −0.184660 0.319841i
\(29\) −2.27211 −0.421921 −0.210961 0.977495i \(-0.567659\pi\)
−0.210961 + 0.977495i \(0.567659\pi\)
\(30\) 0 0
\(31\) −1.96133 + 1.13238i −0.352266 + 0.203381i −0.665683 0.746235i \(-0.731860\pi\)
0.313417 + 0.949616i \(0.398526\pi\)
\(32\) −1.12982 + 1.95691i −0.199727 + 0.345937i
\(33\) 0 0
\(34\) 5.49760i 0.942831i
\(35\) 7.86990 + 4.54369i 1.33026 + 0.768024i
\(36\) 0 0
\(37\) 4.36294i 0.717263i 0.933479 + 0.358631i \(0.116756\pi\)
−0.933479 + 0.358631i \(0.883244\pi\)
\(38\) 3.41725 + 5.83296i 0.554351 + 0.946231i
\(39\) 0 0
\(40\) 4.66135i 0.737024i
\(41\) −5.63929 −0.880708 −0.440354 0.897824i \(-0.645147\pi\)
−0.440354 + 0.897824i \(0.645147\pi\)
\(42\) 0 0
\(43\) −4.51773 7.82493i −0.688947 1.19329i −0.972179 0.234240i \(-0.924740\pi\)
0.283232 0.959051i \(-0.408593\pi\)
\(44\) −1.09806 + 0.633964i −0.165538 + 0.0955737i
\(45\) 0 0
\(46\) 6.70964i 0.989283i
\(47\) 9.51469i 1.38786i −0.720042 0.693930i \(-0.755878\pi\)
0.720042 0.693930i \(-0.244122\pi\)
\(48\) 0 0
\(49\) −8.12375 14.0707i −1.16054 2.01011i
\(50\) 1.12268 + 1.94453i 0.158771 + 0.274999i
\(51\) 0 0
\(52\) −1.18576 + 0.684601i −0.164436 + 0.0949371i
\(53\) −4.04616 7.00816i −0.555783 0.962644i −0.997842 0.0656585i \(-0.979085\pi\)
0.442059 0.896986i \(-0.354248\pi\)
\(54\) 0 0
\(55\) 2.94796 5.10601i 0.397503 0.688495i
\(56\) −5.96237 + 10.3271i −0.796755 + 1.38002i
\(57\) 0 0
\(58\) −1.76192 3.05174i −0.231352 0.400713i
\(59\) −2.28754 −0.297812 −0.148906 0.988851i \(-0.547575\pi\)
−0.148906 + 0.988851i \(0.547575\pi\)
\(60\) 0 0
\(61\) −10.6751 −1.36681 −0.683406 0.730039i \(-0.739502\pi\)
−0.683406 + 0.730039i \(0.739502\pi\)
\(62\) −3.04185 1.75621i −0.386315 0.223039i
\(63\) 0 0
\(64\) 5.78820 0.723524
\(65\) 3.18342 5.51385i 0.394855 0.683909i
\(66\) 0 0
\(67\) 7.42268 + 4.28548i 0.906824 + 0.523555i 0.879408 0.476069i \(-0.157939\pi\)
0.0274163 + 0.999624i \(0.491272\pi\)
\(68\) 1.24426 0.718375i 0.150889 0.0871158i
\(69\) 0 0
\(70\) 14.0937i 1.68452i
\(71\) −0.454871 + 0.787860i −0.0539833 + 0.0935018i −0.891754 0.452520i \(-0.850525\pi\)
0.837771 + 0.546022i \(0.183858\pi\)
\(72\) 0 0
\(73\) −1.23937 + 2.14665i −0.145057 + 0.251246i −0.929394 0.369089i \(-0.879670\pi\)
0.784337 + 0.620335i \(0.213003\pi\)
\(74\) −5.85998 + 3.38326i −0.681208 + 0.393296i
\(75\) 0 0
\(76\) −0.873629 + 1.53562i −0.100212 + 0.176147i
\(77\) −13.0623 + 7.54152i −1.48859 + 0.859436i
\(78\) 0 0
\(79\) −0.455556 + 0.263015i −0.0512540 + 0.0295915i −0.525408 0.850850i \(-0.676087\pi\)
0.474154 + 0.880442i \(0.342754\pi\)
\(80\) 7.58391 4.37857i 0.847907 0.489540i
\(81\) 0 0
\(82\) −4.37301 7.57427i −0.482918 0.836438i
\(83\) −1.65409 0.954990i −0.181560 0.104824i 0.406465 0.913666i \(-0.366761\pi\)
−0.588025 + 0.808842i \(0.700095\pi\)
\(84\) 0 0
\(85\) −3.34047 + 5.78587i −0.362325 + 0.627566i
\(86\) 7.00658 12.1358i 0.755539 1.30863i
\(87\) 0 0
\(88\) 6.70026 + 3.86840i 0.714250 + 0.412373i
\(89\) −7.48128 12.9580i −0.793014 1.37354i −0.924093 0.382169i \(-0.875177\pi\)
0.131079 0.991372i \(-0.458156\pi\)
\(90\) 0 0
\(91\) −14.1056 + 8.14389i −1.47867 + 0.853712i
\(92\) −1.51858 + 0.876753i −0.158323 + 0.0914078i
\(93\) 0 0
\(94\) 12.7794 7.37820i 1.31810 0.761004i
\(95\) −0.0521894 8.21521i −0.00535452 0.842863i
\(96\) 0 0
\(97\) 11.6719 6.73877i 1.18510 0.684219i 0.227912 0.973682i \(-0.426810\pi\)
0.957189 + 0.289463i \(0.0934767\pi\)
\(98\) 12.5992 21.8224i 1.27271 2.20440i
\(99\) 0 0
\(100\) −0.293402 + 0.508187i −0.0293402 + 0.0508187i
\(101\) 14.7915i 1.47181i 0.677086 + 0.735904i \(0.263243\pi\)
−0.677086 + 0.735904i \(0.736757\pi\)
\(102\) 0 0
\(103\) 6.03192 3.48253i 0.594343 0.343144i −0.172470 0.985015i \(-0.555175\pi\)
0.766813 + 0.641871i \(0.221841\pi\)
\(104\) 7.23544 + 4.17738i 0.709493 + 0.409626i
\(105\) 0 0
\(106\) 6.27523 10.8690i 0.609504 1.05569i
\(107\) 6.21001 0.600344 0.300172 0.953885i \(-0.402956\pi\)
0.300172 + 0.953885i \(0.402956\pi\)
\(108\) 0 0
\(109\) −2.64165 1.52516i −0.253025 0.146084i 0.368124 0.929777i \(-0.380000\pi\)
−0.621148 + 0.783693i \(0.713334\pi\)
\(110\) 9.14402 0.871849
\(111\) 0 0
\(112\) −22.4027 −2.11685
\(113\) 6.17578 + 10.6968i 0.580969 + 1.00627i 0.995365 + 0.0961706i \(0.0306594\pi\)
−0.414396 + 0.910097i \(0.636007\pi\)
\(114\) 0 0
\(115\) 4.07694 7.06146i 0.380176 0.658485i
\(116\) 0.460463 0.797545i 0.0427529 0.0740502i
\(117\) 0 0
\(118\) −1.77388 3.07245i −0.163299 0.282842i
\(119\) 14.8015 8.54566i 1.35685 0.783379i
\(120\) 0 0
\(121\) −0.607046 1.05143i −0.0551860 0.0955849i
\(122\) −8.27808 14.3381i −0.749462 1.29811i
\(123\) 0 0
\(124\) 0.917941i 0.0824335i
\(125\) 12.1523i 1.08694i
\(126\) 0 0
\(127\) 3.35067 1.93451i 0.297324 0.171660i −0.343916 0.939000i \(-0.611754\pi\)
0.641240 + 0.767340i \(0.278420\pi\)
\(128\) 6.74813 + 11.6881i 0.596456 + 1.03309i
\(129\) 0 0
\(130\) 9.87440 0.866042
\(131\) 13.0672i 1.14169i −0.821059 0.570843i \(-0.806616\pi\)
0.821059 0.570843i \(-0.193384\pi\)
\(132\) 0 0
\(133\) −10.3925 + 18.2674i −0.901146 + 1.58398i
\(134\) 13.2928i 1.14832i
\(135\) 0 0
\(136\) −7.59239 4.38347i −0.651042 0.375879i
\(137\) 0.901415i 0.0770131i −0.999258 0.0385065i \(-0.987740\pi\)
0.999258 0.0385065i \(-0.0122600\pi\)
\(138\) 0 0
\(139\) −9.68285 + 16.7712i −0.821289 + 1.42251i 0.0834342 + 0.996513i \(0.473411\pi\)
−0.904723 + 0.426001i \(0.859922\pi\)
\(140\) −3.18980 + 1.84163i −0.269587 + 0.155646i
\(141\) 0 0
\(142\) −1.41093 −0.118402
\(143\) 5.28378 + 9.15177i 0.441851 + 0.765309i
\(144\) 0 0
\(145\) 4.28234i 0.355629i
\(146\) −3.84429 −0.318156
\(147\) 0 0
\(148\) −1.53145 0.884185i −0.125885 0.0726796i
\(149\) 1.89950i 0.155613i 0.996968 + 0.0778065i \(0.0247917\pi\)
−0.996968 + 0.0778065i \(0.975208\pi\)
\(150\) 0 0
\(151\) −3.36348 1.94190i −0.273716 0.158030i 0.356859 0.934158i \(-0.383848\pi\)
−0.630575 + 0.776128i \(0.717181\pi\)
\(152\) 10.7802 0.0684845i 0.874393 0.00555483i
\(153\) 0 0
\(154\) −20.2584 11.6962i −1.63247 0.942507i
\(155\) 2.13423 + 3.69660i 0.171426 + 0.296918i
\(156\) 0 0
\(157\) 16.5454 1.32047 0.660235 0.751059i \(-0.270457\pi\)
0.660235 + 0.751059i \(0.270457\pi\)
\(158\) −0.706525 0.407913i −0.0562081 0.0324518i
\(159\) 0 0
\(160\) 3.68827 + 2.12942i 0.291583 + 0.168346i
\(161\) −18.0648 + 10.4297i −1.42370 + 0.821975i
\(162\) 0 0
\(163\) 10.2238 0.800787 0.400394 0.916343i \(-0.368873\pi\)
0.400394 + 0.916343i \(0.368873\pi\)
\(164\) 1.14285 1.97947i 0.0892414 0.154571i
\(165\) 0 0
\(166\) 2.96220i 0.229912i
\(167\) −3.53401 + 6.12109i −0.273470 + 0.473664i −0.969748 0.244108i \(-0.921505\pi\)
0.696278 + 0.717772i \(0.254838\pi\)
\(168\) 0 0
\(169\) −0.794187 1.37557i −0.0610913 0.105813i
\(170\) −10.3615 −0.794693
\(171\) 0 0
\(172\) 3.66222 0.279241
\(173\) −6.49992 11.2582i −0.494179 0.855944i 0.505798 0.862652i \(-0.331198\pi\)
−0.999978 + 0.00670798i \(0.997865\pi\)
\(174\) 0 0
\(175\) −3.49025 + 6.04529i −0.263838 + 0.456981i
\(176\) 14.5349i 1.09561i
\(177\) 0 0
\(178\) 11.6028 20.0966i 0.869665 1.50630i
\(179\) −8.63956 −0.645751 −0.322875 0.946442i \(-0.604649\pi\)
−0.322875 + 0.946442i \(0.604649\pi\)
\(180\) 0 0
\(181\) −2.06491 + 1.19217i −0.153483 + 0.0886137i −0.574775 0.818312i \(-0.694910\pi\)
0.421291 + 0.906925i \(0.361577\pi\)
\(182\) −21.8765 12.6304i −1.62160 0.936229i
\(183\) 0 0
\(184\) 9.26626 + 5.34988i 0.683118 + 0.394398i
\(185\) 8.22299 0.604566
\(186\) 0 0
\(187\) −5.54444 9.60326i −0.405450 0.702260i
\(188\) 3.33979 + 1.92823i 0.243579 + 0.140631i
\(189\) 0 0
\(190\) 10.9936 6.44062i 0.797559 0.467251i
\(191\) −6.46514 3.73265i −0.467801 0.270085i 0.247518 0.968883i \(-0.420385\pi\)
−0.715319 + 0.698798i \(0.753718\pi\)
\(192\) 0 0
\(193\) 8.01692i 0.577071i −0.957469 0.288535i \(-0.906832\pi\)
0.957469 0.288535i \(-0.0931683\pi\)
\(194\) 18.1020 + 10.4512i 1.29965 + 0.750354i
\(195\) 0 0
\(196\) 6.58537 0.470384
\(197\) 8.19380i 0.583784i 0.956451 + 0.291892i \(0.0942848\pi\)
−0.956451 + 0.291892i \(0.905715\pi\)
\(198\) 0 0
\(199\) 2.17911 + 3.77433i 0.154473 + 0.267555i 0.932867 0.360221i \(-0.117299\pi\)
−0.778394 + 0.627776i \(0.783965\pi\)
\(200\) 3.58063 0.253189
\(201\) 0 0
\(202\) −19.8668 + 11.4701i −1.39783 + 0.807035i
\(203\) 5.47758 9.48744i 0.384450 0.665888i
\(204\) 0 0
\(205\) 10.6286i 0.742331i
\(206\) 9.35496 + 5.40109i 0.651791 + 0.376312i
\(207\) 0 0
\(208\) 15.6959i 1.08831i
\(209\) 11.8519 + 6.74269i 0.819815 + 0.466402i
\(210\) 0 0
\(211\) 13.2577i 0.912700i −0.889800 0.456350i \(-0.849157\pi\)
0.889800 0.456350i \(-0.150843\pi\)
\(212\) 3.27995 0.225268
\(213\) 0 0
\(214\) 4.81557 + 8.34082i 0.329186 + 0.570167i
\(215\) −14.7479 + 8.51473i −1.00580 + 0.580700i
\(216\) 0 0
\(217\) 10.9197i 0.741274i
\(218\) 4.73077i 0.320408i
\(219\) 0 0
\(220\) 1.19486 + 2.06955i 0.0805571 + 0.139529i
\(221\) −5.98730 10.3703i −0.402749 0.697582i
\(222\) 0 0
\(223\) 3.13409 1.80947i 0.209874 0.121171i −0.391379 0.920230i \(-0.628002\pi\)
0.601253 + 0.799059i \(0.294668\pi\)
\(224\) −5.44752 9.43538i −0.363978 0.630428i
\(225\) 0 0
\(226\) −9.57807 + 16.5897i −0.637124 + 1.10353i
\(227\) 10.1964 17.6606i 0.676757 1.17218i −0.299196 0.954192i \(-0.596718\pi\)
0.975952 0.217985i \(-0.0699484\pi\)
\(228\) 0 0
\(229\) −2.72459 4.71913i −0.180046 0.311849i 0.761850 0.647754i \(-0.224291\pi\)
−0.941896 + 0.335905i \(0.890958\pi\)
\(230\) 12.6459 0.833847
\(231\) 0 0
\(232\) −5.61941 −0.368933
\(233\) 22.2854 + 12.8665i 1.45996 + 0.842910i 0.999009 0.0445134i \(-0.0141737\pi\)
0.460955 + 0.887424i \(0.347507\pi\)
\(234\) 0 0
\(235\) −17.9327 −1.16980
\(236\) 0.463589 0.802959i 0.0301771 0.0522682i
\(237\) 0 0
\(238\) 22.9558 + 13.2535i 1.48800 + 0.859099i
\(239\) −10.5130 + 6.06970i −0.680032 + 0.392616i −0.799867 0.600177i \(-0.795097\pi\)
0.119835 + 0.992794i \(0.461763\pi\)
\(240\) 0 0
\(241\) 19.0538i 1.22736i −0.789553 0.613682i \(-0.789688\pi\)
0.789553 0.613682i \(-0.210312\pi\)
\(242\) 0.941472 1.63068i 0.0605201 0.104824i
\(243\) 0 0
\(244\) 2.16340 3.74712i 0.138498 0.239885i
\(245\) −26.5196 + 15.3111i −1.69428 + 0.978192i
\(246\) 0 0
\(247\) 12.7986 + 7.28126i 0.814355 + 0.463296i
\(248\) −4.85079 + 2.80060i −0.308025 + 0.177838i
\(249\) 0 0
\(250\) 16.3221 9.42359i 1.03230 0.596000i
\(251\) −7.74070 + 4.46909i −0.488589 + 0.282087i −0.723989 0.689812i \(-0.757693\pi\)
0.235400 + 0.971899i \(0.424360\pi\)
\(252\) 0 0
\(253\) 6.76681 + 11.7205i 0.425426 + 0.736859i
\(254\) 5.19659 + 3.00025i 0.326063 + 0.188253i
\(255\) 0 0
\(256\) −4.67753 + 8.10172i −0.292346 + 0.506358i
\(257\) −2.93041 + 5.07563i −0.182794 + 0.316609i −0.942831 0.333271i \(-0.891848\pi\)
0.760037 + 0.649880i \(0.225181\pi\)
\(258\) 0 0
\(259\) −18.2179 10.5181i −1.13200 0.653563i
\(260\) 1.29029 + 2.23485i 0.0800206 + 0.138600i
\(261\) 0 0
\(262\) 17.5509 10.1330i 1.08430 0.626020i
\(263\) −5.16520 + 2.98213i −0.318500 + 0.183886i −0.650724 0.759315i \(-0.725534\pi\)
0.332224 + 0.943201i \(0.392201\pi\)
\(264\) 0 0
\(265\) −13.2085 + 7.62595i −0.811394 + 0.468458i
\(266\) −32.5943 + 0.207065i −1.99849 + 0.0126960i
\(267\) 0 0
\(268\) −3.00853 + 1.73698i −0.183775 + 0.106103i
\(269\) −4.25123 + 7.36335i −0.259202 + 0.448951i −0.966028 0.258436i \(-0.916793\pi\)
0.706826 + 0.707387i \(0.250126\pi\)
\(270\) 0 0
\(271\) 3.84391 6.65785i 0.233501 0.404436i −0.725335 0.688396i \(-0.758315\pi\)
0.958836 + 0.283960i \(0.0916485\pi\)
\(272\) 16.4702i 0.998654i
\(273\) 0 0
\(274\) 1.21071 0.699006i 0.0731419 0.0422285i
\(275\) 3.92220 + 2.26448i 0.236518 + 0.136554i
\(276\) 0 0
\(277\) −15.3659 + 26.6146i −0.923249 + 1.59911i −0.128895 + 0.991658i \(0.541143\pi\)
−0.794353 + 0.607456i \(0.792190\pi\)
\(278\) −30.0344 −1.80135
\(279\) 0 0
\(280\) 19.4639 + 11.2375i 1.16319 + 0.671569i
\(281\) −29.6481 −1.76866 −0.884329 0.466864i \(-0.845384\pi\)
−0.884329 + 0.466864i \(0.845384\pi\)
\(282\) 0 0
\(283\) −22.5195 −1.33864 −0.669322 0.742972i \(-0.733415\pi\)
−0.669322 + 0.742972i \(0.733415\pi\)
\(284\) −0.184367 0.319333i −0.0109402 0.0189489i
\(285\) 0 0
\(286\) −8.19465 + 14.1936i −0.484560 + 0.839282i
\(287\) 13.5951 23.5474i 0.802493 1.38996i
\(288\) 0 0
\(289\) −2.21732 3.84052i −0.130431 0.225913i
\(290\) −5.75172 + 3.32076i −0.337753 + 0.195002i
\(291\) 0 0
\(292\) −0.502336 0.870072i −0.0293970 0.0509171i
\(293\) 1.43273 + 2.48156i 0.0837010 + 0.144974i 0.904837 0.425758i \(-0.139993\pi\)
−0.821136 + 0.570733i \(0.806659\pi\)
\(294\) 0 0
\(295\) 4.31141i 0.251020i
\(296\) 10.7905i 0.627183i
\(297\) 0 0
\(298\) −2.55127 + 1.47297i −0.147791 + 0.0853271i
\(299\) 7.30730 + 12.6566i 0.422592 + 0.731951i
\(300\) 0 0
\(301\) 43.5650 2.51105
\(302\) 6.02343i 0.346609i
\(303\) 0 0
\(304\) 10.2377 + 17.4749i 0.587173 + 1.00225i
\(305\) 20.1198i 1.15206i
\(306\) 0 0
\(307\) −15.6503 9.03569i −0.893208 0.515694i −0.0182175 0.999834i \(-0.505799\pi\)
−0.874990 + 0.484140i \(0.839132\pi\)
\(308\) 6.11340i 0.348343i
\(309\) 0 0
\(310\) −3.31000 + 5.73308i −0.187995 + 0.325617i
\(311\) −9.80717 + 5.66217i −0.556114 + 0.321072i −0.751584 0.659637i \(-0.770710\pi\)
0.195470 + 0.980710i \(0.437377\pi\)
\(312\) 0 0
\(313\) 1.47819 0.0835525 0.0417762 0.999127i \(-0.486698\pi\)
0.0417762 + 0.999127i \(0.486698\pi\)
\(314\) 12.8302 + 22.2226i 0.724052 + 1.25409i
\(315\) 0 0
\(316\) 0.213209i 0.0119939i
\(317\) 18.2349 1.02417 0.512087 0.858934i \(-0.328872\pi\)
0.512087 + 0.858934i \(0.328872\pi\)
\(318\) 0 0
\(319\) −6.15547 3.55386i −0.344640 0.198978i
\(320\) 10.9092i 0.609844i
\(321\) 0 0
\(322\) −28.0168 16.1755i −1.56131 0.901425i
\(323\) −13.4300 7.64047i −0.747265 0.425127i
\(324\) 0 0
\(325\) 4.23548 + 2.44536i 0.234942 + 0.135644i
\(326\) 7.92806 + 13.7318i 0.439095 + 0.760534i
\(327\) 0 0
\(328\) −13.9471 −0.770101
\(329\) 39.7295 + 22.9378i 2.19036 + 1.26460i
\(330\) 0 0
\(331\) 26.0644 + 15.0483i 1.43263 + 0.827128i 0.997321 0.0731549i \(-0.0233067\pi\)
0.435306 + 0.900282i \(0.356640\pi\)
\(332\) 0.670430 0.387073i 0.0367946 0.0212434i
\(333\) 0 0
\(334\) −10.9619 −0.599806
\(335\) 8.07701 13.9898i 0.441294 0.764344i
\(336\) 0 0
\(337\) 3.64508i 0.198560i −0.995060 0.0992802i \(-0.968346\pi\)
0.995060 0.0992802i \(-0.0316540\pi\)
\(338\) 1.23171 2.13339i 0.0669963 0.116041i
\(339\) 0 0
\(340\) −1.35395 2.34511i −0.0734282 0.127181i
\(341\) −7.08470 −0.383658
\(342\) 0 0
\(343\) 44.5874 2.40749
\(344\) −11.1733 19.3527i −0.602423 1.04343i
\(345\) 0 0
\(346\) 10.0808 17.4604i 0.541946 0.938678i
\(347\) 7.64224i 0.410257i 0.978735 + 0.205128i \(0.0657612\pi\)
−0.978735 + 0.205128i \(0.934239\pi\)
\(348\) 0 0
\(349\) −3.85492 + 6.67692i −0.206349 + 0.357407i −0.950562 0.310535i \(-0.899492\pi\)
0.744212 + 0.667943i \(0.232825\pi\)
\(350\) −10.8261 −0.578681
\(351\) 0 0
\(352\) −6.12170 + 3.53437i −0.326288 + 0.188382i
\(353\) 14.8975 + 8.60109i 0.792915 + 0.457790i 0.840988 0.541054i \(-0.181975\pi\)
−0.0480728 + 0.998844i \(0.515308\pi\)
\(354\) 0 0
\(355\) 1.48491 + 0.857313i 0.0788108 + 0.0455014i
\(356\) 6.06457 0.321422
\(357\) 0 0
\(358\) −6.69958 11.6040i −0.354084 0.613291i
\(359\) 0.986080 + 0.569313i 0.0520433 + 0.0300472i 0.525796 0.850611i \(-0.323768\pi\)
−0.473753 + 0.880658i \(0.657101\pi\)
\(360\) 0 0
\(361\) 18.9985 0.241396i 0.999919 0.0127050i
\(362\) −3.20248 1.84895i −0.168319 0.0971788i
\(363\) 0 0
\(364\) 6.60170i 0.346023i
\(365\) 4.04587 + 2.33588i 0.211770 + 0.122266i
\(366\) 0 0
\(367\) 0.702648 0.0366779 0.0183390 0.999832i \(-0.494162\pi\)
0.0183390 + 0.999832i \(0.494162\pi\)
\(368\) 20.1014i 1.04786i
\(369\) 0 0
\(370\) 6.37655 + 11.0445i 0.331501 + 0.574177i
\(371\) 39.0177 2.02570
\(372\) 0 0
\(373\) −8.13834 + 4.69867i −0.421387 + 0.243288i −0.695671 0.718361i \(-0.744893\pi\)
0.274283 + 0.961649i \(0.411559\pi\)
\(374\) 8.59892 14.8938i 0.444640 0.770138i
\(375\) 0 0
\(376\) 23.5318i 1.21356i
\(377\) −6.64714 3.83773i −0.342345 0.197653i
\(378\) 0 0
\(379\) 24.1334i 1.23965i −0.784740 0.619825i \(-0.787204\pi\)
0.784740 0.619825i \(-0.212796\pi\)
\(380\) 2.89423 + 1.64656i 0.148471 + 0.0844668i
\(381\) 0 0
\(382\) 11.5780i 0.592382i
\(383\) 28.8797 1.47568 0.737841 0.674975i \(-0.235846\pi\)
0.737841 + 0.674975i \(0.235846\pi\)
\(384\) 0 0
\(385\) 14.2138 + 24.6190i 0.724401 + 1.25470i
\(386\) 10.7677 6.21676i 0.548063 0.316425i
\(387\) 0 0
\(388\) 5.46267i 0.277325i
\(389\) 38.7316i 1.96377i −0.189473 0.981886i \(-0.560678\pi\)
0.189473 0.981886i \(-0.439322\pi\)
\(390\) 0 0
\(391\) −7.66780 13.2810i −0.387777 0.671650i
\(392\) −20.0917 34.7999i −1.01478 1.75766i
\(393\) 0 0
\(394\) −11.0053 + 6.35392i −0.554439 + 0.320106i
\(395\) 0.495715 + 0.858603i 0.0249421 + 0.0432010i
\(396\) 0 0
\(397\) −11.2189 + 19.4316i −0.563058 + 0.975246i 0.434169 + 0.900831i \(0.357042\pi\)
−0.997227 + 0.0744143i \(0.976291\pi\)
\(398\) −3.37960 + 5.85364i −0.169404 + 0.293416i
\(399\) 0 0
\(400\) 3.36342 + 5.82561i 0.168171 + 0.291280i
\(401\) 4.64123 0.231772 0.115886 0.993263i \(-0.463029\pi\)
0.115886 + 0.993263i \(0.463029\pi\)
\(402\) 0 0
\(403\) −7.65058 −0.381103
\(404\) −5.19202 2.99762i −0.258313 0.149137i
\(405\) 0 0
\(406\) 16.9904 0.843221
\(407\) −6.82417 + 11.8198i −0.338261 + 0.585886i
\(408\) 0 0
\(409\) −16.6379 9.60588i −0.822690 0.474980i 0.0286534 0.999589i \(-0.490878\pi\)
−0.851343 + 0.524609i \(0.824211\pi\)
\(410\) −14.2755 + 8.24197i −0.705017 + 0.407042i
\(411\) 0 0
\(412\) 2.82305i 0.139082i
\(413\) 5.51476 9.55185i 0.271364 0.470016i
\(414\) 0 0
\(415\) −1.79990 + 3.11753i −0.0883538 + 0.153033i
\(416\) −6.61067 + 3.81667i −0.324115 + 0.187128i
\(417\) 0 0
\(418\) 0.134344 + 21.1473i 0.00657099 + 1.03435i
\(419\) −9.67554 + 5.58618i −0.472681 + 0.272903i −0.717361 0.696701i \(-0.754650\pi\)
0.244680 + 0.969604i \(0.421317\pi\)
\(420\) 0 0
\(421\) 14.2147 8.20685i 0.692782 0.399978i −0.111872 0.993723i \(-0.535685\pi\)
0.804653 + 0.593745i \(0.202351\pi\)
\(422\) 17.8068 10.2808i 0.866822 0.500460i
\(423\) 0 0
\(424\) −10.0070 17.3326i −0.485983 0.841747i
\(425\) −4.44444 2.56600i −0.215587 0.124469i
\(426\) 0 0
\(427\) 25.7354 44.5751i 1.24542 2.15714i
\(428\) −1.25851 + 2.17980i −0.0608323 + 0.105365i
\(429\) 0 0
\(430\) −22.8727 13.2056i −1.10302 0.636829i
\(431\) 17.2912 + 29.9492i 0.832888 + 1.44260i 0.895738 + 0.444581i \(0.146648\pi\)
−0.0628504 + 0.998023i \(0.520019\pi\)
\(432\) 0 0
\(433\) −14.9639 + 8.63943i −0.719121 + 0.415185i −0.814429 0.580263i \(-0.802950\pi\)
0.0953081 + 0.995448i \(0.469616\pi\)
\(434\) 14.6665 8.46769i 0.704013 0.406462i
\(435\) 0 0
\(436\) 1.07071 0.618172i 0.0512775 0.0296051i
\(437\) 16.3909 + 9.32494i 0.784081 + 0.446072i
\(438\) 0 0
\(439\) 25.2618 14.5849i 1.20568 0.696099i 0.243867 0.969809i \(-0.421584\pi\)
0.961812 + 0.273710i \(0.0882507\pi\)
\(440\) 7.29091 12.6282i 0.347581 0.602027i
\(441\) 0 0
\(442\) 9.28575 16.0834i 0.441678 0.765009i
\(443\) 7.75203i 0.368310i 0.982897 + 0.184155i \(0.0589549\pi\)
−0.982897 + 0.184155i \(0.941045\pi\)
\(444\) 0 0
\(445\) −24.4223 + 14.1002i −1.15773 + 0.668416i
\(446\) 4.86069 + 2.80632i 0.230160 + 0.132883i
\(447\) 0 0
\(448\) −13.9541 + 24.1692i −0.659268 + 1.14189i
\(449\) −21.5509 −1.01705 −0.508526 0.861047i \(-0.669809\pi\)
−0.508526 + 0.861047i \(0.669809\pi\)
\(450\) 0 0
\(451\) −15.2776 8.82053i −0.719394 0.415343i
\(452\) −5.00629 −0.235476
\(453\) 0 0
\(454\) 31.6273 1.48434
\(455\) 15.3491 + 26.5854i 0.719576 + 1.24634i
\(456\) 0 0
\(457\) −1.05039 + 1.81932i −0.0491350 + 0.0851044i −0.889547 0.456844i \(-0.848980\pi\)
0.840412 + 0.541948i \(0.182313\pi\)
\(458\) 4.22559 7.31894i 0.197449 0.341992i
\(459\) 0 0
\(460\) 1.65245 + 2.86213i 0.0770458 + 0.133447i
\(461\) −22.4385 + 12.9549i −1.04507 + 0.603370i −0.921264 0.388937i \(-0.872842\pi\)
−0.123803 + 0.992307i \(0.539509\pi\)
\(462\) 0 0
\(463\) 9.23702 + 15.9990i 0.429281 + 0.743536i 0.996809 0.0798177i \(-0.0254338\pi\)
−0.567529 + 0.823354i \(0.692100\pi\)
\(464\) −5.27852 9.14267i −0.245049 0.424438i
\(465\) 0 0
\(466\) 39.9094i 1.84877i
\(467\) 29.7747i 1.37781i −0.724852 0.688905i \(-0.758092\pi\)
0.724852 0.688905i \(-0.241908\pi\)
\(468\) 0 0
\(469\) −35.7889 + 20.6627i −1.65258 + 0.954117i
\(470\) −13.9060 24.0859i −0.641435 1.11100i
\(471\) 0 0
\(472\) −5.65756 −0.260410
\(473\) 28.2651i 1.29963i
\(474\) 0 0
\(475\) 6.31054 0.0400895i 0.289548 0.00183943i
\(476\) 6.92739i 0.317516i
\(477\) 0 0
\(478\) −16.3048 9.41355i −0.745762 0.430566i
\(479\) 14.7307i 0.673065i −0.941672 0.336532i \(-0.890746\pi\)
0.941672 0.336532i \(-0.109254\pi\)
\(480\) 0 0
\(481\) −7.36924 + 12.7639i −0.336009 + 0.581984i
\(482\) 25.5917 14.7754i 1.16567 0.673000i
\(483\) 0 0
\(484\) 0.492091 0.0223678
\(485\) −12.7008 21.9985i −0.576714 0.998898i
\(486\) 0 0
\(487\) 14.0498i 0.636658i 0.947980 + 0.318329i \(0.103122\pi\)
−0.947980 + 0.318329i \(0.896878\pi\)
\(488\) −26.4018 −1.19515
\(489\) 0 0
\(490\) −41.1295 23.7461i −1.85804 1.07274i
\(491\) 16.6102i 0.749608i 0.927104 + 0.374804i \(0.122290\pi\)
−0.927104 + 0.374804i \(0.877710\pi\)
\(492\) 0 0
\(493\) 6.97506 + 4.02706i 0.314141 + 0.181369i
\(494\) 0.145075 + 22.8364i 0.00652722 + 1.02746i
\(495\) 0 0
\(496\) −9.11304 5.26142i −0.409188 0.236245i
\(497\) −2.19319 3.79872i −0.0983781 0.170396i
\(498\) 0 0
\(499\) −22.5746 −1.01058 −0.505288 0.862951i \(-0.668614\pi\)
−0.505288 + 0.862951i \(0.668614\pi\)
\(500\) 4.26565 + 2.46277i 0.190765 + 0.110138i
\(501\) 0 0
\(502\) −12.0051 6.93116i −0.535814 0.309353i
\(503\) −25.4796 + 14.7107i −1.13608 + 0.655917i −0.945457 0.325746i \(-0.894384\pi\)
−0.190624 + 0.981663i \(0.561051\pi\)
\(504\) 0 0
\(505\) 27.8781 1.24056
\(506\) −10.4947 + 18.1774i −0.466546 + 0.808082i
\(507\) 0 0
\(508\) 1.56818i 0.0695767i
\(509\) 15.6211 27.0565i 0.692391 1.19926i −0.278661 0.960389i \(-0.589891\pi\)
0.971052 0.238867i \(-0.0767760\pi\)
\(510\) 0 0
\(511\) −5.97569 10.3502i −0.264349 0.457866i
\(512\) 12.4837 0.551705
\(513\) 0 0
\(514\) −9.08961 −0.400925
\(515\) −6.56366 11.3686i −0.289229 0.500960i
\(516\) 0 0
\(517\) 14.8821 25.7766i 0.654515 1.13365i
\(518\) 32.6252i 1.43347i
\(519\) 0 0
\(520\) 7.87327 13.6369i 0.345266 0.598018i
\(521\) −0.424924 −0.0186163 −0.00930814 0.999957i \(-0.502963\pi\)
−0.00930814 + 0.999957i \(0.502963\pi\)
\(522\) 0 0
\(523\) 31.0533 17.9286i 1.35787 0.783964i 0.368530 0.929616i \(-0.379861\pi\)
0.989336 + 0.145652i \(0.0465278\pi\)
\(524\) 4.58677 + 2.64817i 0.200374 + 0.115686i
\(525\) 0 0
\(526\) −8.01075 4.62501i −0.349285 0.201660i
\(527\) 8.02801 0.349706
\(528\) 0 0
\(529\) −2.14171 3.70955i −0.0931178 0.161285i
\(530\) −20.4852 11.8271i −0.889821 0.513738i
\(531\) 0 0
\(532\) −4.30599 7.34996i −0.186688 0.318661i
\(533\) −16.4979 9.52506i −0.714603 0.412576i
\(534\) 0 0
\(535\) 11.7042i 0.506018i
\(536\) 18.3578 + 10.5989i 0.792937 + 0.457803i
\(537\) 0 0
\(538\) −13.1865 −0.568512
\(539\) 50.8261i 2.18924i
\(540\) 0 0
\(541\) 9.92108 + 17.1838i 0.426541 + 0.738790i 0.996563 0.0828391i \(-0.0263988\pi\)
−0.570022 + 0.821629i \(0.693065\pi\)
\(542\) 11.9231 0.512141
\(543\) 0 0
\(544\) 6.93679 4.00496i 0.297413 0.171711i
\(545\) −2.87452 + 4.97882i −0.123131 + 0.213269i
\(546\) 0 0
\(547\) 20.5955i 0.880600i 0.897851 + 0.440300i \(0.145128\pi\)
−0.897851 + 0.440300i \(0.854872\pi\)
\(548\) 0.316409 + 0.182679i 0.0135163 + 0.00780366i
\(549\) 0 0
\(550\) 7.02401i 0.299505i
\(551\) −9.90372 + 0.0629162i −0.421913 + 0.00268032i
\(552\) 0 0
\(553\) 2.53629i 0.107854i
\(554\) −47.6623 −2.02498
\(555\) 0 0
\(556\) −3.92462 6.79764i −0.166441 0.288284i
\(557\) −9.85951 + 5.69239i −0.417761 + 0.241194i −0.694119 0.719860i \(-0.744206\pi\)
0.276358 + 0.961055i \(0.410872\pi\)
\(558\) 0 0
\(559\) 30.5228i 1.29098i
\(560\) 42.2232i 1.78425i
\(561\) 0 0
\(562\) −22.9907 39.8211i −0.969806 1.67975i
\(563\) 22.3588 + 38.7266i 0.942311 + 1.63213i 0.761048 + 0.648695i \(0.224685\pi\)
0.181263 + 0.983435i \(0.441982\pi\)
\(564\) 0 0
\(565\) 20.1606 11.6397i 0.848162 0.489687i
\(566\) −17.4628 30.2465i −0.734017 1.27135i
\(567\) 0 0
\(568\) −1.12499 + 1.94854i −0.0472036 + 0.0817590i
\(569\) 0.560747 0.971242i 0.0235077 0.0407166i −0.854032 0.520220i \(-0.825850\pi\)
0.877540 + 0.479504i \(0.159183\pi\)
\(570\) 0 0
\(571\) 9.40145 + 16.2838i 0.393438 + 0.681455i 0.992900 0.118948i \(-0.0379522\pi\)
−0.599462 + 0.800403i \(0.704619\pi\)
\(572\) −4.28320 −0.179090
\(573\) 0 0
\(574\) 42.1695 1.76012
\(575\) 5.42429 + 3.13171i 0.226208 + 0.130601i
\(576\) 0 0
\(577\) −23.2617 −0.968397 −0.484199 0.874958i \(-0.660889\pi\)
−0.484199 + 0.874958i \(0.660889\pi\)
\(578\) 3.43887 5.95629i 0.143038 0.247749i
\(579\) 0 0
\(580\) −1.50316 0.867851i −0.0624154 0.0360355i
\(581\) 7.97531 4.60455i 0.330872 0.191029i
\(582\) 0 0
\(583\) 25.3148i 1.04843i
\(584\) −3.06521 + 5.30911i −0.126839 + 0.219692i
\(585\) 0 0
\(586\) −2.22203 + 3.84867i −0.0917913 + 0.158987i
\(587\) −5.63608 + 3.25400i −0.232626 + 0.134307i −0.611783 0.791026i \(-0.709547\pi\)
0.379157 + 0.925332i \(0.376214\pi\)
\(588\) 0 0
\(589\) −8.51772 + 4.99012i −0.350967 + 0.205615i
\(590\) −5.79077 + 3.34330i −0.238402 + 0.137642i
\(591\) 0 0
\(592\) −17.5558 + 10.1359i −0.721541 + 0.416582i
\(593\) 8.23530 4.75465i 0.338183 0.195250i −0.321285 0.946983i \(-0.604115\pi\)
0.659468 + 0.751732i \(0.270781\pi\)
\(594\) 0 0
\(595\) −16.1063 27.8970i −0.660294 1.14366i
\(596\) −0.666751 0.384949i −0.0273112 0.0157681i
\(597\) 0 0
\(598\) −11.3330 + 19.6293i −0.463439 + 0.802700i
\(599\) −18.2911 + 31.6812i −0.747355 + 1.29446i 0.201731 + 0.979441i \(0.435343\pi\)
−0.949086 + 0.315017i \(0.897990\pi\)
\(600\) 0 0
\(601\) 39.1747 + 22.6175i 1.59797 + 0.922587i 0.991878 + 0.127190i \(0.0405960\pi\)
0.606089 + 0.795397i \(0.292737\pi\)
\(602\) 33.7827 + 58.5133i 1.37688 + 2.38483i
\(603\) 0 0
\(604\) 1.36327 0.787085i 0.0554707 0.0320261i
\(605\) −1.98168 + 1.14412i −0.0805666 + 0.0465151i
\(606\) 0 0
\(607\) 29.9152 17.2715i 1.21422 0.701030i 0.250544 0.968105i \(-0.419391\pi\)
0.963676 + 0.267075i \(0.0860573\pi\)
\(608\) −4.87050 + 8.56110i −0.197525 + 0.347198i
\(609\) 0 0
\(610\) −27.0235 + 15.6020i −1.09415 + 0.631706i
\(611\) 16.0708 27.8355i 0.650156 1.12610i
\(612\) 0 0
\(613\) −5.78197 + 10.0147i −0.233531 + 0.404488i −0.958845 0.283930i \(-0.908362\pi\)
0.725313 + 0.688419i \(0.241695\pi\)
\(614\) 28.0270i 1.13108i
\(615\) 0 0
\(616\) −32.3058 + 18.6517i −1.30164 + 0.751500i
\(617\) −30.1196 17.3895i −1.21257 0.700077i −0.249251 0.968439i \(-0.580184\pi\)
−0.963318 + 0.268362i \(0.913518\pi\)
\(618\) 0 0
\(619\) 8.34985 14.4624i 0.335609 0.581291i −0.647993 0.761646i \(-0.724391\pi\)
0.983602 + 0.180355i \(0.0577247\pi\)
\(620\) −1.73008 −0.0694816
\(621\) 0 0
\(622\) −15.2100 8.78151i −0.609866 0.352107i
\(623\) 72.1430 2.89035
\(624\) 0 0
\(625\) −15.6651 −0.626605
\(626\) 1.14627 + 1.98540i 0.0458142 + 0.0793526i
\(627\) 0 0
\(628\) −3.35307 + 5.80768i −0.133802 + 0.231752i
\(629\) 7.73279 13.3936i 0.308327 0.534038i
\(630\) 0 0
\(631\) 14.7130 + 25.4837i 0.585717 + 1.01449i 0.994786 + 0.101988i \(0.0325202\pi\)
−0.409069 + 0.912503i \(0.634146\pi\)
\(632\) −1.12668 + 0.650491i −0.0448171 + 0.0258752i
\(633\) 0 0
\(634\) 14.1403 + 24.4918i 0.561584 + 0.972693i
\(635\) −3.64605 6.31514i −0.144689 0.250609i
\(636\) 0 0
\(637\) 54.8858i 2.17466i
\(638\) 11.0234i 0.436422i
\(639\) 0 0
\(640\) 22.0290 12.7184i 0.870772 0.502741i
\(641\) −14.9336 25.8657i −0.589840 1.02163i −0.994253 0.107057i \(-0.965857\pi\)
0.404413 0.914577i \(-0.367476\pi\)
\(642\) 0 0
\(643\) 19.8648 0.783391 0.391696 0.920095i \(-0.371889\pi\)
0.391696 + 0.920095i \(0.371889\pi\)
\(644\) 8.45465i 0.333160i
\(645\) 0 0
\(646\) −0.152232 23.9630i −0.00598948 0.942812i
\(647\) 29.2696i 1.15071i 0.817905 + 0.575353i \(0.195135\pi\)
−0.817905 + 0.575353i \(0.804865\pi\)
\(648\) 0 0
\(649\) −6.19726 3.57799i −0.243264 0.140448i
\(650\) 7.58505i 0.297510i
\(651\) 0 0
\(652\) −2.07193 + 3.58869i −0.0811430 + 0.140544i
\(653\) −15.4957 + 8.94643i −0.606393 + 0.350101i −0.771552 0.636166i \(-0.780519\pi\)
0.165160 + 0.986267i \(0.447186\pi\)
\(654\) 0 0
\(655\) −24.6282 −0.962305
\(656\) −13.1011 22.6917i −0.511510 0.885962i
\(657\) 0 0
\(658\) 71.1490i 2.77368i
\(659\) −21.8705 −0.851953 −0.425977 0.904734i \(-0.640069\pi\)
−0.425977 + 0.904734i \(0.640069\pi\)
\(660\) 0 0
\(661\) −3.54829 2.04861i −0.138013 0.0796816i 0.429404 0.903113i \(-0.358724\pi\)
−0.567416 + 0.823431i \(0.692057\pi\)
\(662\) 46.6770i 1.81415i
\(663\) 0 0
\(664\) −4.09091 2.36189i −0.158758 0.0916591i
\(665\) 34.4292 + 19.5872i 1.33511 + 0.759558i
\(666\) 0 0
\(667\) −8.51283 4.91489i −0.329618 0.190305i
\(668\) −1.43239 2.48098i −0.0554210 0.0959919i
\(669\) 0 0
\(670\) 25.0534 0.967897
\(671\) −28.9204 16.6972i −1.11646 0.644589i
\(672\) 0 0
\(673\) −20.9877 12.1172i −0.809015 0.467085i 0.0375989 0.999293i \(-0.488029\pi\)
−0.846614 + 0.532208i \(0.821362\pi\)
\(674\) 4.89581 2.82660i 0.188579 0.108876i
\(675\) 0 0
\(676\) 0.643794 0.0247613
\(677\) −10.2196 + 17.7009i −0.392773 + 0.680302i −0.992814 0.119667i \(-0.961817\pi\)
0.600041 + 0.799969i \(0.295151\pi\)
\(678\) 0 0
\(679\) 64.9829i 2.49381i
\(680\) −8.26169 + 14.3097i −0.316821 + 0.548750i
\(681\) 0 0
\(682\) −5.49386 9.51564i −0.210371 0.364373i
\(683\) 26.3929 1.00990 0.504949 0.863149i \(-0.331511\pi\)
0.504949 + 0.863149i \(0.331511\pi\)
\(684\) 0 0
\(685\) −1.69893 −0.0649128
\(686\) 34.5755 + 59.8865i 1.32010 + 2.28648i
\(687\) 0 0
\(688\) 20.9909 36.3574i 0.800272 1.38611i
\(689\) 27.3368i 1.04145i
\(690\) 0 0
\(691\) 2.05478 3.55898i 0.0781674 0.135390i −0.824292 0.566165i \(-0.808426\pi\)
0.902459 + 0.430775i \(0.141760\pi\)
\(692\) 5.26904 0.200299
\(693\) 0 0
\(694\) −10.2645 + 5.92621i −0.389635 + 0.224956i
\(695\) 31.6093 + 18.2496i 1.19901 + 0.692248i
\(696\) 0 0
\(697\) 17.3118 + 9.99497i 0.655731 + 0.378586i
\(698\) −11.9573 −0.452589
\(699\) 0 0
\(700\) −1.41466 2.45026i −0.0534690 0.0926110i
\(701\) 17.9358 + 10.3552i 0.677424 + 0.391111i 0.798884 0.601485i \(-0.205424\pi\)
−0.121460 + 0.992596i \(0.538758\pi\)
\(702\) 0 0
\(703\) 0.120812 + 19.0172i 0.00455652 + 0.717248i
\(704\) 15.6810 + 9.05344i 0.591001 + 0.341214i
\(705\) 0 0
\(706\) 26.6790i 1.00408i
\(707\) −61.7633 35.6591i −2.32285 1.34110i
\(708\) 0 0
\(709\) 12.0940 0.454199 0.227099 0.973872i \(-0.427076\pi\)
0.227099 + 0.973872i \(0.427076\pi\)
\(710\) 2.65923i 0.0997990i
\(711\) 0 0
\(712\) −18.5028 32.0477i −0.693420 1.20104i
\(713\) −9.79792 −0.366935
\(714\) 0 0
\(715\) 17.2487 9.95853i 0.645064 0.372428i
\(716\) 1.75088 3.03261i 0.0654333 0.113334i
\(717\) 0 0
\(718\) 1.76591i 0.0659030i
\(719\) 19.5960 + 11.3137i 0.730807 + 0.421932i 0.818717 0.574197i \(-0.194686\pi\)
−0.0879104 + 0.996128i \(0.528019\pi\)
\(720\) 0 0
\(721\) 33.5825i 1.25068i
\(722\) 15.0567 + 25.3301i 0.560351 + 0.942690i
\(723\) 0 0
\(724\) 0.966416i 0.0359166i
\(725\) −3.28949 −0.122169
\(726\) 0 0
\(727\) 19.3469 + 33.5098i 0.717536 + 1.24281i 0.961973 + 0.273143i \(0.0880634\pi\)
−0.244437 + 0.969665i \(0.578603\pi\)
\(728\) −34.8862 + 20.1415i −1.29297 + 0.746495i
\(729\) 0 0
\(730\) 7.24548i 0.268167i
\(731\) 32.0286i 1.18462i
\(732\) 0 0
\(733\) −12.7820 22.1391i −0.472114 0.817725i 0.527377 0.849631i \(-0.323175\pi\)
−0.999491 + 0.0319066i \(0.989842\pi\)
\(734\) 0.544871 + 0.943745i 0.0201116 + 0.0348343i
\(735\) 0 0
\(736\) −8.46613 + 4.88792i −0.312066 + 0.180171i
\(737\) 13.4060 + 23.2199i 0.493818 + 0.855318i
\(738\) 0 0
\(739\) 17.9188 31.0363i 0.659154 1.14169i −0.321681 0.946848i \(-0.604248\pi\)
0.980835 0.194840i \(-0.0624187\pi\)
\(740\) −1.66646 + 2.88639i −0.0612602 + 0.106106i
\(741\) 0 0
\(742\) 30.2564 + 52.4056i 1.11075 + 1.92387i
\(743\) 13.4091 0.491931 0.245966 0.969279i \(-0.420895\pi\)
0.245966 + 0.969279i \(0.420895\pi\)
\(744\) 0 0
\(745\) 3.58006 0.131163
\(746\) −12.6218 7.28721i −0.462118 0.266804i
\(747\) 0 0
\(748\) 4.49451 0.164335
\(749\) −14.9710 + 25.9305i −0.547028 + 0.947480i
\(750\) 0 0
\(751\) 37.2232 + 21.4909i 1.35830 + 0.784212i 0.989394 0.145256i \(-0.0464006\pi\)
0.368901 + 0.929469i \(0.379734\pi\)
\(752\) 38.2858 22.1043i 1.39614 0.806061i
\(753\) 0 0
\(754\) 11.9039i 0.433515i
\(755\) −3.65998 + 6.33927i −0.133200 + 0.230710i
\(756\) 0 0
\(757\) 9.39734 16.2767i 0.341552 0.591586i −0.643169 0.765724i \(-0.722381\pi\)
0.984721 + 0.174139i \(0.0557141\pi\)
\(758\) 32.4142 18.7143i 1.17734 0.679735i
\(759\) 0 0
\(760\) −0.129075 20.3179i −0.00468205 0.737009i
\(761\) 30.5686 17.6488i 1.10811 0.639769i 0.169772 0.985483i \(-0.445697\pi\)
0.938340 + 0.345715i \(0.112363\pi\)
\(762\) 0 0
\(763\) 12.7369 7.35366i 0.461107 0.266220i
\(764\) 2.62043 1.51290i 0.0948037 0.0547349i
\(765\) 0 0
\(766\) 22.3948 + 38.7890i 0.809159 + 1.40150i
\(767\) −6.69227 3.86378i −0.241644 0.139513i
\(768\) 0 0
\(769\) −25.1694 + 43.5947i −0.907632 + 1.57206i −0.0902873 + 0.995916i \(0.528779\pi\)
−0.817345 + 0.576149i \(0.804555\pi\)
\(770\) −22.0443 + 38.1818i −0.794420 + 1.37598i
\(771\) 0 0
\(772\) 2.81405 + 1.62469i 0.101280 + 0.0584740i
\(773\) −15.2092 26.3432i −0.547039 0.947499i −0.998476 0.0551956i \(-0.982422\pi\)
0.451437 0.892303i \(-0.350912\pi\)
\(774\) 0 0
\(775\) −2.83955 + 1.63942i −0.102000 + 0.0588896i
\(776\) 28.8670 16.6664i 1.03627 0.598288i
\(777\) 0 0
\(778\) 52.0215 30.0346i 1.86506 1.07679i
\(779\) −24.5806 + 0.156155i −0.880691 + 0.00559484i
\(780\) 0 0
\(781\) −2.46462 + 1.42295i −0.0881910 + 0.0509171i
\(782\) 11.8920 20.5976i 0.425259 0.736570i
\(783\) 0 0
\(784\) 37.7458 65.3776i 1.34806 2.33491i
\(785\) 31.1838i 1.11300i
\(786\) 0 0
\(787\) −21.5905 + 12.4653i −0.769619 + 0.444340i −0.832739 0.553666i \(-0.813228\pi\)
0.0631196 + 0.998006i \(0.479895\pi\)
\(788\) −2.87614 1.66054i −0.102458 0.0591543i
\(789\) 0 0
\(790\) −0.768808 + 1.33161i −0.0273530 + 0.0473767i
\(791\) −59.5539 −2.11749
\(792\) 0 0
\(793\) −31.2304 18.0309i −1.10902 0.640296i
\(794\) −34.7988 −1.23496
\(795\) 0 0
\(796\) −1.76646 −0.0626105
\(797\) −22.8991 39.6625i −0.811129 1.40492i −0.912074 0.410025i \(-0.865520\pi\)
0.100945 0.994892i \(-0.467813\pi\)
\(798\) 0 0
\(799\) −16.8637 + 29.2087i −0.596594 + 1.03333i
\(800\) −1.63572 + 2.83315i −0.0578315 + 0.100167i
\(801\) 0 0
\(802\) 3.59906 + 6.23376i 0.127087 + 0.220122i
\(803\) −6.71524 + 3.87705i −0.236976 + 0.136818i
\(804\) 0 0
\(805\) 19.6572 + 34.0473i 0.692826 + 1.20001i
\(806\) −5.93268 10.2757i −0.208970 0.361946i
\(807\) 0 0
\(808\) 36.5824i 1.28697i
\(809\) 28.2911i 0.994662i 0.867561 + 0.497331i \(0.165686\pi\)
−0.867561 + 0.497331i \(0.834314\pi\)
\(810\) 0 0
\(811\) 8.53722 4.92896i 0.299782 0.173079i −0.342563 0.939495i \(-0.611295\pi\)
0.642345 + 0.766416i \(0.277962\pi\)
\(812\) 2.22015 + 3.84541i 0.0779120 + 0.134948i
\(813\) 0 0
\(814\) −21.1673 −0.741914
\(815\) 19.2691i 0.674967i
\(816\) 0 0
\(817\) −19.9086 33.9823i −0.696514 1.18889i
\(818\) 29.7957i 1.04178i
\(819\) 0 0
\(820\) −3.73078 2.15397i −0.130284 0.0752198i
\(821\) 40.8423i 1.42541i 0.701466 + 0.712703i \(0.252529\pi\)
−0.701466 + 0.712703i \(0.747471\pi\)
\(822\) 0 0
\(823\) 18.3096 31.7131i 0.638231 1.10545i −0.347590 0.937647i \(-0.613000\pi\)
0.985821 0.167802i \(-0.0536669\pi\)
\(824\) 14.9182 8.61303i 0.519700 0.300049i
\(825\) 0 0
\(826\) 17.1058 0.595186
\(827\) −19.3427 33.5025i −0.672611 1.16500i −0.977161 0.212500i \(-0.931839\pi\)
0.304550 0.952496i \(-0.401494\pi\)
\(828\) 0 0
\(829\) 19.0627i 0.662076i −0.943617 0.331038i \(-0.892601\pi\)
0.943617 0.331038i \(-0.107399\pi\)
\(830\) −5.58297 −0.193788
\(831\) 0 0
\(832\) 16.9335 + 9.77658i 0.587065 + 0.338942i
\(833\) 57.5935i 1.99550i
\(834\) 0 0
\(835\) 11.5366 + 6.66068i 0.399242 + 0.230502i
\(836\) −4.76867 + 2.79374i −0.164928 + 0.0966234i
\(837\) 0 0
\(838\) −15.0059 8.66365i −0.518370 0.299281i
\(839\) 3.38323 + 5.85993i 0.116802 + 0.202307i 0.918499 0.395424i \(-0.129402\pi\)
−0.801697 + 0.597731i \(0.796069\pi\)
\(840\) 0 0
\(841\) −23.8375 −0.821983
\(842\) 22.0457 + 12.7281i 0.759744 + 0.438639i
\(843\) 0 0
\(844\) 4.65365 + 2.68679i 0.160185 + 0.0924830i
\(845\) −2.59259 + 1.49683i −0.0891879 + 0.0514927i
\(846\) 0 0
\(847\) 5.85382 0.201140
\(848\) 18.7999 32.5624i 0.645591 1.11820i
\(849\) 0 0
\(850\) 7.95925i 0.273000i
\(851\) −9.43762 + 16.3464i −0.323517 + 0.560349i
\(852\) 0 0
\(853\) −2.01369 3.48781i −0.0689473 0.119420i 0.829491 0.558520i \(-0.188631\pi\)
−0.898438 + 0.439100i \(0.855297\pi\)
\(854\) 79.8266 2.73161
\(855\) 0 0
\(856\) 15.3586 0.524947
\(857\) 9.30815 + 16.1222i 0.317960 + 0.550724i 0.980062 0.198690i \(-0.0636688\pi\)
−0.662102 + 0.749414i \(0.730335\pi\)
\(858\) 0 0
\(859\) −17.5081 + 30.3249i −0.597369 + 1.03467i 0.395839 + 0.918320i \(0.370454\pi\)
−0.993208 + 0.116353i \(0.962880\pi\)
\(860\) 6.90232i 0.235367i
\(861\) 0 0
\(862\) −26.8171 + 46.4485i −0.913393 + 1.58204i
\(863\) 7.92119 0.269640 0.134820 0.990870i \(-0.456954\pi\)
0.134820 + 0.990870i \(0.456954\pi\)
\(864\) 0 0
\(865\) −21.2187 + 12.2506i −0.721458 + 0.416534i
\(866\) −23.2077 13.3990i −0.788630 0.455315i
\(867\) 0 0
\(868\) 3.83295 + 2.21296i 0.130099 + 0.0751126i
\(869\) −1.64555 −0.0558215
\(870\) 0 0
\(871\) 14.4768 + 25.0746i 0.490529 + 0.849621i
\(872\) −6.53336 3.77204i −0.221248 0.127737i
\(873\) 0 0
\(874\) 0.185794 + 29.2461i 0.00628457 + 0.989263i
\(875\) 50.7433 + 29.2967i 1.71544 + 0.990408i
\(876\) 0 0
\(877\) 42.1542i 1.42345i 0.702460 + 0.711723i \(0.252085\pi\)
−0.702460 + 0.711723i \(0.747915\pi\)
\(878\) 39.1787 + 22.6198i 1.32222 + 0.763383i
\(879\) 0 0
\(880\) 27.3945 0.923468
\(881\) 45.4405i 1.53093i 0.643478 + 0.765464i \(0.277491\pi\)
−0.643478 + 0.765464i \(0.722509\pi\)
\(882\) 0 0
\(883\) 9.23912 + 16.0026i 0.310921 + 0.538531i 0.978562 0.205952i \(-0.0660292\pi\)
−0.667641 + 0.744483i \(0.732696\pi\)
\(884\) 4.85350 0.163241
\(885\) 0 0
\(886\) −10.4120 + 6.01134i −0.349796 + 0.201955i
\(887\) −3.22067 + 5.57836i −0.108139 + 0.187303i −0.915016 0.403416i \(-0.867823\pi\)
0.806877 + 0.590719i \(0.201156\pi\)
\(888\) 0 0
\(889\) 18.6548i 0.625661i
\(890\) −37.8768 21.8682i −1.26963 0.733023i
\(891\) 0 0
\(892\) 1.46681i 0.0491126i
\(893\) −0.263467 41.4727i −0.00881659 1.38783i
\(894\) 0 0
\(895\) 16.2833i 0.544290i
\(896\) −65.0731 −2.17394
\(897\) 0 0
\(898\) −16.7118 28.9456i −0.557679 0.965928i
\(899\) 4.45637 2.57289i 0.148628 0.0858106i
\(900\) 0 0
\(901\) 28.6854i 0.955648i
\(902\) 27.3597i 0.910977i
\(903\) 0 0
\(904\) 15.2740 + 26.4553i 0.508005 + 0.879891i
\(905\) 2.24694 + 3.89181i 0.0746907 + 0.129368i
\(906\) 0 0
\(907\) −4.05181 + 2.33932i −0.134538 + 0.0776757i −0.565758 0.824571i \(-0.691417\pi\)
0.431220 + 0.902247i \(0.358083\pi\)
\(908\) 4.13275 + 7.15814i 0.137150 + 0.237551i
\(909\) 0 0
\(910\) −23.8050 + 41.2315i −0.789129 + 1.36681i
\(911\) 0.563718 0.976388i 0.0186768 0.0323492i −0.856536 0.516087i \(-0.827388\pi\)
0.875213 + 0.483738i \(0.160721\pi\)
\(912\) 0 0
\(913\) −2.98744 5.17440i −0.0988699 0.171248i
\(914\) −3.25811 −0.107769
\(915\) 0 0
\(916\) 2.20864 0.0729756
\(917\) 54.5634 + 31.5022i 1.80184 + 1.04029i
\(918\) 0 0
\(919\) 5.71119 0.188395 0.0941974 0.995554i \(-0.469972\pi\)
0.0941974 + 0.995554i \(0.469972\pi\)
\(920\) 10.0831 17.4645i 0.332430 0.575786i
\(921\) 0 0
\(922\) −34.8001 20.0919i −1.14608 0.661690i
\(923\) −2.66148 + 1.53661i −0.0876037 + 0.0505780i
\(924\) 0 0
\(925\) 6.31652i 0.207686i
\(926\) −14.3258 + 24.8130i −0.470774 + 0.815404i
\(927\) 0 0
\(928\) 2.56709 4.44633i 0.0842689 0.145958i
\(929\) −25.0993 + 14.4911i −0.823481 + 0.475437i −0.851615 0.524167i \(-0.824377\pi\)
0.0281347 + 0.999604i \(0.491043\pi\)
\(930\) 0 0
\(931\) −35.7995 61.1068i −1.17328 2.00269i
\(932\) −9.03263 + 5.21499i −0.295873 + 0.170823i
\(933\) 0 0
\(934\) 39.9912 23.0889i 1.30855 0.755493i
\(935\) −18.0996 + 10.4498i −0.591921 + 0.341745i
\(936\) 0 0
\(937\) −15.0321 26.0364i −0.491079 0.850573i 0.508869 0.860844i \(-0.330064\pi\)
−0.999947 + 0.0102711i \(0.996731\pi\)
\(938\) −55.5053 32.0460i −1.81231 1.04634i
\(939\) 0 0
\(940\) 3.63420 6.29463i 0.118535 0.205308i
\(941\) 12.2375 21.1960i 0.398931 0.690969i −0.594663 0.803975i \(-0.702715\pi\)
0.993594 + 0.113006i \(0.0360479\pi\)
\(942\) 0 0
\(943\) −21.1285 12.1985i −0.688038 0.397239i
\(944\) −5.31436 9.20474i −0.172968 0.299589i
\(945\) 0 0
\(946\) 37.9636 21.9183i 1.23430 0.712625i
\(947\) 16.4596 9.50294i 0.534864 0.308804i −0.208131 0.978101i \(-0.566738\pi\)
0.742995 + 0.669297i \(0.233405\pi\)
\(948\) 0 0
\(949\) −7.25161 + 4.18672i −0.235397 + 0.135907i
\(950\) 4.94738 + 8.44477i 0.160514 + 0.273984i
\(951\) 0 0
\(952\) 36.6072 21.1352i 1.18645 0.684995i
\(953\) 0.925412 1.60286i 0.0299770 0.0519217i −0.850648 0.525736i \(-0.823790\pi\)
0.880625 + 0.473814i \(0.157123\pi\)
\(954\) 0 0
\(955\) −7.03506 + 12.1851i −0.227649 + 0.394300i
\(956\) 4.92030i 0.159134i
\(957\) 0 0
\(958\) 19.7852 11.4230i 0.639232 0.369061i
\(959\) 3.76395 + 2.17312i 0.121544 + 0.0701736i
\(960\) 0 0
\(961\) −12.9354 + 22.4049i −0.417273 + 0.722737i
\(962\) −22.8580 −0.736973
\(963\) 0 0
\(964\) 6.68816 + 3.86141i 0.215411 + 0.124368i
\(965\) −15.1098 −0.486401
\(966\) 0 0
\(967\) −43.2041 −1.38935 −0.694674 0.719324i \(-0.744452\pi\)
−0.694674 + 0.719324i \(0.744452\pi\)
\(968\) −1.50135 2.60041i −0.0482552 0.0835805i
\(969\) 0 0
\(970\) 19.6978 34.1176i 0.632458 1.09545i
\(971\) 14.9198 25.8419i 0.478801 0.829307i −0.520904 0.853615i \(-0.674405\pi\)
0.999705 + 0.0243082i \(0.00773832\pi\)
\(972\) 0 0
\(973\) −46.6865 80.8634i −1.49670 2.59236i
\(974\) −18.8707 + 10.8950i −0.604655 + 0.349098i
\(975\) 0 0
\(976\) −24.8002 42.9552i −0.793836 1.37496i
\(977\) 9.91018 + 17.1649i 0.317055 + 0.549155i 0.979872 0.199626i \(-0.0639728\pi\)
−0.662817 + 0.748781i \(0.730639\pi\)
\(978\) 0 0
\(979\) 46.8065i 1.49594i
\(980\) 12.4117i 0.396477i
\(981\) 0 0
\(982\) −22.3096 + 12.8805i −0.711928 + 0.411032i
\(983\) −0.500857 0.867510i −0.0159749 0.0276693i 0.857927 0.513771i \(-0.171752\pi\)
−0.873902 + 0.486102i \(0.838419\pi\)
\(984\) 0 0
\(985\) 15.4432 0.492060
\(986\) 12.4912i 0.397800i
\(987\) 0 0
\(988\) −5.14957 + 3.01688i −0.163830 + 0.0959798i
\(989\) 39.0898i 1.24298i
\(990\) 0 0
\(991\) −22.2607 12.8522i −0.707133 0.408264i 0.102865 0.994695i \(-0.467199\pi\)
−0.809999 + 0.586432i \(0.800532\pi\)
\(992\) 5.11754i 0.162482i
\(993\) 0 0
\(994\) 3.40144 5.89147i 0.107887 0.186866i
\(995\) 7.11362 4.10705i 0.225517 0.130202i
\(996\) 0 0
\(997\) 15.3547 0.486288 0.243144 0.969990i \(-0.421821\pi\)
0.243144 + 0.969990i \(0.421821\pi\)
\(998\) −17.5055 30.3205i −0.554128 0.959779i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.k.a.8.13 36
3.2 odd 2 171.2.k.a.65.6 yes 36
9.4 even 3 171.2.t.a.122.6 yes 36
9.5 odd 6 513.2.t.a.179.13 36
19.12 odd 6 513.2.t.a.278.13 36
57.50 even 6 171.2.t.a.164.6 yes 36
171.31 odd 6 171.2.k.a.50.6 36
171.50 even 6 inner 513.2.k.a.449.13 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.6 36 171.31 odd 6
171.2.k.a.65.6 yes 36 3.2 odd 2
171.2.t.a.122.6 yes 36 9.4 even 3
171.2.t.a.164.6 yes 36 57.50 even 6
513.2.k.a.8.13 36 1.1 even 1 trivial
513.2.k.a.449.13 36 171.50 even 6 inner
513.2.t.a.179.13 36 9.5 odd 6
513.2.t.a.278.13 36 19.12 odd 6