Properties

Label 513.2.t.a.179.10
Level $513$
Weight $2$
Character 513.179
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(179,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.10
Character \(\chi\) \(=\) 513.179
Dual form 513.2.t.a.278.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.676405 q^{2} -1.54248 q^{4} +(0.120039 - 0.0693047i) q^{5} +(0.877021 + 1.51904i) q^{7} -2.39615 q^{8} +(0.0811952 - 0.0468781i) q^{10} +(4.04328 - 2.33439i) q^{11} +6.55555i q^{13} +(0.593221 + 1.02749i) q^{14} +1.46419 q^{16} +(4.06437 + 2.34656i) q^{17} +(4.35516 - 0.180615i) q^{19} +(-0.185158 + 0.106901i) q^{20} +(2.73489 - 1.57899i) q^{22} +1.08841i q^{23} +(-2.49039 + 4.31349i) q^{25} +4.43421i q^{26} +(-1.35278 - 2.34309i) q^{28} +(0.477136 - 0.826424i) q^{29} +(-5.38094 - 3.10669i) q^{31} +5.78268 q^{32} +(2.74916 + 1.58723i) q^{34} +(0.210554 + 0.121563i) q^{35} +4.68926i q^{37} +(2.94585 - 0.122169i) q^{38} +(-0.287632 + 0.166064i) q^{40} +(-3.88755 - 6.73343i) q^{41} -1.08373 q^{43} +(-6.23666 + 3.60074i) q^{44} +0.736205i q^{46} +(10.8483 + 6.26324i) q^{47} +(1.96167 - 3.39771i) q^{49} +(-1.68451 + 2.91767i) q^{50} -10.1118i q^{52} +(-1.27386 - 2.20639i) q^{53} +(0.323568 - 0.560437i) q^{55} +(-2.10147 - 3.63986i) q^{56} +(0.322737 - 0.558997i) q^{58} +(-5.51548 - 9.55309i) q^{59} +(-0.556799 + 0.964404i) q^{61} +(-3.63969 - 2.10138i) q^{62} +0.983063 q^{64} +(0.454331 + 0.786924i) q^{65} +4.42825i q^{67} +(-6.26919 - 3.61952i) q^{68} +(0.142420 + 0.0822261i) q^{70} +(-3.99931 + 6.92701i) q^{71} +(-0.561346 + 0.972280i) q^{73} +3.17184i q^{74} +(-6.71772 + 0.278594i) q^{76} +(7.09208 + 4.09461i) q^{77} -3.40591i q^{79} +(0.175760 - 0.101475i) q^{80} +(-2.62956 - 4.55452i) q^{82} +(-3.07334 + 1.77440i) q^{83} +0.650512 q^{85} -0.733037 q^{86} +(-9.68830 + 5.59354i) q^{88} +(-7.79231 - 13.4967i) q^{89} +(-9.95817 + 5.74935i) q^{91} -1.67885i q^{92} +(7.33782 + 4.23649i) q^{94} +(0.510272 - 0.323514i) q^{95} -14.5597i q^{97} +(1.32688 - 2.29823i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{2} + 30 q^{4} + 3 q^{5} - q^{7} + 12 q^{8} - 6 q^{10} + 9 q^{11} + 3 q^{14} + 18 q^{16} - 27 q^{17} + q^{19} - 9 q^{20} - 6 q^{22} + 11 q^{25} + 2 q^{28} + 12 q^{29} - 12 q^{31} + 30 q^{32}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.676405 0.478291 0.239145 0.970984i \(-0.423133\pi\)
0.239145 + 0.970984i \(0.423133\pi\)
\(3\) 0 0
\(4\) −1.54248 −0.771238
\(5\) 0.120039 0.0693047i 0.0536832 0.0309940i −0.472918 0.881106i \(-0.656799\pi\)
0.526601 + 0.850112i \(0.323466\pi\)
\(6\) 0 0
\(7\) 0.877021 + 1.51904i 0.331483 + 0.574145i 0.982803 0.184658i \(-0.0591178\pi\)
−0.651320 + 0.758803i \(0.725784\pi\)
\(8\) −2.39615 −0.847167
\(9\) 0 0
\(10\) 0.0811952 0.0468781i 0.0256762 0.0148241i
\(11\) 4.04328 2.33439i 1.21909 0.703845i 0.254370 0.967107i \(-0.418132\pi\)
0.964724 + 0.263262i \(0.0847985\pi\)
\(12\) 0 0
\(13\) 6.55555i 1.81818i 0.416597 + 0.909091i \(0.363223\pi\)
−0.416597 + 0.909091i \(0.636777\pi\)
\(14\) 0.593221 + 1.02749i 0.158545 + 0.274608i
\(15\) 0 0
\(16\) 1.46419 0.366046
\(17\) 4.06437 + 2.34656i 0.985754 + 0.569125i 0.904002 0.427528i \(-0.140615\pi\)
0.0817513 + 0.996653i \(0.473949\pi\)
\(18\) 0 0
\(19\) 4.35516 0.180615i 0.999141 0.0414359i
\(20\) −0.185158 + 0.106901i −0.0414025 + 0.0239038i
\(21\) 0 0
\(22\) 2.73489 1.57899i 0.583081 0.336642i
\(23\) 1.08841i 0.226949i 0.993541 + 0.113474i \(0.0361980\pi\)
−0.993541 + 0.113474i \(0.963802\pi\)
\(24\) 0 0
\(25\) −2.49039 + 4.31349i −0.498079 + 0.862698i
\(26\) 4.43421i 0.869620i
\(27\) 0 0
\(28\) −1.35278 2.34309i −0.255652 0.442802i
\(29\) 0.477136 0.826424i 0.0886019 0.153463i −0.818318 0.574765i \(-0.805093\pi\)
0.906920 + 0.421302i \(0.138427\pi\)
\(30\) 0 0
\(31\) −5.38094 3.10669i −0.966445 0.557977i −0.0682946 0.997665i \(-0.521756\pi\)
−0.898151 + 0.439688i \(0.855089\pi\)
\(32\) 5.78268 1.02224
\(33\) 0 0
\(34\) 2.74916 + 1.58723i 0.471477 + 0.272207i
\(35\) 0.210554 + 0.121563i 0.0355901 + 0.0205480i
\(36\) 0 0
\(37\) 4.68926i 0.770909i 0.922727 + 0.385455i \(0.125955\pi\)
−0.922727 + 0.385455i \(0.874045\pi\)
\(38\) 2.94585 0.122169i 0.477880 0.0198184i
\(39\) 0 0
\(40\) −0.287632 + 0.166064i −0.0454786 + 0.0262571i
\(41\) −3.88755 6.73343i −0.607133 1.05158i −0.991711 0.128492i \(-0.958986\pi\)
0.384578 0.923092i \(-0.374347\pi\)
\(42\) 0 0
\(43\) −1.08373 −0.165267 −0.0826333 0.996580i \(-0.526333\pi\)
−0.0826333 + 0.996580i \(0.526333\pi\)
\(44\) −6.23666 + 3.60074i −0.940212 + 0.542832i
\(45\) 0 0
\(46\) 0.736205i 0.108548i
\(47\) 10.8483 + 6.26324i 1.58238 + 0.913588i 0.994511 + 0.104633i \(0.0333667\pi\)
0.587870 + 0.808955i \(0.299967\pi\)
\(48\) 0 0
\(49\) 1.96167 3.39771i 0.280238 0.485387i
\(50\) −1.68451 + 2.91767i −0.238226 + 0.412620i
\(51\) 0 0
\(52\) 10.1118i 1.40225i
\(53\) −1.27386 2.20639i −0.174978 0.303071i 0.765176 0.643822i \(-0.222652\pi\)
−0.940154 + 0.340751i \(0.889319\pi\)
\(54\) 0 0
\(55\) 0.323568 0.560437i 0.0436299 0.0755693i
\(56\) −2.10147 3.63986i −0.280821 0.486396i
\(57\) 0 0
\(58\) 0.322737 0.558997i 0.0423775 0.0733999i
\(59\) −5.51548 9.55309i −0.718054 1.24371i −0.961770 0.273860i \(-0.911700\pi\)
0.243715 0.969847i \(-0.421634\pi\)
\(60\) 0 0
\(61\) −0.556799 + 0.964404i −0.0712908 + 0.123479i −0.899467 0.436988i \(-0.856045\pi\)
0.828176 + 0.560467i \(0.189378\pi\)
\(62\) −3.63969 2.10138i −0.462242 0.266875i
\(63\) 0 0
\(64\) 0.983063 0.122883
\(65\) 0.454331 + 0.786924i 0.0563528 + 0.0976059i
\(66\) 0 0
\(67\) 4.42825i 0.540996i 0.962721 + 0.270498i \(0.0871884\pi\)
−0.962721 + 0.270498i \(0.912812\pi\)
\(68\) −6.26919 3.61952i −0.760251 0.438931i
\(69\) 0 0
\(70\) 0.142420 + 0.0822261i 0.0170224 + 0.00982790i
\(71\) −3.99931 + 6.92701i −0.474631 + 0.822085i −0.999578 0.0290503i \(-0.990752\pi\)
0.524947 + 0.851135i \(0.324085\pi\)
\(72\) 0 0
\(73\) −0.561346 + 0.972280i −0.0657006 + 0.113797i −0.897005 0.442021i \(-0.854262\pi\)
0.831304 + 0.555818i \(0.187595\pi\)
\(74\) 3.17184i 0.368719i
\(75\) 0 0
\(76\) −6.71772 + 0.278594i −0.770576 + 0.0319569i
\(77\) 7.09208 + 4.09461i 0.808217 + 0.466625i
\(78\) 0 0
\(79\) 3.40591i 0.383195i −0.981474 0.191597i \(-0.938633\pi\)
0.981474 0.191597i \(-0.0613668\pi\)
\(80\) 0.175760 0.101475i 0.0196505 0.0113452i
\(81\) 0 0
\(82\) −2.62956 4.55452i −0.290386 0.502963i
\(83\) −3.07334 + 1.77440i −0.337343 + 0.194765i −0.659097 0.752058i \(-0.729061\pi\)
0.321753 + 0.946824i \(0.395728\pi\)
\(84\) 0 0
\(85\) 0.650512 0.0705579
\(86\) −0.733037 −0.0790454
\(87\) 0 0
\(88\) −9.68830 + 5.59354i −1.03278 + 0.596273i
\(89\) −7.79231 13.4967i −0.825983 1.43065i −0.901165 0.433476i \(-0.857287\pi\)
0.0751819 0.997170i \(-0.476046\pi\)
\(90\) 0 0
\(91\) −9.95817 + 5.74935i −1.04390 + 0.602696i
\(92\) 1.67885i 0.175032i
\(93\) 0 0
\(94\) 7.33782 + 4.23649i 0.756838 + 0.436961i
\(95\) 0.510272 0.323514i 0.0523528 0.0331918i
\(96\) 0 0
\(97\) 14.5597i 1.47832i −0.673532 0.739158i \(-0.735224\pi\)
0.673532 0.739158i \(-0.264776\pi\)
\(98\) 1.32688 2.29823i 0.134035 0.232156i
\(99\) 0 0
\(100\) 3.84137 6.65345i 0.384137 0.665345i
\(101\) −6.51866 3.76355i −0.648631 0.374487i 0.139300 0.990250i \(-0.455515\pi\)
−0.787932 + 0.615763i \(0.788848\pi\)
\(102\) 0 0
\(103\) −0.293683 0.169558i −0.0289375 0.0167071i 0.485461 0.874258i \(-0.338652\pi\)
−0.514399 + 0.857551i \(0.671985\pi\)
\(104\) 15.7081i 1.54030i
\(105\) 0 0
\(106\) −0.861646 1.49241i −0.0836904 0.144956i
\(107\) 11.8620 1.14674 0.573369 0.819297i \(-0.305636\pi\)
0.573369 + 0.819297i \(0.305636\pi\)
\(108\) 0 0
\(109\) 8.94952 + 5.16701i 0.857209 + 0.494910i 0.863077 0.505073i \(-0.168534\pi\)
−0.00586793 + 0.999983i \(0.501868\pi\)
\(110\) 0.218863 0.379082i 0.0208678 0.0361441i
\(111\) 0 0
\(112\) 1.28412 + 2.22416i 0.121338 + 0.210164i
\(113\) −1.09234 + 1.89199i −0.102759 + 0.177983i −0.912820 0.408361i \(-0.866100\pi\)
0.810062 + 0.586345i \(0.199434\pi\)
\(114\) 0 0
\(115\) 0.0754319 + 0.130652i 0.00703406 + 0.0121834i
\(116\) −0.735971 + 1.27474i −0.0683332 + 0.118357i
\(117\) 0 0
\(118\) −3.73070 6.46176i −0.343439 0.594853i
\(119\) 8.23194i 0.754621i
\(120\) 0 0
\(121\) 5.39874 9.35088i 0.490794 0.850080i
\(122\) −0.376622 + 0.652328i −0.0340977 + 0.0590590i
\(123\) 0 0
\(124\) 8.29997 + 4.79199i 0.745360 + 0.430334i
\(125\) 1.38343i 0.123738i
\(126\) 0 0
\(127\) −4.44199 + 2.56458i −0.394163 + 0.227570i −0.683962 0.729517i \(-0.739745\pi\)
0.289799 + 0.957087i \(0.406411\pi\)
\(128\) −10.9004 −0.963469
\(129\) 0 0
\(130\) 0.307312 + 0.532279i 0.0269530 + 0.0466840i
\(131\) −13.6250 + 7.86640i −1.19042 + 0.687290i −0.958402 0.285421i \(-0.907867\pi\)
−0.232019 + 0.972711i \(0.574533\pi\)
\(132\) 0 0
\(133\) 4.09392 + 6.45727i 0.354988 + 0.559917i
\(134\) 2.99529i 0.258753i
\(135\) 0 0
\(136\) −9.73883 5.62271i −0.835097 0.482144i
\(137\) 2.84441 + 1.64222i 0.243014 + 0.140304i 0.616561 0.787307i \(-0.288525\pi\)
−0.373547 + 0.927611i \(0.621859\pi\)
\(138\) 0 0
\(139\) 16.1681 1.37136 0.685681 0.727902i \(-0.259505\pi\)
0.685681 + 0.727902i \(0.259505\pi\)
\(140\) −0.324774 0.187509i −0.0274485 0.0158474i
\(141\) 0 0
\(142\) −2.70515 + 4.68546i −0.227011 + 0.393195i
\(143\) 15.3032 + 26.5059i 1.27972 + 2.21654i
\(144\) 0 0
\(145\) 0.132271i 0.0109845i
\(146\) −0.379698 + 0.657655i −0.0314240 + 0.0544279i
\(147\) 0 0
\(148\) 7.23307i 0.594555i
\(149\) 5.19597 2.99989i 0.425670 0.245761i −0.271830 0.962345i \(-0.587629\pi\)
0.697500 + 0.716584i \(0.254296\pi\)
\(150\) 0 0
\(151\) 10.8923 6.28866i 0.886401 0.511764i 0.0136375 0.999907i \(-0.495659\pi\)
0.872764 + 0.488143i \(0.162326\pi\)
\(152\) −10.4356 + 0.432780i −0.846439 + 0.0351031i
\(153\) 0 0
\(154\) 4.79712 + 2.76962i 0.386563 + 0.223182i
\(155\) −0.861232 −0.0691759
\(156\) 0 0
\(157\) −7.88036 13.6492i −0.628922 1.08932i −0.987768 0.155928i \(-0.950163\pi\)
0.358847 0.933396i \(-0.383170\pi\)
\(158\) 2.30377i 0.183278i
\(159\) 0 0
\(160\) 0.694149 0.400767i 0.0548773 0.0316834i
\(161\) −1.65334 + 0.954557i −0.130302 + 0.0752297i
\(162\) 0 0
\(163\) −6.65366 −0.521155 −0.260578 0.965453i \(-0.583913\pi\)
−0.260578 + 0.965453i \(0.583913\pi\)
\(164\) 5.99645 + 10.3861i 0.468244 + 0.811022i
\(165\) 0 0
\(166\) −2.07882 + 1.20021i −0.161348 + 0.0931544i
\(167\) −4.21808 −0.326404 −0.163202 0.986593i \(-0.552182\pi\)
−0.163202 + 0.986593i \(0.552182\pi\)
\(168\) 0 0
\(169\) −29.9752 −2.30579
\(170\) 0.440009 0.0337472
\(171\) 0 0
\(172\) 1.67162 0.127460
\(173\) −10.8955 −0.828372 −0.414186 0.910192i \(-0.635934\pi\)
−0.414186 + 0.910192i \(0.635934\pi\)
\(174\) 0 0
\(175\) −8.73651 −0.660418
\(176\) 5.92011 3.41798i 0.446245 0.257640i
\(177\) 0 0
\(178\) −5.27076 9.12922i −0.395060 0.684264i
\(179\) 5.16954 0.386390 0.193195 0.981160i \(-0.438115\pi\)
0.193195 + 0.981160i \(0.438115\pi\)
\(180\) 0 0
\(181\) 4.70681 2.71748i 0.349855 0.201989i −0.314767 0.949169i \(-0.601926\pi\)
0.664621 + 0.747180i \(0.268593\pi\)
\(182\) −6.73576 + 3.88889i −0.499288 + 0.288264i
\(183\) 0 0
\(184\) 2.60799i 0.192264i
\(185\) 0.324988 + 0.562895i 0.0238936 + 0.0413849i
\(186\) 0 0
\(187\) 21.9112 1.60230
\(188\) −16.7332 9.66091i −1.22039 0.704594i
\(189\) 0 0
\(190\) 0.345151 0.218826i 0.0250399 0.0158753i
\(191\) 10.8662 6.27361i 0.786251 0.453942i −0.0523898 0.998627i \(-0.516684\pi\)
0.838641 + 0.544684i \(0.183350\pi\)
\(192\) 0 0
\(193\) −0.103288 + 0.0596333i −0.00743482 + 0.00429250i −0.503713 0.863871i \(-0.668033\pi\)
0.496278 + 0.868164i \(0.334700\pi\)
\(194\) 9.84827i 0.707065i
\(195\) 0 0
\(196\) −3.02583 + 5.24089i −0.216131 + 0.374349i
\(197\) 14.8993i 1.06153i −0.847519 0.530765i \(-0.821905\pi\)
0.847519 0.530765i \(-0.178095\pi\)
\(198\) 0 0
\(199\) 3.99752 + 6.92391i 0.283377 + 0.490823i 0.972214 0.234093i \(-0.0752120\pi\)
−0.688837 + 0.724916i \(0.741879\pi\)
\(200\) 5.96735 10.3358i 0.421956 0.730849i
\(201\) 0 0
\(202\) −4.40926 2.54568i −0.310234 0.179114i
\(203\) 1.67383 0.117480
\(204\) 0 0
\(205\) −0.933316 0.538851i −0.0651856 0.0376350i
\(206\) −0.198649 0.114690i −0.0138405 0.00799083i
\(207\) 0 0
\(208\) 9.59854i 0.665539i
\(209\) 17.1875 10.8969i 1.18888 0.753754i
\(210\) 0 0
\(211\) 10.1008 5.83168i 0.695366 0.401470i −0.110253 0.993904i \(-0.535166\pi\)
0.805619 + 0.592434i \(0.201833\pi\)
\(212\) 1.96490 + 3.40331i 0.134950 + 0.233740i
\(213\) 0 0
\(214\) 8.02348 0.548474
\(215\) −0.130090 + 0.0751073i −0.00887204 + 0.00512227i
\(216\) 0 0
\(217\) 10.8985i 0.739840i
\(218\) 6.05350 + 3.49499i 0.409995 + 0.236711i
\(219\) 0 0
\(220\) −0.499096 + 0.864460i −0.0336491 + 0.0582819i
\(221\) −15.3830 + 26.6442i −1.03477 + 1.79228i
\(222\) 0 0
\(223\) 20.8438i 1.39581i 0.716192 + 0.697903i \(0.245884\pi\)
−0.716192 + 0.697903i \(0.754116\pi\)
\(224\) 5.07153 + 8.78415i 0.338856 + 0.586916i
\(225\) 0 0
\(226\) −0.738865 + 1.27975i −0.0491486 + 0.0851278i
\(227\) −11.9369 20.6753i −0.792279 1.37227i −0.924553 0.381054i \(-0.875561\pi\)
0.132274 0.991213i \(-0.457772\pi\)
\(228\) 0 0
\(229\) −8.94882 + 15.4998i −0.591355 + 1.02426i 0.402695 + 0.915334i \(0.368073\pi\)
−0.994050 + 0.108923i \(0.965260\pi\)
\(230\) 0.0510225 + 0.0883736i 0.00336432 + 0.00582718i
\(231\) 0 0
\(232\) −1.14329 + 1.98023i −0.0750606 + 0.130009i
\(233\) 1.17373 + 0.677654i 0.0768936 + 0.0443946i 0.537954 0.842974i \(-0.319197\pi\)
−0.461060 + 0.887369i \(0.652531\pi\)
\(234\) 0 0
\(235\) 1.73629 0.113263
\(236\) 8.50750 + 14.7354i 0.553791 + 0.959194i
\(237\) 0 0
\(238\) 5.56812i 0.360928i
\(239\) 6.15584 + 3.55408i 0.398188 + 0.229894i 0.685702 0.727882i \(-0.259495\pi\)
−0.287514 + 0.957777i \(0.592829\pi\)
\(240\) 0 0
\(241\) 14.3678 + 8.29527i 0.925513 + 0.534345i 0.885390 0.464849i \(-0.153892\pi\)
0.0401234 + 0.999195i \(0.487225\pi\)
\(242\) 3.65173 6.32499i 0.234742 0.406585i
\(243\) 0 0
\(244\) 0.858849 1.48757i 0.0549822 0.0952319i
\(245\) 0.543812i 0.0347429i
\(246\) 0 0
\(247\) 1.18403 + 28.5504i 0.0753380 + 1.81662i
\(248\) 12.8935 + 7.44408i 0.818740 + 0.472700i
\(249\) 0 0
\(250\) 0.935760i 0.0591827i
\(251\) 4.43373 2.55982i 0.279855 0.161574i −0.353503 0.935433i \(-0.615010\pi\)
0.633358 + 0.773859i \(0.281676\pi\)
\(252\) 0 0
\(253\) 2.54077 + 4.40074i 0.159737 + 0.276672i
\(254\) −3.00458 + 1.73470i −0.188524 + 0.108845i
\(255\) 0 0
\(256\) −9.33922 −0.583701
\(257\) 3.35771 0.209448 0.104724 0.994501i \(-0.466604\pi\)
0.104724 + 0.994501i \(0.466604\pi\)
\(258\) 0 0
\(259\) −7.12319 + 4.11258i −0.442614 + 0.255543i
\(260\) −0.700794 1.21381i −0.0434614 0.0752774i
\(261\) 0 0
\(262\) −9.21602 + 5.32087i −0.569367 + 0.328724i
\(263\) 28.1184i 1.73385i −0.498437 0.866926i \(-0.666092\pi\)
0.498437 0.866926i \(-0.333908\pi\)
\(264\) 0 0
\(265\) −0.305827 0.176569i −0.0187868 0.0108466i
\(266\) 2.76915 + 4.36773i 0.169788 + 0.267803i
\(267\) 0 0
\(268\) 6.83046i 0.417237i
\(269\) 4.97903 8.62394i 0.303577 0.525811i −0.673366 0.739309i \(-0.735152\pi\)
0.976944 + 0.213498i \(0.0684857\pi\)
\(270\) 0 0
\(271\) 2.04225 3.53729i 0.124058 0.214875i −0.797306 0.603575i \(-0.793742\pi\)
0.921364 + 0.388700i \(0.127076\pi\)
\(272\) 5.95099 + 3.43580i 0.360832 + 0.208326i
\(273\) 0 0
\(274\) 1.92397 + 1.11081i 0.116232 + 0.0671063i
\(275\) 23.2542i 1.40228i
\(276\) 0 0
\(277\) −7.84697 13.5914i −0.471479 0.816626i 0.527989 0.849251i \(-0.322946\pi\)
−0.999468 + 0.0326258i \(0.989613\pi\)
\(278\) 10.9362 0.655909
\(279\) 0 0
\(280\) −0.504519 0.291284i −0.0301508 0.0174075i
\(281\) −3.42719 + 5.93607i −0.204449 + 0.354117i −0.949957 0.312380i \(-0.898874\pi\)
0.745508 + 0.666497i \(0.232207\pi\)
\(282\) 0 0
\(283\) −0.278438 0.482268i −0.0165514 0.0286679i 0.857631 0.514265i \(-0.171935\pi\)
−0.874182 + 0.485598i \(0.838602\pi\)
\(284\) 6.16884 10.6847i 0.366053 0.634023i
\(285\) 0 0
\(286\) 10.3512 + 17.9287i 0.612077 + 1.06015i
\(287\) 6.81892 11.8107i 0.402508 0.697164i
\(288\) 0 0
\(289\) 2.51272 + 4.35215i 0.147807 + 0.256009i
\(290\) 0.0894689i 0.00525379i
\(291\) 0 0
\(292\) 0.865863 1.49972i 0.0506708 0.0877644i
\(293\) 2.27576 3.94172i 0.132951 0.230278i −0.791862 0.610700i \(-0.790888\pi\)
0.924813 + 0.380422i \(0.124221\pi\)
\(294\) 0 0
\(295\) −1.32415 0.764498i −0.0770949 0.0445108i
\(296\) 11.2362i 0.653088i
\(297\) 0 0
\(298\) 3.51458 2.02914i 0.203594 0.117545i
\(299\) −7.13512 −0.412635
\(300\) 0 0
\(301\) −0.950449 1.64623i −0.0547830 0.0948869i
\(302\) 7.36759 4.25368i 0.423957 0.244772i
\(303\) 0 0
\(304\) 6.37676 0.264454i 0.365732 0.0151675i
\(305\) 0.154355i 0.00883835i
\(306\) 0 0
\(307\) 6.39989 + 3.69498i 0.365261 + 0.210883i 0.671386 0.741108i \(-0.265699\pi\)
−0.306125 + 0.951991i \(0.599033\pi\)
\(308\) −10.9394 6.31584i −0.623328 0.359879i
\(309\) 0 0
\(310\) −0.582542 −0.0330862
\(311\) 26.1635 + 15.1055i 1.48360 + 0.856556i 0.999826 0.0186380i \(-0.00593299\pi\)
0.483772 + 0.875194i \(0.339266\pi\)
\(312\) 0 0
\(313\) −0.632333 + 1.09523i −0.0357416 + 0.0619062i −0.883343 0.468727i \(-0.844713\pi\)
0.847601 + 0.530634i \(0.178046\pi\)
\(314\) −5.33032 9.23238i −0.300807 0.521013i
\(315\) 0 0
\(316\) 5.25353i 0.295534i
\(317\) −7.05696 + 12.2230i −0.396358 + 0.686513i −0.993274 0.115792i \(-0.963060\pi\)
0.596915 + 0.802304i \(0.296393\pi\)
\(318\) 0 0
\(319\) 4.45528i 0.249448i
\(320\) 0.118006 0.0681309i 0.00659675 0.00380863i
\(321\) 0 0
\(322\) −1.11833 + 0.645667i −0.0623220 + 0.0359816i
\(323\) 18.1248 + 9.48556i 1.00849 + 0.527791i
\(324\) 0 0
\(325\) −28.2773 16.3259i −1.56854 0.905598i
\(326\) −4.50057 −0.249264
\(327\) 0 0
\(328\) 9.31514 + 16.1343i 0.514342 + 0.890867i
\(329\) 21.9720i 1.21135i
\(330\) 0 0
\(331\) −15.7116 + 9.07108i −0.863586 + 0.498592i −0.865212 0.501407i \(-0.832816\pi\)
0.00162545 + 0.999999i \(0.499483\pi\)
\(332\) 4.74056 2.73696i 0.260172 0.150210i
\(333\) 0 0
\(334\) −2.85313 −0.156116
\(335\) 0.306898 + 0.531563i 0.0167676 + 0.0290424i
\(336\) 0 0
\(337\) 5.33828 3.08206i 0.290795 0.167890i −0.347505 0.937678i \(-0.612971\pi\)
0.638300 + 0.769788i \(0.279638\pi\)
\(338\) −20.2754 −1.10284
\(339\) 0 0
\(340\) −1.00340 −0.0544169
\(341\) −29.0089 −1.57092
\(342\) 0 0
\(343\) 19.1600 1.03454
\(344\) 2.59677 0.140008
\(345\) 0 0
\(346\) −7.36979 −0.396202
\(347\) 13.9949 8.07999i 0.751288 0.433756i −0.0748709 0.997193i \(-0.523854\pi\)
0.826159 + 0.563437i \(0.190521\pi\)
\(348\) 0 0
\(349\) 11.5382 + 19.9847i 0.617624 + 1.06976i 0.989918 + 0.141641i \(0.0452379\pi\)
−0.372294 + 0.928115i \(0.621429\pi\)
\(350\) −5.90942 −0.315872
\(351\) 0 0
\(352\) 23.3810 13.4990i 1.24621 0.719500i
\(353\) −26.3912 + 15.2370i −1.40466 + 0.810982i −0.994867 0.101196i \(-0.967733\pi\)
−0.409795 + 0.912178i \(0.634400\pi\)
\(354\) 0 0
\(355\) 1.10868i 0.0588428i
\(356\) 12.0195 + 20.8183i 0.637030 + 1.10337i
\(357\) 0 0
\(358\) 3.49670 0.184806
\(359\) 1.17054 + 0.675809i 0.0617785 + 0.0356679i 0.530571 0.847640i \(-0.321977\pi\)
−0.468793 + 0.883308i \(0.655311\pi\)
\(360\) 0 0
\(361\) 18.9348 1.57321i 0.996566 0.0828006i
\(362\) 3.18371 1.83812i 0.167332 0.0966093i
\(363\) 0 0
\(364\) 15.3602 8.86824i 0.805096 0.464822i
\(365\) 0.155616i 0.00814530i
\(366\) 0 0
\(367\) −0.793706 + 1.37474i −0.0414311 + 0.0717608i −0.885997 0.463690i \(-0.846525\pi\)
0.844566 + 0.535451i \(0.179858\pi\)
\(368\) 1.59363i 0.0830739i
\(369\) 0 0
\(370\) 0.219823 + 0.380745i 0.0114281 + 0.0197940i
\(371\) 2.23440 3.87010i 0.116004 0.200926i
\(372\) 0 0
\(373\) −26.0140 15.0192i −1.34695 0.777663i −0.359135 0.933285i \(-0.616928\pi\)
−0.987817 + 0.155622i \(0.950262\pi\)
\(374\) 14.8208 0.766366
\(375\) 0 0
\(376\) −25.9940 15.0077i −1.34054 0.773961i
\(377\) 5.41766 + 3.12789i 0.279024 + 0.161095i
\(378\) 0 0
\(379\) 20.4900i 1.05250i −0.850330 0.526250i \(-0.823598\pi\)
0.850330 0.526250i \(-0.176402\pi\)
\(380\) −0.787083 + 0.499012i −0.0403765 + 0.0255988i
\(381\) 0 0
\(382\) 7.34996 4.24350i 0.376057 0.217116i
\(383\) −14.8650 25.7469i −0.759565 1.31561i −0.943073 0.332587i \(-0.892078\pi\)
0.183507 0.983018i \(-0.441255\pi\)
\(384\) 0 0
\(385\) 1.13510 0.0578503
\(386\) −0.0698644 + 0.0403362i −0.00355600 + 0.00205306i
\(387\) 0 0
\(388\) 22.4580i 1.14013i
\(389\) −14.8922 8.59803i −0.755066 0.435938i 0.0724554 0.997372i \(-0.476916\pi\)
−0.827521 + 0.561434i \(0.810250\pi\)
\(390\) 0 0
\(391\) −2.55402 + 4.42369i −0.129162 + 0.223716i
\(392\) −4.70045 + 8.14142i −0.237409 + 0.411204i
\(393\) 0 0
\(394\) 10.0779i 0.507720i
\(395\) −0.236046 0.408843i −0.0118767 0.0205711i
\(396\) 0 0
\(397\) −12.1112 + 20.9772i −0.607844 + 1.05282i 0.383751 + 0.923437i \(0.374632\pi\)
−0.991595 + 0.129380i \(0.958701\pi\)
\(398\) 2.70394 + 4.68337i 0.135536 + 0.234756i
\(399\) 0 0
\(400\) −3.64640 + 6.31575i −0.182320 + 0.315787i
\(401\) −8.70752 15.0819i −0.434833 0.753153i 0.562449 0.826832i \(-0.309859\pi\)
−0.997282 + 0.0736792i \(0.976526\pi\)
\(402\) 0 0
\(403\) 20.3660 35.2750i 1.01450 1.75717i
\(404\) 10.0549 + 5.80519i 0.500249 + 0.288819i
\(405\) 0 0
\(406\) 1.13219 0.0561896
\(407\) 10.9465 + 18.9600i 0.542600 + 0.939811i
\(408\) 0 0
\(409\) 23.3316i 1.15367i −0.816859 0.576837i \(-0.804287\pi\)
0.816859 0.576837i \(-0.195713\pi\)
\(410\) −0.631300 0.364481i −0.0311777 0.0180004i
\(411\) 0 0
\(412\) 0.453000 + 0.261539i 0.0223177 + 0.0128851i
\(413\) 9.67438 16.7565i 0.476045 0.824535i
\(414\) 0 0
\(415\) −0.245948 + 0.425994i −0.0120731 + 0.0209112i
\(416\) 37.9086i 1.85862i
\(417\) 0 0
\(418\) 11.6257 7.37072i 0.568632 0.360514i
\(419\) −6.86848 3.96552i −0.335547 0.193728i 0.322754 0.946483i \(-0.395391\pi\)
−0.658301 + 0.752755i \(0.728725\pi\)
\(420\) 0 0
\(421\) 28.2153i 1.37513i −0.726123 0.687565i \(-0.758680\pi\)
0.726123 0.687565i \(-0.241320\pi\)
\(422\) 6.83221 3.94458i 0.332587 0.192019i
\(423\) 0 0
\(424\) 3.05236 + 5.28684i 0.148236 + 0.256752i
\(425\) −20.2437 + 11.6877i −0.981966 + 0.566938i
\(426\) 0 0
\(427\) −1.95330 −0.0945267
\(428\) −18.2968 −0.884408
\(429\) 0 0
\(430\) −0.0879933 + 0.0508029i −0.00424341 + 0.00244994i
\(431\) 3.39423 + 5.87899i 0.163494 + 0.283181i 0.936120 0.351682i \(-0.114390\pi\)
−0.772625 + 0.634863i \(0.781057\pi\)
\(432\) 0 0
\(433\) 29.7286 17.1638i 1.42866 0.824839i 0.431648 0.902042i \(-0.357932\pi\)
0.997015 + 0.0772030i \(0.0245990\pi\)
\(434\) 7.37181i 0.353858i
\(435\) 0 0
\(436\) −13.8044 7.96999i −0.661112 0.381693i
\(437\) 0.196583 + 4.74019i 0.00940384 + 0.226754i
\(438\) 0 0
\(439\) 13.8023i 0.658747i −0.944200 0.329373i \(-0.893163\pi\)
0.944200 0.329373i \(-0.106837\pi\)
\(440\) −0.775318 + 1.34289i −0.0369618 + 0.0640198i
\(441\) 0 0
\(442\) −10.4051 + 18.0222i −0.494922 + 0.857231i
\(443\) −23.3421 13.4766i −1.10902 0.640292i −0.170444 0.985367i \(-0.554520\pi\)
−0.938575 + 0.345075i \(0.887853\pi\)
\(444\) 0 0
\(445\) −1.87077 1.08009i −0.0886829 0.0512011i
\(446\) 14.0989i 0.667601i
\(447\) 0 0
\(448\) 0.862167 + 1.49332i 0.0407335 + 0.0705526i
\(449\) 1.78199 0.0840972 0.0420486 0.999116i \(-0.486612\pi\)
0.0420486 + 0.999116i \(0.486612\pi\)
\(450\) 0 0
\(451\) −31.4369 18.1501i −1.48030 0.854654i
\(452\) 1.68491 2.91835i 0.0792515 0.137268i
\(453\) 0 0
\(454\) −8.07417 13.9849i −0.378940 0.656343i
\(455\) −0.796915 + 1.38030i −0.0373599 + 0.0647093i
\(456\) 0 0
\(457\) −5.41688 9.38231i −0.253391 0.438886i 0.711066 0.703125i \(-0.248213\pi\)
−0.964457 + 0.264239i \(0.914879\pi\)
\(458\) −6.05303 + 10.4842i −0.282839 + 0.489892i
\(459\) 0 0
\(460\) −0.116352 0.201527i −0.00542494 0.00939626i
\(461\) 20.7337i 0.965665i −0.875713 0.482833i \(-0.839608\pi\)
0.875713 0.482833i \(-0.160392\pi\)
\(462\) 0 0
\(463\) −13.1769 + 22.8231i −0.612384 + 1.06068i 0.378453 + 0.925620i \(0.376456\pi\)
−0.990837 + 0.135060i \(0.956877\pi\)
\(464\) 0.698616 1.21004i 0.0324324 0.0561746i
\(465\) 0 0
\(466\) 0.793917 + 0.458368i 0.0367775 + 0.0212335i
\(467\) 12.0210i 0.556265i −0.960543 0.278133i \(-0.910285\pi\)
0.960543 0.278133i \(-0.0897155\pi\)
\(468\) 0 0
\(469\) −6.72670 + 3.88366i −0.310610 + 0.179331i
\(470\) 1.17444 0.0541727
\(471\) 0 0
\(472\) 13.2159 + 22.8906i 0.608312 + 1.05363i
\(473\) −4.38180 + 2.52983i −0.201475 + 0.116322i
\(474\) 0 0
\(475\) −10.0670 + 19.2357i −0.461904 + 0.882595i
\(476\) 12.6976i 0.581992i
\(477\) 0 0
\(478\) 4.16384 + 2.40400i 0.190450 + 0.109956i
\(479\) −30.4077 17.5559i −1.38936 0.802149i −0.396119 0.918199i \(-0.629643\pi\)
−0.993243 + 0.116051i \(0.962977\pi\)
\(480\) 0 0
\(481\) −30.7407 −1.40165
\(482\) 9.71847 + 5.61096i 0.442664 + 0.255572i
\(483\) 0 0
\(484\) −8.32742 + 14.4235i −0.378519 + 0.655614i
\(485\) −1.00906 1.74774i −0.0458189 0.0793607i
\(486\) 0 0
\(487\) 14.1105i 0.639409i 0.947517 + 0.319705i \(0.103584\pi\)
−0.947517 + 0.319705i \(0.896416\pi\)
\(488\) 1.33417 2.31086i 0.0603952 0.104608i
\(489\) 0 0
\(490\) 0.367837i 0.0166172i
\(491\) 25.6095 14.7857i 1.15574 0.667267i 0.205461 0.978665i \(-0.434130\pi\)
0.950280 + 0.311398i \(0.100797\pi\)
\(492\) 0 0
\(493\) 3.87851 2.23926i 0.174679 0.100851i
\(494\) 0.800884 + 19.3117i 0.0360335 + 0.868873i
\(495\) 0 0
\(496\) −7.87869 4.54877i −0.353764 0.204246i
\(497\) −14.0299 −0.629327
\(498\) 0 0
\(499\) 17.8745 + 30.9595i 0.800172 + 1.38594i 0.919502 + 0.393084i \(0.128592\pi\)
−0.119330 + 0.992855i \(0.538075\pi\)
\(500\) 2.13391i 0.0954314i
\(501\) 0 0
\(502\) 2.99900 1.73147i 0.133852 0.0772794i
\(503\) 3.21576 1.85662i 0.143384 0.0827826i −0.426592 0.904444i \(-0.640286\pi\)
0.569976 + 0.821662i \(0.306953\pi\)
\(504\) 0 0
\(505\) −1.04333 −0.0464275
\(506\) 1.71859 + 2.97668i 0.0764006 + 0.132330i
\(507\) 0 0
\(508\) 6.85166 3.95581i 0.303993 0.175511i
\(509\) −34.9419 −1.54877 −0.774386 0.632714i \(-0.781941\pi\)
−0.774386 + 0.632714i \(0.781941\pi\)
\(510\) 0 0
\(511\) −1.96925 −0.0871145
\(512\) 15.4837 0.684291
\(513\) 0 0
\(514\) 2.27117 0.100177
\(515\) −0.0470047 −0.00207128
\(516\) 0 0
\(517\) 58.4834 2.57210
\(518\) −4.81816 + 2.78177i −0.211698 + 0.122224i
\(519\) 0 0
\(520\) −1.08864 1.88559i −0.0477402 0.0826884i
\(521\) −39.1773 −1.71639 −0.858195 0.513324i \(-0.828414\pi\)
−0.858195 + 0.513324i \(0.828414\pi\)
\(522\) 0 0
\(523\) −35.3599 + 20.4151i −1.54618 + 0.892689i −0.547754 + 0.836639i \(0.684517\pi\)
−0.998428 + 0.0560491i \(0.982150\pi\)
\(524\) 21.0162 12.1337i 0.918099 0.530064i
\(525\) 0 0
\(526\) 19.0194i 0.829285i
\(527\) −14.5801 25.2534i −0.635118 1.10006i
\(528\) 0 0
\(529\) 21.8154 0.948494
\(530\) −0.206863 0.119432i −0.00898554 0.00518780i
\(531\) 0 0
\(532\) −6.31478 9.96019i −0.273780 0.431829i
\(533\) 44.1413 25.4850i 1.91197 1.10388i
\(534\) 0 0
\(535\) 1.42390 0.822089i 0.0615606 0.0355420i
\(536\) 10.6107i 0.458314i
\(537\) 0 0
\(538\) 3.36784 5.83328i 0.145198 0.251490i
\(539\) 18.3172i 0.788977i
\(540\) 0 0
\(541\) −14.5634 25.2245i −0.626129 1.08449i −0.988321 0.152384i \(-0.951305\pi\)
0.362192 0.932104i \(-0.382028\pi\)
\(542\) 1.38139 2.39264i 0.0593358 0.102773i
\(543\) 0 0
\(544\) 23.5029 + 13.5694i 1.00768 + 0.581784i
\(545\) 1.43239 0.0613569
\(546\) 0 0
\(547\) −15.7898 9.11626i −0.675124 0.389783i 0.122891 0.992420i \(-0.460783\pi\)
−0.798015 + 0.602637i \(0.794117\pi\)
\(548\) −4.38744 2.53309i −0.187422 0.108208i
\(549\) 0 0
\(550\) 15.7292i 0.670697i
\(551\) 1.92874 3.68538i 0.0821670 0.157003i
\(552\) 0 0
\(553\) 5.17373 2.98705i 0.220009 0.127022i
\(554\) −5.30773 9.19326i −0.225504 0.390584i
\(555\) 0 0
\(556\) −24.9389 −1.05765
\(557\) 30.1772 17.4228i 1.27865 0.738230i 0.302051 0.953292i \(-0.402329\pi\)
0.976600 + 0.215062i \(0.0689955\pi\)
\(558\) 0 0
\(559\) 7.10441i 0.300485i
\(560\) 0.308290 + 0.177991i 0.0130276 + 0.00752151i
\(561\) 0 0
\(562\) −2.31817 + 4.01519i −0.0977862 + 0.169371i
\(563\) −13.2981 + 23.0329i −0.560446 + 0.970722i 0.437011 + 0.899456i \(0.356037\pi\)
−0.997457 + 0.0712655i \(0.977296\pi\)
\(564\) 0 0
\(565\) 0.302818i 0.0127396i
\(566\) −0.188337 0.326209i −0.00791638 0.0137116i
\(567\) 0 0
\(568\) 9.58294 16.5981i 0.402091 0.696442i
\(569\) 14.6846 + 25.4344i 0.615610 + 1.06627i 0.990277 + 0.139108i \(0.0444235\pi\)
−0.374668 + 0.927159i \(0.622243\pi\)
\(570\) 0 0
\(571\) 0.947842 1.64171i 0.0396660 0.0687035i −0.845511 0.533958i \(-0.820704\pi\)
0.885177 + 0.465255i \(0.154037\pi\)
\(572\) −23.6048 40.8847i −0.986967 1.70948i
\(573\) 0 0
\(574\) 4.61235 7.98882i 0.192516 0.333447i
\(575\) −4.69484 2.71057i −0.195788 0.113038i
\(576\) 0 0
\(577\) 15.2421 0.634537 0.317268 0.948336i \(-0.397234\pi\)
0.317268 + 0.948336i \(0.397234\pi\)
\(578\) 1.69961 + 2.94382i 0.0706946 + 0.122447i
\(579\) 0 0
\(580\) 0.204025i 0.00847168i
\(581\) −5.39077 3.11236i −0.223647 0.129123i
\(582\) 0 0
\(583\) −10.3011 5.94737i −0.426630 0.246315i
\(584\) 1.34507 2.32973i 0.0556594 0.0964049i
\(585\) 0 0
\(586\) 1.53933 2.66620i 0.0635892 0.110140i
\(587\) 41.8816i 1.72864i 0.502943 + 0.864319i \(0.332250\pi\)
−0.502943 + 0.864319i \(0.667750\pi\)
\(588\) 0 0
\(589\) −23.9959 12.5582i −0.988736 0.517453i
\(590\) −0.895661 0.517110i −0.0368738 0.0212891i
\(591\) 0 0
\(592\) 6.86594i 0.282189i
\(593\) −6.19893 + 3.57896i −0.254560 + 0.146970i −0.621850 0.783136i \(-0.713619\pi\)
0.367291 + 0.930106i \(0.380285\pi\)
\(594\) 0 0
\(595\) 0.570512 + 0.988156i 0.0233887 + 0.0405105i
\(596\) −8.01465 + 4.62726i −0.328293 + 0.189540i
\(597\) 0 0
\(598\) −4.82623 −0.197359
\(599\) 6.23274 0.254663 0.127331 0.991860i \(-0.459359\pi\)
0.127331 + 0.991860i \(0.459359\pi\)
\(600\) 0 0
\(601\) −19.8585 + 11.4653i −0.810044 + 0.467679i −0.846971 0.531639i \(-0.821576\pi\)
0.0369272 + 0.999318i \(0.488243\pi\)
\(602\) −0.642889 1.11352i −0.0262022 0.0453835i
\(603\) 0 0
\(604\) −16.8011 + 9.70011i −0.683626 + 0.394692i
\(605\) 1.49663i 0.0608467i
\(606\) 0 0
\(607\) −1.44140 0.832190i −0.0585044 0.0337775i 0.470462 0.882420i \(-0.344087\pi\)
−0.528967 + 0.848642i \(0.677420\pi\)
\(608\) 25.1845 1.04444i 1.02137 0.0423576i
\(609\) 0 0
\(610\) 0.104407i 0.00422730i
\(611\) −41.0590 + 71.1163i −1.66107 + 2.87706i
\(612\) 0 0
\(613\) 18.5832 32.1871i 0.750570 1.30003i −0.196977 0.980408i \(-0.563112\pi\)
0.947547 0.319617i \(-0.103554\pi\)
\(614\) 4.32891 + 2.49930i 0.174701 + 0.100864i
\(615\) 0 0
\(616\) −16.9937 9.81130i −0.684695 0.395309i
\(617\) 15.6197i 0.628824i 0.949287 + 0.314412i \(0.101807\pi\)
−0.949287 + 0.314412i \(0.898193\pi\)
\(618\) 0 0
\(619\) −17.0708 29.5674i −0.686132 1.18842i −0.973080 0.230469i \(-0.925974\pi\)
0.286948 0.957946i \(-0.407359\pi\)
\(620\) 1.32843 0.0533511
\(621\) 0 0
\(622\) 17.6972 + 10.2175i 0.709591 + 0.409683i
\(623\) 13.6680 23.6737i 0.547598 0.948468i
\(624\) 0 0
\(625\) −12.3561 21.4014i −0.494244 0.856055i
\(626\) −0.427713 + 0.740821i −0.0170948 + 0.0296091i
\(627\) 0 0
\(628\) 12.1553 + 21.0536i 0.485048 + 0.840128i
\(629\) −11.0036 + 19.0589i −0.438744 + 0.759927i
\(630\) 0 0
\(631\) 9.09528 + 15.7535i 0.362077 + 0.627136i 0.988303 0.152506i \(-0.0487343\pi\)
−0.626225 + 0.779642i \(0.715401\pi\)
\(632\) 8.16107i 0.324630i
\(633\) 0 0
\(634\) −4.77336 + 8.26771i −0.189574 + 0.328353i
\(635\) −0.355476 + 0.615702i −0.0141066 + 0.0244334i
\(636\) 0 0
\(637\) 22.2739 + 12.8598i 0.882522 + 0.509525i
\(638\) 3.01358i 0.119309i
\(639\) 0 0
\(640\) −1.30848 + 0.755450i −0.0517221 + 0.0298618i
\(641\) 12.6220 0.498539 0.249269 0.968434i \(-0.419810\pi\)
0.249269 + 0.968434i \(0.419810\pi\)
\(642\) 0 0
\(643\) −13.2003 22.8636i −0.520568 0.901651i −0.999714 0.0239155i \(-0.992387\pi\)
0.479146 0.877735i \(-0.340947\pi\)
\(644\) 2.55024 1.47238i 0.100494 0.0580200i
\(645\) 0 0
\(646\) 12.2597 + 6.41608i 0.482351 + 0.252437i
\(647\) 17.9111i 0.704159i 0.935970 + 0.352079i \(0.114525\pi\)
−0.935970 + 0.352079i \(0.885475\pi\)
\(648\) 0 0
\(649\) −44.6013 25.7505i −1.75075 1.01080i
\(650\) −19.1269 11.0429i −0.750219 0.433139i
\(651\) 0 0
\(652\) 10.2631 0.401935
\(653\) −3.92191 2.26431i −0.153476 0.0886094i 0.421295 0.906924i \(-0.361576\pi\)
−0.574771 + 0.818314i \(0.694909\pi\)
\(654\) 0 0
\(655\) −1.09036 + 1.88855i −0.0426038 + 0.0737919i
\(656\) −5.69209 9.85898i −0.222239 0.384929i
\(657\) 0 0
\(658\) 14.8620i 0.579380i
\(659\) −10.4986 + 18.1841i −0.408968 + 0.708353i −0.994774 0.102098i \(-0.967445\pi\)
0.585806 + 0.810451i \(0.300778\pi\)
\(660\) 0 0
\(661\) 19.1203i 0.743693i 0.928294 + 0.371847i \(0.121275\pi\)
−0.928294 + 0.371847i \(0.878725\pi\)
\(662\) −10.6274 + 6.13572i −0.413045 + 0.238472i
\(663\) 0 0
\(664\) 7.36419 4.25172i 0.285786 0.164999i
\(665\) 0.938951 + 0.491398i 0.0364110 + 0.0190556i
\(666\) 0 0
\(667\) 0.899487 + 0.519319i 0.0348283 + 0.0201081i
\(668\) 6.50628 0.251736
\(669\) 0 0
\(670\) 0.207588 + 0.359552i 0.00801981 + 0.0138907i
\(671\) 5.19914i 0.200711i
\(672\) 0 0
\(673\) −8.12324 + 4.68995i −0.313128 + 0.180784i −0.648325 0.761363i \(-0.724530\pi\)
0.335197 + 0.942148i \(0.391197\pi\)
\(674\) 3.61084 2.08472i 0.139084 0.0803004i
\(675\) 0 0
\(676\) 46.2361 1.77831
\(677\) −15.3198 26.5347i −0.588787 1.01981i −0.994392 0.105761i \(-0.966272\pi\)
0.405604 0.914049i \(-0.367061\pi\)
\(678\) 0 0
\(679\) 22.1169 12.7692i 0.848767 0.490036i
\(680\) −1.55872 −0.0597743
\(681\) 0 0
\(682\) −19.6217 −0.751355
\(683\) 30.9867 1.18567 0.592837 0.805323i \(-0.298008\pi\)
0.592837 + 0.805323i \(0.298008\pi\)
\(684\) 0 0
\(685\) 0.455255 0.0173944
\(686\) 12.9599 0.494812
\(687\) 0 0
\(688\) −1.58677 −0.0604952
\(689\) 14.4641 8.35086i 0.551039 0.318142i
\(690\) 0 0
\(691\) 8.00656 + 13.8678i 0.304584 + 0.527555i 0.977169 0.212465i \(-0.0681493\pi\)
−0.672585 + 0.740020i \(0.734816\pi\)
\(692\) 16.8061 0.638872
\(693\) 0 0
\(694\) 9.46625 5.46534i 0.359334 0.207462i
\(695\) 1.94081 1.12053i 0.0736191 0.0425040i
\(696\) 0 0
\(697\) 36.4895i 1.38214i
\(698\) 7.80447 + 13.5177i 0.295404 + 0.511654i
\(699\) 0 0
\(700\) 13.4759 0.509340
\(701\) −29.7676 17.1863i −1.12431 0.649119i −0.181810 0.983334i \(-0.558196\pi\)
−0.942497 + 0.334215i \(0.891529\pi\)
\(702\) 0 0
\(703\) 0.846950 + 20.4224i 0.0319433 + 0.770247i
\(704\) 3.97480 2.29485i 0.149806 0.0864904i
\(705\) 0 0
\(706\) −17.8511 + 10.3064i −0.671836 + 0.387885i
\(707\) 13.2029i 0.496544i
\(708\) 0 0
\(709\) 1.67597 2.90287i 0.0629425 0.109020i −0.832837 0.553518i \(-0.813285\pi\)
0.895779 + 0.444499i \(0.146618\pi\)
\(710\) 0.749920i 0.0281440i
\(711\) 0 0
\(712\) 18.6715 + 32.3401i 0.699746 + 1.21199i
\(713\) 3.38135 5.85666i 0.126632 0.219334i
\(714\) 0 0
\(715\) 3.67397 + 2.12117i 0.137399 + 0.0793272i
\(716\) −7.97389 −0.297998
\(717\) 0 0
\(718\) 0.791756 + 0.457121i 0.0295481 + 0.0170596i
\(719\) 21.7299 + 12.5458i 0.810389 + 0.467878i 0.847091 0.531448i \(-0.178352\pi\)
−0.0367021 + 0.999326i \(0.511685\pi\)
\(720\) 0 0
\(721\) 0.594824i 0.0221524i
\(722\) 12.8076 1.06413i 0.476648 0.0396028i
\(723\) 0 0
\(724\) −7.26015 + 4.19165i −0.269821 + 0.155781i
\(725\) 2.37651 + 4.11624i 0.0882615 + 0.152873i
\(726\) 0 0
\(727\) 46.8522 1.73765 0.868825 0.495119i \(-0.164875\pi\)
0.868825 + 0.495119i \(0.164875\pi\)
\(728\) 23.8613 13.7763i 0.884357 0.510584i
\(729\) 0 0
\(730\) 0.105259i 0.00389582i
\(731\) −4.40466 2.54303i −0.162912 0.0940573i
\(732\) 0 0
\(733\) −11.0279 + 19.1009i −0.407325 + 0.705508i −0.994589 0.103888i \(-0.966872\pi\)
0.587264 + 0.809396i \(0.300205\pi\)
\(734\) −0.536867 + 0.929880i −0.0198161 + 0.0343225i
\(735\) 0 0
\(736\) 6.29392i 0.231997i
\(737\) 10.3372 + 17.9046i 0.380777 + 0.659526i
\(738\) 0 0
\(739\) −6.35102 + 11.0003i −0.233626 + 0.404652i −0.958872 0.283837i \(-0.908392\pi\)
0.725247 + 0.688489i \(0.241726\pi\)
\(740\) −0.501286 0.868253i −0.0184276 0.0319176i
\(741\) 0 0
\(742\) 1.51136 2.61776i 0.0554839 0.0961009i
\(743\) 13.6353 + 23.6170i 0.500230 + 0.866423i 1.00000 0.000265368i \(8.44691e-5\pi\)
−0.499770 + 0.866158i \(0.666582\pi\)
\(744\) 0 0
\(745\) 0.415813 0.720210i 0.0152342 0.0263865i
\(746\) −17.5960 10.1590i −0.644235 0.371949i
\(747\) 0 0
\(748\) −33.7974 −1.23576
\(749\) 10.4032 + 18.0188i 0.380124 + 0.658394i
\(750\) 0 0
\(751\) 41.1874i 1.50295i 0.659762 + 0.751475i \(0.270657\pi\)
−0.659762 + 0.751475i \(0.729343\pi\)
\(752\) 15.8839 + 9.17055i 0.579225 + 0.334416i
\(753\) 0 0
\(754\) 3.66453 + 2.11572i 0.133454 + 0.0770500i
\(755\) 0.871668 1.50977i 0.0317232 0.0549463i
\(756\) 0 0
\(757\) 0.190902 0.330651i 0.00693844 0.0120177i −0.862535 0.505997i \(-0.831125\pi\)
0.869474 + 0.493979i \(0.164458\pi\)
\(758\) 13.8595i 0.503401i
\(759\) 0 0
\(760\) −1.22269 + 0.775187i −0.0443516 + 0.0281190i
\(761\) 35.7329 + 20.6304i 1.29532 + 0.747852i 0.979592 0.200998i \(-0.0644185\pi\)
0.315726 + 0.948850i \(0.397752\pi\)
\(762\) 0 0
\(763\) 18.1263i 0.656216i
\(764\) −16.7609 + 9.67689i −0.606387 + 0.350098i
\(765\) 0 0
\(766\) −10.0547 17.4153i −0.363293 0.629242i
\(767\) 62.6258 36.1570i 2.26129 1.30555i
\(768\) 0 0
\(769\) 17.0881 0.616214 0.308107 0.951352i \(-0.400305\pi\)
0.308107 + 0.951352i \(0.400305\pi\)
\(770\) 0.767790 0.0276692
\(771\) 0 0
\(772\) 0.159319 0.0919829i 0.00573402 0.00331054i
\(773\) −2.79674 4.84409i −0.100592 0.174230i 0.811337 0.584579i \(-0.198740\pi\)
−0.911929 + 0.410349i \(0.865407\pi\)
\(774\) 0 0
\(775\) 26.8013 15.4737i 0.962732 0.555833i
\(776\) 34.8873i 1.25238i
\(777\) 0 0
\(778\) −10.0732 5.81575i −0.361141 0.208505i
\(779\) −18.1470 28.6230i −0.650184 1.02552i
\(780\) 0 0
\(781\) 37.3438i 1.33626i
\(782\) −1.72755 + 2.99221i −0.0617771 + 0.107001i
\(783\) 0 0
\(784\) 2.87225 4.97488i 0.102580 0.177674i
\(785\) −1.89191 1.09229i −0.0675251 0.0389856i
\(786\) 0 0
\(787\) 5.68500 + 3.28224i 0.202648 + 0.116999i 0.597890 0.801578i \(-0.296006\pi\)
−0.395242 + 0.918577i \(0.629339\pi\)
\(788\) 22.9818i 0.818692i
\(789\) 0 0
\(790\) −0.159662 0.276543i −0.00568053 0.00983898i
\(791\) −3.83202 −0.136251
\(792\) 0 0
\(793\) −6.32220 3.65012i −0.224508 0.129620i
\(794\) −8.19208 + 14.1891i −0.290726 + 0.503552i
\(795\) 0 0
\(796\) −6.16608 10.6800i −0.218551 0.378541i
\(797\) 14.0122 24.2699i 0.496339 0.859684i −0.503652 0.863906i \(-0.668011\pi\)
0.999991 + 0.00422263i \(0.00134411\pi\)
\(798\) 0 0
\(799\) 29.3942 + 50.9122i 1.03989 + 1.80115i
\(800\) −14.4011 + 24.9435i −0.509158 + 0.881887i
\(801\) 0 0
\(802\) −5.88981 10.2015i −0.207976 0.360226i
\(803\) 5.24160i 0.184972i
\(804\) 0 0
\(805\) −0.132311 + 0.229169i −0.00466334 + 0.00807714i
\(806\) 13.7757 23.8602i 0.485228 0.840440i
\(807\) 0 0
\(808\) 15.6197 + 9.01803i 0.549499 + 0.317253i
\(809\) 32.3776i 1.13834i 0.822221 + 0.569168i \(0.192734\pi\)
−0.822221 + 0.569168i \(0.807266\pi\)
\(810\) 0 0
\(811\) 6.65521 3.84239i 0.233696 0.134924i −0.378580 0.925569i \(-0.623588\pi\)
0.612276 + 0.790644i \(0.290254\pi\)
\(812\) −2.58185 −0.0906051
\(813\) 0 0
\(814\) 7.40430 + 12.8246i 0.259521 + 0.449503i
\(815\) −0.798701 + 0.461130i −0.0279773 + 0.0161527i
\(816\) 0 0
\(817\) −4.71979 + 0.195737i −0.165125 + 0.00684797i
\(818\) 15.7816i 0.551791i
\(819\) 0 0
\(820\) 1.43962 + 0.831164i 0.0502737 + 0.0290255i
\(821\) 47.8717 + 27.6387i 1.67073 + 0.964598i 0.967228 + 0.253908i \(0.0817159\pi\)
0.703505 + 0.710691i \(0.251617\pi\)
\(822\) 0 0
\(823\) 15.9381 0.555566 0.277783 0.960644i \(-0.410400\pi\)
0.277783 + 0.960644i \(0.410400\pi\)
\(824\) 0.703709 + 0.406287i 0.0245149 + 0.0141537i
\(825\) 0 0
\(826\) 6.54380 11.3342i 0.227688 0.394367i
\(827\) 5.61139 + 9.71922i 0.195127 + 0.337970i 0.946942 0.321404i \(-0.104155\pi\)
−0.751815 + 0.659374i \(0.770821\pi\)
\(828\) 0 0
\(829\) 27.7051i 0.962238i 0.876655 + 0.481119i \(0.159769\pi\)
−0.876655 + 0.481119i \(0.840231\pi\)
\(830\) −0.166360 + 0.288145i −0.00577446 + 0.0100017i
\(831\) 0 0
\(832\) 6.44452i 0.223423i
\(833\) 15.9459 9.20636i 0.552492 0.318981i
\(834\) 0 0
\(835\) −0.506335 + 0.292333i −0.0175224 + 0.0101166i
\(836\) −26.5113 + 16.8082i −0.916912 + 0.581324i
\(837\) 0 0
\(838\) −4.64587 2.68229i −0.160489 0.0926583i
\(839\) 39.0956 1.34973 0.674865 0.737941i \(-0.264202\pi\)
0.674865 + 0.737941i \(0.264202\pi\)
\(840\) 0 0
\(841\) 14.0447 + 24.3261i 0.484299 + 0.838831i
\(842\) 19.0850i 0.657712i
\(843\) 0 0
\(844\) −15.5802 + 8.99523i −0.536293 + 0.309629i
\(845\) −3.59821 + 2.07743i −0.123782 + 0.0714656i
\(846\) 0 0
\(847\) 18.9392 0.650759
\(848\) −1.86517 3.23057i −0.0640501 0.110938i
\(849\) 0 0
\(850\) −13.6930 + 7.90564i −0.469665 + 0.271161i
\(851\) −5.10383 −0.174957
\(852\) 0 0
\(853\) 5.97157 0.204463 0.102231 0.994761i \(-0.467402\pi\)
0.102231 + 0.994761i \(0.467402\pi\)
\(854\) −1.32122 −0.0452112
\(855\) 0 0
\(856\) −28.4230 −0.971478
\(857\) −50.4729 −1.72412 −0.862061 0.506804i \(-0.830827\pi\)
−0.862061 + 0.506804i \(0.830827\pi\)
\(858\) 0 0
\(859\) −12.8388 −0.438053 −0.219026 0.975719i \(-0.570288\pi\)
−0.219026 + 0.975719i \(0.570288\pi\)
\(860\) 0.200660 0.115851i 0.00684245 0.00395049i
\(861\) 0 0
\(862\) 2.29588 + 3.97658i 0.0781979 + 0.135443i
\(863\) −23.6047 −0.803512 −0.401756 0.915747i \(-0.631600\pi\)
−0.401756 + 0.915747i \(0.631600\pi\)
\(864\) 0 0
\(865\) −1.30789 + 0.755112i −0.0444697 + 0.0256746i
\(866\) 20.1085 11.6097i 0.683316 0.394513i
\(867\) 0 0
\(868\) 16.8107i 0.570592i
\(869\) −7.95071 13.7710i −0.269710 0.467151i
\(870\) 0 0
\(871\) −29.0296 −0.983630
\(872\) −21.4444 12.3809i −0.726198 0.419271i
\(873\) 0 0
\(874\) 0.132970 + 3.20629i 0.00449777 + 0.108454i
\(875\) −2.10149 + 1.21330i −0.0710435 + 0.0410170i
\(876\) 0 0
\(877\) 27.8434 16.0754i 0.940206 0.542828i 0.0501813 0.998740i \(-0.484020\pi\)
0.890025 + 0.455912i \(0.150687\pi\)
\(878\) 9.33593i 0.315072i
\(879\) 0 0
\(880\) 0.473764 0.820583i 0.0159706 0.0276619i
\(881\) 51.5651i 1.73727i −0.495449 0.868637i \(-0.664997\pi\)
0.495449 0.868637i \(-0.335003\pi\)
\(882\) 0 0
\(883\) 11.6957 + 20.2576i 0.393592 + 0.681722i 0.992920 0.118781i \(-0.0378988\pi\)
−0.599328 + 0.800504i \(0.704565\pi\)
\(884\) 23.7279 41.0980i 0.798057 1.38227i
\(885\) 0 0
\(886\) −15.7887 9.11564i −0.530433 0.306246i
\(887\) 21.4014 0.718587 0.359294 0.933225i \(-0.383018\pi\)
0.359294 + 0.933225i \(0.383018\pi\)
\(888\) 0 0
\(889\) −7.79143 4.49839i −0.261316 0.150871i
\(890\) −1.26540 0.730577i −0.0424162 0.0244890i
\(891\) 0 0
\(892\) 32.1511i 1.07650i
\(893\) 48.3771 + 25.3180i 1.61888 + 0.847236i
\(894\) 0 0
\(895\) 0.620548 0.358274i 0.0207426 0.0119758i
\(896\) −9.55989 16.5582i −0.319373 0.553171i
\(897\) 0 0
\(898\) 1.20535 0.0402229
\(899\) −5.13488 + 2.96463i −0.171258 + 0.0988758i
\(900\) 0 0
\(901\) 11.9568i 0.398338i
\(902\) −21.2640 12.2768i −0.708015 0.408773i
\(903\) 0 0
\(904\) 2.61741 4.53349i 0.0870538 0.150782i
\(905\) 0.376668 0.652409i 0.0125209 0.0216868i
\(906\) 0 0
\(907\) 35.2140i 1.16926i 0.811299 + 0.584631i \(0.198761\pi\)
−0.811299 + 0.584631i \(0.801239\pi\)
\(908\) 18.4124 + 31.8911i 0.611036 + 1.05834i
\(909\) 0 0
\(910\) −0.539037 + 0.933640i −0.0178689 + 0.0309499i
\(911\) −5.48367 9.49800i −0.181682 0.314683i 0.760771 0.649020i \(-0.224821\pi\)
−0.942454 + 0.334337i \(0.891488\pi\)
\(912\) 0 0
\(913\) −8.28426 + 14.3488i −0.274169 + 0.474874i
\(914\) −3.66401 6.34624i −0.121195 0.209915i
\(915\) 0 0
\(916\) 13.8033 23.9081i 0.456075 0.789946i
\(917\) −23.8988 13.7980i −0.789208 0.455650i
\(918\) 0 0
\(919\) −34.7810 −1.14732 −0.573659 0.819094i \(-0.694477\pi\)
−0.573659 + 0.819094i \(0.694477\pi\)
\(920\) −0.180746 0.313061i −0.00595902 0.0103213i
\(921\) 0 0
\(922\) 14.0244i 0.461869i
\(923\) −45.4103 26.2177i −1.49470 0.862965i
\(924\) 0 0
\(925\) −20.2271 11.6781i −0.665062 0.383973i
\(926\) −8.91295 + 15.4377i −0.292898 + 0.507314i
\(927\) 0 0
\(928\) 2.75913 4.77895i 0.0905727 0.156877i
\(929\) 36.6293i 1.20177i 0.799336 + 0.600885i \(0.205185\pi\)
−0.799336 + 0.600885i \(0.794815\pi\)
\(930\) 0 0
\(931\) 7.92970 15.1519i 0.259885 0.496582i
\(932\) −1.81045 1.04526i −0.0593033 0.0342388i
\(933\) 0 0
\(934\) 8.13106i 0.266056i
\(935\) 2.63020 1.51855i 0.0860167 0.0496618i
\(936\) 0 0
\(937\) −7.00421 12.1317i −0.228818 0.396324i 0.728640 0.684897i \(-0.240153\pi\)
−0.957458 + 0.288573i \(0.906819\pi\)
\(938\) −4.54998 + 2.62693i −0.148562 + 0.0857723i
\(939\) 0 0
\(940\) −2.67819 −0.0873528
\(941\) −14.6106 −0.476292 −0.238146 0.971229i \(-0.576540\pi\)
−0.238146 + 0.971229i \(0.576540\pi\)
\(942\) 0 0
\(943\) 7.32872 4.23124i 0.238656 0.137788i
\(944\) −8.07569 13.9875i −0.262841 0.455254i
\(945\) 0 0
\(946\) −2.96387 + 1.71119i −0.0963638 + 0.0556357i
\(947\) 19.6671i 0.639094i −0.947570 0.319547i \(-0.896469\pi\)
0.947570 0.319547i \(-0.103531\pi\)
\(948\) 0 0
\(949\) −6.37383 3.67993i −0.206903 0.119456i
\(950\) −6.80935 + 13.0111i −0.220924 + 0.422137i
\(951\) 0 0
\(952\) 19.7249i 0.639289i
\(953\) 5.16671 8.94901i 0.167366 0.289887i −0.770127 0.637891i \(-0.779807\pi\)
0.937493 + 0.348004i \(0.113140\pi\)
\(954\) 0 0
\(955\) 0.869582 1.50616i 0.0281390 0.0487382i
\(956\) −9.49524 5.48208i −0.307098 0.177303i
\(957\) 0 0
\(958\) −20.5679 11.8749i −0.664519 0.383660i
\(959\) 5.76105i 0.186034i
\(960\) 0 0
\(961\) 3.80301 + 6.58701i 0.122678 + 0.212484i
\(962\) −20.7931 −0.670398
\(963\) 0 0
\(964\) −22.1620 12.7953i −0.713791 0.412107i
\(965\) −0.00826573 + 0.0143167i −0.000266083 + 0.000460870i
\(966\) 0 0
\(967\) 9.82237 + 17.0128i 0.315866 + 0.547096i 0.979621 0.200854i \(-0.0643716\pi\)
−0.663755 + 0.747950i \(0.731038\pi\)
\(968\) −12.9362 + 22.4061i −0.415784 + 0.720160i
\(969\) 0 0
\(970\) −0.682532 1.18218i −0.0219148 0.0379575i
\(971\) 11.8669 20.5541i 0.380828 0.659614i −0.610353 0.792130i \(-0.708972\pi\)
0.991181 + 0.132516i \(0.0423056\pi\)
\(972\) 0 0
\(973\) 14.1798 + 24.5601i 0.454583 + 0.787360i
\(974\) 9.54444i 0.305823i
\(975\) 0 0
\(976\) −0.815257 + 1.41207i −0.0260957 + 0.0451991i
\(977\) −8.38318 + 14.5201i −0.268202 + 0.464539i −0.968397 0.249412i \(-0.919763\pi\)
0.700196 + 0.713951i \(0.253096\pi\)
\(978\) 0 0
\(979\) −63.0130 36.3806i −2.01390 1.16273i
\(980\) 0.838817i 0.0267950i
\(981\) 0 0
\(982\) 17.3224 10.0011i 0.552780 0.319148i
\(983\) 8.58590 0.273848 0.136924 0.990582i \(-0.456278\pi\)
0.136924 + 0.990582i \(0.456278\pi\)
\(984\) 0 0
\(985\) −1.03259 1.78850i −0.0329011 0.0569863i
\(986\) 2.62344 1.51465i 0.0835475 0.0482362i
\(987\) 0 0
\(988\) −1.82634 44.0384i −0.0581036 1.40105i
\(989\) 1.17954i 0.0375071i
\(990\) 0 0
\(991\) 10.7837 + 6.22600i 0.342557 + 0.197775i 0.661402 0.750031i \(-0.269962\pi\)
−0.318845 + 0.947807i \(0.603295\pi\)
\(992\) −31.1163 17.9650i −0.987942 0.570389i
\(993\) 0 0
\(994\) −9.48990 −0.301001
\(995\) 0.959719 + 0.554094i 0.0304251 + 0.0175660i
\(996\) 0 0
\(997\) 1.75449 3.03886i 0.0555652 0.0962417i −0.836905 0.547348i \(-0.815637\pi\)
0.892470 + 0.451107i \(0.148971\pi\)
\(998\) 12.0904 + 20.9412i 0.382715 + 0.662881i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.t.a.179.10 36
3.2 odd 2 171.2.t.a.122.9 yes 36
9.2 odd 6 513.2.k.a.8.10 36
9.7 even 3 171.2.k.a.65.9 yes 36
19.12 odd 6 513.2.k.a.449.10 36
57.50 even 6 171.2.k.a.50.9 36
171.88 odd 6 171.2.t.a.164.9 yes 36
171.164 even 6 inner 513.2.t.a.278.10 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.9 36 57.50 even 6
171.2.k.a.65.9 yes 36 9.7 even 3
171.2.t.a.122.9 yes 36 3.2 odd 2
171.2.t.a.164.9 yes 36 171.88 odd 6
513.2.k.a.8.10 36 9.2 odd 6
513.2.k.a.449.10 36 19.12 odd 6
513.2.t.a.179.10 36 1.1 even 1 trivial
513.2.t.a.278.10 36 171.164 even 6 inner