Properties

Label 513.2.k.a.8.10
Level $513$
Weight $2$
Character 513.8
Analytic conductor $4.096$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [513,2,Mod(8,513)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(513, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("513.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 513 = 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 513.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.09632562369\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 8.10
Character \(\chi\) \(=\) 513.8
Dual form 513.2.k.a.449.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.338203 + 0.585784i) q^{2} +(0.771238 - 1.33582i) q^{4} -0.138609i q^{5} +(0.877021 - 1.51904i) q^{7} +2.39615 q^{8} +(0.0811952 - 0.0468781i) q^{10} +(4.04328 + 2.33439i) q^{11} +(-5.67727 - 3.27778i) q^{13} +1.18644 q^{14} +(-0.732093 - 1.26802i) q^{16} +(-4.06437 - 2.34656i) q^{17} +(4.35516 - 0.180615i) q^{19} +(-0.185158 - 0.106901i) q^{20} +3.15798i q^{22} +(0.942590 + 0.544205i) q^{23} +4.98079 q^{25} -4.43421i q^{26} +(-1.35278 - 2.34309i) q^{28} +0.954272 q^{29} +(5.38094 - 3.10669i) q^{31} +(2.89134 - 5.00795i) q^{32} -3.17445i q^{34} +(-0.210554 - 0.121563i) q^{35} +4.68926i q^{37} +(1.57873 + 2.49010i) q^{38} -0.332129i q^{40} -7.77509 q^{41} +(0.541863 + 0.938533i) q^{43} +(6.23666 - 3.60074i) q^{44} +0.736205i q^{46} +12.5265i q^{47} +(1.96167 + 3.39771i) q^{49} +(1.68451 + 2.91767i) q^{50} +(-8.75706 + 5.05589i) q^{52} +(1.27386 + 2.20639i) q^{53} +(0.323568 - 0.560437i) q^{55} +(2.10147 - 3.63986i) q^{56} +(0.322737 + 0.558997i) q^{58} -11.0310 q^{59} +1.11360 q^{61} +(3.63969 + 2.10138i) q^{62} +0.983063 q^{64} +(-0.454331 + 0.786924i) q^{65} +(-3.83497 - 2.21412i) q^{67} +(-6.26919 + 3.61952i) q^{68} -0.164452i q^{70} +(3.99931 - 6.92701i) q^{71} +(-0.561346 + 0.972280i) q^{73} +(-2.74689 + 1.58592i) q^{74} +(3.11759 - 5.95702i) q^{76} +(7.09208 - 4.09461i) q^{77} +(-2.94960 + 1.70295i) q^{79} +(-0.175760 + 0.101475i) q^{80} +(-2.62956 - 4.55452i) q^{82} +(-3.07334 - 1.77440i) q^{83} +(-0.325256 + 0.563360i) q^{85} +(-0.366519 + 0.634829i) q^{86} +(9.68830 + 5.59354i) q^{88} +(7.79231 + 13.4967i) q^{89} +(-9.95817 + 5.74935i) q^{91} +(1.45392 - 0.839423i) q^{92} +(-7.33782 + 4.23649i) q^{94} +(-0.0250349 - 0.603666i) q^{95} +(-12.6091 + 7.27986i) q^{97} +(-1.32688 + 2.29823i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3 q^{2} - 15 q^{4} - q^{7} - 12 q^{8} - 6 q^{10} + 9 q^{11} - 6 q^{13} + 6 q^{14} - 9 q^{16} + 27 q^{17} + q^{19} - 9 q^{20} - 9 q^{23} - 22 q^{25} + 2 q^{28} + 24 q^{29} + 12 q^{31} + 15 q^{32}+ \cdots + 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/513\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.338203 + 0.585784i 0.239145 + 0.414212i 0.960469 0.278386i \(-0.0897994\pi\)
−0.721324 + 0.692598i \(0.756466\pi\)
\(3\) 0 0
\(4\) 0.771238 1.33582i 0.385619 0.667912i
\(5\) 0.138609i 0.0619880i −0.999520 0.0309940i \(-0.990133\pi\)
0.999520 0.0309940i \(-0.00986728\pi\)
\(6\) 0 0
\(7\) 0.877021 1.51904i 0.331483 0.574145i −0.651320 0.758803i \(-0.725784\pi\)
0.982803 + 0.184658i \(0.0591178\pi\)
\(8\) 2.39615 0.847167
\(9\) 0 0
\(10\) 0.0811952 0.0468781i 0.0256762 0.0148241i
\(11\) 4.04328 + 2.33439i 1.21909 + 0.703845i 0.964724 0.263262i \(-0.0847985\pi\)
0.254370 + 0.967107i \(0.418132\pi\)
\(12\) 0 0
\(13\) −5.67727 3.27778i −1.57459 0.909091i −0.995595 0.0937619i \(-0.970111\pi\)
−0.578998 0.815329i \(-0.696556\pi\)
\(14\) 1.18644 0.317090
\(15\) 0 0
\(16\) −0.732093 1.26802i −0.183023 0.317005i
\(17\) −4.06437 2.34656i −0.985754 0.569125i −0.0817513 0.996653i \(-0.526051\pi\)
−0.904002 + 0.427528i \(0.859385\pi\)
\(18\) 0 0
\(19\) 4.35516 0.180615i 0.999141 0.0414359i
\(20\) −0.185158 0.106901i −0.0414025 0.0239038i
\(21\) 0 0
\(22\) 3.15798i 0.673284i
\(23\) 0.942590 + 0.544205i 0.196544 + 0.113474i 0.595042 0.803694i \(-0.297135\pi\)
−0.398499 + 0.917169i \(0.630469\pi\)
\(24\) 0 0
\(25\) 4.98079 0.996157
\(26\) 4.43421i 0.869620i
\(27\) 0 0
\(28\) −1.35278 2.34309i −0.255652 0.442802i
\(29\) 0.954272 0.177204 0.0886019 0.996067i \(-0.471760\pi\)
0.0886019 + 0.996067i \(0.471760\pi\)
\(30\) 0 0
\(31\) 5.38094 3.10669i 0.966445 0.557977i 0.0682946 0.997665i \(-0.478244\pi\)
0.898151 + 0.439688i \(0.144911\pi\)
\(32\) 2.89134 5.00795i 0.511122 0.885288i
\(33\) 0 0
\(34\) 3.17445i 0.544414i
\(35\) −0.210554 0.121563i −0.0355901 0.0205480i
\(36\) 0 0
\(37\) 4.68926i 0.770909i 0.922727 + 0.385455i \(0.125955\pi\)
−0.922727 + 0.385455i \(0.874045\pi\)
\(38\) 1.57873 + 2.49010i 0.256103 + 0.403947i
\(39\) 0 0
\(40\) 0.332129i 0.0525142i
\(41\) −7.77509 −1.21427 −0.607133 0.794601i \(-0.707680\pi\)
−0.607133 + 0.794601i \(0.707680\pi\)
\(42\) 0 0
\(43\) 0.541863 + 0.938533i 0.0826333 + 0.143125i 0.904380 0.426728i \(-0.140334\pi\)
−0.821747 + 0.569853i \(0.807000\pi\)
\(44\) 6.23666 3.60074i 0.940212 0.542832i
\(45\) 0 0
\(46\) 0.736205i 0.108548i
\(47\) 12.5265i 1.82718i 0.406641 + 0.913588i \(0.366700\pi\)
−0.406641 + 0.913588i \(0.633300\pi\)
\(48\) 0 0
\(49\) 1.96167 + 3.39771i 0.280238 + 0.485387i
\(50\) 1.68451 + 2.91767i 0.238226 + 0.412620i
\(51\) 0 0
\(52\) −8.75706 + 5.05589i −1.21439 + 0.701126i
\(53\) 1.27386 + 2.20639i 0.174978 + 0.303071i 0.940154 0.340751i \(-0.110681\pi\)
−0.765176 + 0.643822i \(0.777348\pi\)
\(54\) 0 0
\(55\) 0.323568 0.560437i 0.0436299 0.0755693i
\(56\) 2.10147 3.63986i 0.280821 0.486396i
\(57\) 0 0
\(58\) 0.322737 + 0.558997i 0.0423775 + 0.0733999i
\(59\) −11.0310 −1.43611 −0.718054 0.695987i \(-0.754967\pi\)
−0.718054 + 0.695987i \(0.754967\pi\)
\(60\) 0 0
\(61\) 1.11360 0.142582 0.0712908 0.997456i \(-0.477288\pi\)
0.0712908 + 0.997456i \(0.477288\pi\)
\(62\) 3.63969 + 2.10138i 0.462242 + 0.266875i
\(63\) 0 0
\(64\) 0.983063 0.122883
\(65\) −0.454331 + 0.786924i −0.0563528 + 0.0976059i
\(66\) 0 0
\(67\) −3.83497 2.21412i −0.468517 0.270498i 0.247102 0.968989i \(-0.420522\pi\)
−0.715619 + 0.698491i \(0.753855\pi\)
\(68\) −6.26919 + 3.61952i −0.760251 + 0.438931i
\(69\) 0 0
\(70\) 0.164452i 0.0196558i
\(71\) 3.99931 6.92701i 0.474631 0.822085i −0.524947 0.851135i \(-0.675915\pi\)
0.999578 + 0.0290503i \(0.00924829\pi\)
\(72\) 0 0
\(73\) −0.561346 + 0.972280i −0.0657006 + 0.113797i −0.897005 0.442021i \(-0.854262\pi\)
0.831304 + 0.555818i \(0.187595\pi\)
\(74\) −2.74689 + 1.58592i −0.319320 + 0.184359i
\(75\) 0 0
\(76\) 3.11759 5.95702i 0.357612 0.683317i
\(77\) 7.09208 4.09461i 0.808217 0.466625i
\(78\) 0 0
\(79\) −2.94960 + 1.70295i −0.331856 + 0.191597i −0.656665 0.754182i \(-0.728033\pi\)
0.324809 + 0.945780i \(0.394700\pi\)
\(80\) −0.175760 + 0.101475i −0.0196505 + 0.0113452i
\(81\) 0 0
\(82\) −2.62956 4.55452i −0.290386 0.502963i
\(83\) −3.07334 1.77440i −0.337343 0.194765i 0.321753 0.946824i \(-0.395728\pi\)
−0.659097 + 0.752058i \(0.729061\pi\)
\(84\) 0 0
\(85\) −0.325256 + 0.563360i −0.0352789 + 0.0611049i
\(86\) −0.366519 + 0.634829i −0.0395227 + 0.0684553i
\(87\) 0 0
\(88\) 9.68830 + 5.59354i 1.03278 + 0.596273i
\(89\) 7.79231 + 13.4967i 0.825983 + 1.43065i 0.901165 + 0.433476i \(0.142713\pi\)
−0.0751819 + 0.997170i \(0.523954\pi\)
\(90\) 0 0
\(91\) −9.95817 + 5.74935i −1.04390 + 0.602696i
\(92\) 1.45392 0.839423i 0.151582 0.0875159i
\(93\) 0 0
\(94\) −7.33782 + 4.23649i −0.756838 + 0.436961i
\(95\) −0.0250349 0.603666i −0.00256853 0.0619348i
\(96\) 0 0
\(97\) −12.6091 + 7.27986i −1.28026 + 0.739158i −0.976896 0.213717i \(-0.931443\pi\)
−0.303363 + 0.952875i \(0.598110\pi\)
\(98\) −1.32688 + 2.29823i −0.134035 + 0.232156i
\(99\) 0 0
\(100\) 3.84137 6.65345i 0.384137 0.665345i
\(101\) 7.52710i 0.748975i −0.927232 0.374487i \(-0.877819\pi\)
0.927232 0.374487i \(-0.122181\pi\)
\(102\) 0 0
\(103\) 0.293683 0.169558i 0.0289375 0.0167071i −0.485461 0.874258i \(-0.661348\pi\)
0.514399 + 0.857551i \(0.328015\pi\)
\(104\) −13.6036 7.85404i −1.33394 0.770152i
\(105\) 0 0
\(106\) −0.861646 + 1.49241i −0.0836904 + 0.144956i
\(107\) −11.8620 −1.14674 −0.573369 0.819297i \(-0.694364\pi\)
−0.573369 + 0.819297i \(0.694364\pi\)
\(108\) 0 0
\(109\) 8.94952 + 5.16701i 0.857209 + 0.494910i 0.863077 0.505073i \(-0.168534\pi\)
−0.00586793 + 0.999983i \(0.501868\pi\)
\(110\) 0.437726 0.0417356
\(111\) 0 0
\(112\) −2.56824 −0.242676
\(113\) 1.09234 + 1.89199i 0.102759 + 0.177983i 0.912820 0.408361i \(-0.133900\pi\)
−0.810062 + 0.586345i \(0.800566\pi\)
\(114\) 0 0
\(115\) 0.0754319 0.130652i 0.00703406 0.0121834i
\(116\) 0.735971 1.27474i 0.0683332 0.118357i
\(117\) 0 0
\(118\) −3.73070 6.46176i −0.343439 0.594853i
\(119\) −7.12907 + 4.11597i −0.653521 + 0.377310i
\(120\) 0 0
\(121\) 5.39874 + 9.35088i 0.490794 + 0.850080i
\(122\) 0.376622 + 0.652328i 0.0340977 + 0.0590590i
\(123\) 0 0
\(124\) 9.58398i 0.860667i
\(125\) 1.38343i 0.123738i
\(126\) 0 0
\(127\) −4.44199 + 2.56458i −0.394163 + 0.227570i −0.683962 0.729517i \(-0.739745\pi\)
0.289799 + 0.957087i \(0.406411\pi\)
\(128\) −5.45021 9.44003i −0.481735 0.834389i
\(129\) 0 0
\(130\) −0.614623 −0.0539060
\(131\) 15.7328i 1.37458i 0.726383 + 0.687290i \(0.241200\pi\)
−0.726383 + 0.687290i \(0.758800\pi\)
\(132\) 0 0
\(133\) 3.54520 6.77408i 0.307408 0.587387i
\(134\) 2.99529i 0.258753i
\(135\) 0 0
\(136\) −9.73883 5.62271i −0.835097 0.482144i
\(137\) 3.28444i 0.280609i 0.990108 + 0.140304i \(0.0448081\pi\)
−0.990108 + 0.140304i \(0.955192\pi\)
\(138\) 0 0
\(139\) −8.08406 + 14.0020i −0.685681 + 1.18763i 0.287541 + 0.957768i \(0.407162\pi\)
−0.973222 + 0.229866i \(0.926171\pi\)
\(140\) −0.324774 + 0.187509i −0.0274485 + 0.0158474i
\(141\) 0 0
\(142\) 5.41031 0.454023
\(143\) −15.3032 26.5059i −1.27972 2.21654i
\(144\) 0 0
\(145\) 0.132271i 0.0109845i
\(146\) −0.759395 −0.0628480
\(147\) 0 0
\(148\) 6.26402 + 3.61653i 0.514899 + 0.297277i
\(149\) 5.99978i 0.491522i −0.969331 0.245761i \(-0.920962\pi\)
0.969331 0.245761i \(-0.0790378\pi\)
\(150\) 0 0
\(151\) −10.8923 6.28866i −0.886401 0.511764i −0.0136375 0.999907i \(-0.504341\pi\)
−0.872764 + 0.488143i \(0.837674\pi\)
\(152\) 10.4356 0.432780i 0.846439 0.0351031i
\(153\) 0 0
\(154\) 4.79712 + 2.76962i 0.386563 + 0.223182i
\(155\) −0.430616 0.745849i −0.0345879 0.0599080i
\(156\) 0 0
\(157\) 15.7607 1.25784 0.628922 0.777469i \(-0.283497\pi\)
0.628922 + 0.777469i \(0.283497\pi\)
\(158\) −1.99513 1.15189i −0.158724 0.0916392i
\(159\) 0 0
\(160\) −0.694149 0.400767i −0.0548773 0.0316834i
\(161\) 1.65334 0.954557i 0.130302 0.0752297i
\(162\) 0 0
\(163\) −6.65366 −0.521155 −0.260578 0.965453i \(-0.583913\pi\)
−0.260578 + 0.965453i \(0.583913\pi\)
\(164\) −5.99645 + 10.3861i −0.468244 + 0.811022i
\(165\) 0 0
\(166\) 2.40042i 0.186309i
\(167\) −2.10904 + 3.65296i −0.163202 + 0.282675i −0.936015 0.351959i \(-0.885516\pi\)
0.772813 + 0.634634i \(0.218849\pi\)
\(168\) 0 0
\(169\) 14.9876 + 25.9593i 1.15289 + 1.99687i
\(170\) −0.440009 −0.0337472
\(171\) 0 0
\(172\) 1.67162 0.127460
\(173\) −5.44776 9.43580i −0.414186 0.717391i 0.581157 0.813792i \(-0.302600\pi\)
−0.995343 + 0.0964007i \(0.969267\pi\)
\(174\) 0 0
\(175\) 4.36825 7.56604i 0.330209 0.571939i
\(176\) 6.83595i 0.515279i
\(177\) 0 0
\(178\) −5.27076 + 9.12922i −0.395060 + 0.684264i
\(179\) −5.16954 −0.386390 −0.193195 0.981160i \(-0.561885\pi\)
−0.193195 + 0.981160i \(0.561885\pi\)
\(180\) 0 0
\(181\) 4.70681 2.71748i 0.349855 0.201989i −0.314767 0.949169i \(-0.601926\pi\)
0.664621 + 0.747180i \(0.268593\pi\)
\(182\) −6.73576 3.88889i −0.499288 0.288264i
\(183\) 0 0
\(184\) 2.25859 + 1.30400i 0.166505 + 0.0961318i
\(185\) 0.649975 0.0477871
\(186\) 0 0
\(187\) −10.9556 18.9756i −0.801151 1.38763i
\(188\) 16.7332 + 9.66091i 1.22039 + 0.704594i
\(189\) 0 0
\(190\) 0.345151 0.218826i 0.0250399 0.0158753i
\(191\) 10.8662 + 6.27361i 0.786251 + 0.453942i 0.838641 0.544684i \(-0.183350\pi\)
−0.0523898 + 0.998627i \(0.516684\pi\)
\(192\) 0 0
\(193\) 0.119267i 0.00858499i −0.999991 0.00429250i \(-0.998634\pi\)
0.999991 0.00429250i \(-0.00136635\pi\)
\(194\) −8.52885 4.92413i −0.612336 0.353532i
\(195\) 0 0
\(196\) 6.05166 0.432261
\(197\) 14.8993i 1.06153i 0.847519 + 0.530765i \(0.178095\pi\)
−0.847519 + 0.530765i \(0.821905\pi\)
\(198\) 0 0
\(199\) 3.99752 + 6.92391i 0.283377 + 0.490823i 0.972214 0.234093i \(-0.0752120\pi\)
−0.688837 + 0.724916i \(0.741879\pi\)
\(200\) 11.9347 0.843911
\(201\) 0 0
\(202\) 4.40926 2.54568i 0.310234 0.179114i
\(203\) 0.836917 1.44958i 0.0587400 0.101741i
\(204\) 0 0
\(205\) 1.07770i 0.0752699i
\(206\) 0.198649 + 0.114690i 0.0138405 + 0.00799083i
\(207\) 0 0
\(208\) 9.59854i 0.665539i
\(209\) 18.0307 + 9.43635i 1.24721 + 0.652726i
\(210\) 0 0
\(211\) 11.6634i 0.802939i 0.915872 + 0.401470i \(0.131500\pi\)
−0.915872 + 0.401470i \(0.868500\pi\)
\(212\) 3.92980 0.269900
\(213\) 0 0
\(214\) −4.01174 6.94854i −0.274237 0.474992i
\(215\) 0.130090 0.0751073i 0.00887204 0.00512227i
\(216\) 0 0
\(217\) 10.8985i 0.739840i
\(218\) 6.98998i 0.473421i
\(219\) 0 0
\(220\) −0.499096 0.864460i −0.0336491 0.0582819i
\(221\) 15.3830 + 26.6442i 1.03477 + 1.79228i
\(222\) 0 0
\(223\) 18.0513 10.4219i 1.20880 0.697903i 0.246306 0.969192i \(-0.420783\pi\)
0.962498 + 0.271289i \(0.0874498\pi\)
\(224\) −5.07153 8.78415i −0.338856 0.586916i
\(225\) 0 0
\(226\) −0.738865 + 1.27975i −0.0491486 + 0.0851278i
\(227\) 11.9369 20.6753i 0.792279 1.37227i −0.132274 0.991213i \(-0.542228\pi\)
0.924553 0.381054i \(-0.124439\pi\)
\(228\) 0 0
\(229\) −8.94882 15.4998i −0.591355 1.02426i −0.994050 0.108923i \(-0.965260\pi\)
0.402695 0.915334i \(-0.368073\pi\)
\(230\) 0.102045 0.00672865
\(231\) 0 0
\(232\) 2.28658 0.150121
\(233\) −1.17373 0.677654i −0.0768936 0.0443946i 0.461060 0.887369i \(-0.347469\pi\)
−0.537954 + 0.842974i \(0.680803\pi\)
\(234\) 0 0
\(235\) 1.73629 0.113263
\(236\) −8.50750 + 14.7354i −0.553791 + 0.959194i
\(237\) 0 0
\(238\) −4.82214 2.78406i −0.312573 0.180464i
\(239\) 6.15584 3.55408i 0.398188 0.229894i −0.287514 0.957777i \(-0.592829\pi\)
0.685702 + 0.727882i \(0.259495\pi\)
\(240\) 0 0
\(241\) 16.5905i 1.06869i −0.845266 0.534345i \(-0.820558\pi\)
0.845266 0.534345i \(-0.179442\pi\)
\(242\) −3.65173 + 6.32499i −0.234742 + 0.406585i
\(243\) 0 0
\(244\) 0.858849 1.48757i 0.0549822 0.0952319i
\(245\) 0.470955 0.271906i 0.0300882 0.0173714i
\(246\) 0 0
\(247\) −25.3174 13.2498i −1.61091 0.843066i
\(248\) 12.8935 7.44408i 0.818740 0.472700i
\(249\) 0 0
\(250\) 0.810392 0.467880i 0.0512537 0.0295913i
\(251\) −4.43373 + 2.55982i −0.279855 + 0.161574i −0.633358 0.773859i \(-0.718324\pi\)
0.353503 + 0.935433i \(0.384990\pi\)
\(252\) 0 0
\(253\) 2.54077 + 4.40074i 0.159737 + 0.276672i
\(254\) −3.00458 1.73470i −0.188524 0.108845i
\(255\) 0 0
\(256\) 4.66961 8.08800i 0.291851 0.505500i
\(257\) 1.67885 2.90786i 0.104724 0.181387i −0.808901 0.587944i \(-0.799937\pi\)
0.913625 + 0.406557i \(0.133271\pi\)
\(258\) 0 0
\(259\) 7.12319 + 4.11258i 0.442614 + 0.255543i
\(260\) 0.700794 + 1.21381i 0.0434614 + 0.0752774i
\(261\) 0 0
\(262\) −9.21602 + 5.32087i −0.569367 + 0.328724i
\(263\) 24.3512 14.0592i 1.50156 0.866926i 0.501562 0.865122i \(-0.332759\pi\)
0.999998 0.00180407i \(-0.000574255\pi\)
\(264\) 0 0
\(265\) 0.305827 0.176569i 0.0187868 0.0108466i
\(266\) 5.16714 0.214289i 0.316818 0.0131389i
\(267\) 0 0
\(268\) −5.91535 + 3.41523i −0.361338 + 0.208618i
\(269\) −4.97903 + 8.62394i −0.303577 + 0.525811i −0.976944 0.213498i \(-0.931514\pi\)
0.673366 + 0.739309i \(0.264848\pi\)
\(270\) 0 0
\(271\) 2.04225 3.53729i 0.124058 0.214875i −0.797306 0.603575i \(-0.793742\pi\)
0.921364 + 0.388700i \(0.127076\pi\)
\(272\) 6.87161i 0.416652i
\(273\) 0 0
\(274\) −1.92397 + 1.11081i −0.116232 + 0.0671063i
\(275\) 20.1387 + 11.6271i 1.21441 + 0.701140i
\(276\) 0 0
\(277\) −7.84697 + 13.5914i −0.471479 + 0.816626i −0.999468 0.0326258i \(-0.989613\pi\)
0.527989 + 0.849251i \(0.322946\pi\)
\(278\) −10.9362 −0.655909
\(279\) 0 0
\(280\) −0.504519 0.291284i −0.0301508 0.0174075i
\(281\) −6.85439 −0.408899 −0.204449 0.978877i \(-0.565540\pi\)
−0.204449 + 0.978877i \(0.565540\pi\)
\(282\) 0 0
\(283\) 0.556875 0.0331028 0.0165514 0.999863i \(-0.494731\pi\)
0.0165514 + 0.999863i \(0.494731\pi\)
\(284\) −6.16884 10.6847i −0.366053 0.634023i
\(285\) 0 0
\(286\) 10.3512 17.9287i 0.612077 1.06015i
\(287\) −6.81892 + 11.8107i −0.402508 + 0.697164i
\(288\) 0 0
\(289\) 2.51272 + 4.35215i 0.147807 + 0.256009i
\(290\) 0.0774823 0.0447344i 0.00454992 0.00262690i
\(291\) 0 0
\(292\) 0.865863 + 1.49972i 0.0506708 + 0.0877644i
\(293\) −2.27576 3.94172i −0.132951 0.230278i 0.791862 0.610700i \(-0.209112\pi\)
−0.924813 + 0.380422i \(0.875779\pi\)
\(294\) 0 0
\(295\) 1.52900i 0.0890216i
\(296\) 11.2362i 0.653088i
\(297\) 0 0
\(298\) 3.51458 2.02914i 0.203594 0.117545i
\(299\) −3.56756 6.17920i −0.206317 0.357352i
\(300\) 0 0
\(301\) 1.90090 0.109566
\(302\) 8.50736i 0.489544i
\(303\) 0 0
\(304\) −3.41740 5.39021i −0.196001 0.309149i
\(305\) 0.154355i 0.00883835i
\(306\) 0 0
\(307\) 6.39989 + 3.69498i 0.365261 + 0.210883i 0.671386 0.741108i \(-0.265699\pi\)
−0.306125 + 0.951991i \(0.599033\pi\)
\(308\) 12.6317i 0.719757i
\(309\) 0 0
\(310\) 0.291271 0.504496i 0.0165431 0.0286535i
\(311\) 26.1635 15.1055i 1.48360 0.856556i 0.483772 0.875194i \(-0.339266\pi\)
0.999826 + 0.0186380i \(0.00593299\pi\)
\(312\) 0 0
\(313\) 1.26467 0.0714831 0.0357416 0.999361i \(-0.488621\pi\)
0.0357416 + 0.999361i \(0.488621\pi\)
\(314\) 5.33032 + 9.23238i 0.300807 + 0.521013i
\(315\) 0 0
\(316\) 5.25353i 0.295534i
\(317\) −14.1139 −0.792717 −0.396358 0.918096i \(-0.629726\pi\)
−0.396358 + 0.918096i \(0.629726\pi\)
\(318\) 0 0
\(319\) 3.85839 + 2.22764i 0.216028 + 0.124724i
\(320\) 0.136262i 0.00761727i
\(321\) 0 0
\(322\) 1.11833 + 0.645667i 0.0623220 + 0.0359816i
\(323\) −18.1248 9.48556i −1.00849 0.527791i
\(324\) 0 0
\(325\) −28.2773 16.3259i −1.56854 0.905598i
\(326\) −2.25029 3.89761i −0.124632 0.215869i
\(327\) 0 0
\(328\) −18.6303 −1.02868
\(329\) 19.0283 + 10.9860i 1.04906 + 0.605677i
\(330\) 0 0
\(331\) 15.7116 + 9.07108i 0.863586 + 0.498592i 0.865212 0.501407i \(-0.167184\pi\)
−0.00162545 + 0.999999i \(0.500517\pi\)
\(332\) −4.74056 + 2.73696i −0.260172 + 0.150210i
\(333\) 0 0
\(334\) −2.85313 −0.156116
\(335\) −0.306898 + 0.531563i −0.0167676 + 0.0290424i
\(336\) 0 0
\(337\) 6.16412i 0.335781i 0.985806 + 0.167890i \(0.0536955\pi\)
−0.985806 + 0.167890i \(0.946305\pi\)
\(338\) −10.1377 + 17.5590i −0.551418 + 0.955084i
\(339\) 0 0
\(340\) 0.501699 + 0.868969i 0.0272085 + 0.0471264i
\(341\) 29.0089 1.57092
\(342\) 0 0
\(343\) 19.1600 1.03454
\(344\) 1.29838 + 2.24887i 0.0700041 + 0.121251i
\(345\) 0 0
\(346\) 3.68490 6.38243i 0.198101 0.343121i
\(347\) 16.1600i 0.867513i −0.901030 0.433756i \(-0.857188\pi\)
0.901030 0.433756i \(-0.142812\pi\)
\(348\) 0 0
\(349\) 11.5382 19.9847i 0.617624 1.06976i −0.372294 0.928115i \(-0.621429\pi\)
0.989918 0.141641i \(-0.0452379\pi\)
\(350\) 5.90942 0.315872
\(351\) 0 0
\(352\) 23.3810 13.4990i 1.24621 0.719500i
\(353\) −26.3912 15.2370i −1.40466 0.810982i −0.409795 0.912178i \(-0.634400\pi\)
−0.994867 + 0.101196i \(0.967733\pi\)
\(354\) 0 0
\(355\) −0.960149 0.554342i −0.0509594 0.0294214i
\(356\) 24.0389 1.27406
\(357\) 0 0
\(358\) −1.74835 3.02823i −0.0924032 0.160047i
\(359\) −1.17054 0.675809i −0.0617785 0.0356679i 0.468793 0.883308i \(-0.344689\pi\)
−0.530571 + 0.847640i \(0.678023\pi\)
\(360\) 0 0
\(361\) 18.9348 1.57321i 0.996566 0.0828006i
\(362\) 3.18371 + 1.83812i 0.167332 + 0.0966093i
\(363\) 0 0
\(364\) 17.7365i 0.929644i
\(365\) 0.134767 + 0.0778079i 0.00705404 + 0.00407265i
\(366\) 0 0
\(367\) 1.58741 0.0828622 0.0414311 0.999141i \(-0.486808\pi\)
0.0414311 + 0.999141i \(0.486808\pi\)
\(368\) 1.59363i 0.0830739i
\(369\) 0 0
\(370\) 0.219823 + 0.380745i 0.0114281 + 0.0197940i
\(371\) 4.46881 0.232009
\(372\) 0 0
\(373\) 26.0140 15.0192i 1.34695 0.777663i 0.359135 0.933285i \(-0.383072\pi\)
0.987817 + 0.155622i \(0.0497383\pi\)
\(374\) 7.41041 12.8352i 0.383183 0.663693i
\(375\) 0 0
\(376\) 30.0153i 1.54792i
\(377\) −5.41766 3.12789i −0.279024 0.161095i
\(378\) 0 0
\(379\) 20.4900i 1.05250i −0.850330 0.526250i \(-0.823598\pi\)
0.850330 0.526250i \(-0.176402\pi\)
\(380\) −0.825699 0.432128i −0.0423575 0.0221677i
\(381\) 0 0
\(382\) 8.48700i 0.434233i
\(383\) −29.7300 −1.51913 −0.759565 0.650431i \(-0.774588\pi\)
−0.759565 + 0.650431i \(0.774588\pi\)
\(384\) 0 0
\(385\) −0.567552 0.983029i −0.0289251 0.0500998i
\(386\) 0.0698644 0.0403362i 0.00355600 0.00205306i
\(387\) 0 0
\(388\) 22.4580i 1.14013i
\(389\) 17.1961i 0.871875i −0.899977 0.435938i \(-0.856417\pi\)
0.899977 0.435938i \(-0.143583\pi\)
\(390\) 0 0
\(391\) −2.55402 4.42369i −0.129162 0.223716i
\(392\) 4.70045 + 8.14142i 0.237409 + 0.411204i
\(393\) 0 0
\(394\) −8.72776 + 5.03897i −0.439698 + 0.253860i
\(395\) 0.236046 + 0.408843i 0.0118767 + 0.0205711i
\(396\) 0 0
\(397\) −12.1112 + 20.9772i −0.607844 + 1.05282i 0.383751 + 0.923437i \(0.374632\pi\)
−0.991595 + 0.129380i \(0.958701\pi\)
\(398\) −2.70394 + 4.68337i −0.135536 + 0.234756i
\(399\) 0 0
\(400\) −3.64640 6.31575i −0.182320 0.315787i
\(401\) −17.4150 −0.869666 −0.434833 0.900511i \(-0.643193\pi\)
−0.434833 + 0.900511i \(0.643193\pi\)
\(402\) 0 0
\(403\) −40.7321 −2.02901
\(404\) −10.0549 5.80519i −0.500249 0.288819i
\(405\) 0 0
\(406\) 1.13219 0.0561896
\(407\) −10.9465 + 18.9600i −0.542600 + 0.939811i
\(408\) 0 0
\(409\) 20.2058 + 11.6658i 0.999111 + 0.576837i 0.907985 0.419002i \(-0.137620\pi\)
0.0911258 + 0.995839i \(0.470953\pi\)
\(410\) −0.631300 + 0.364481i −0.0311777 + 0.0180004i
\(411\) 0 0
\(412\) 0.523079i 0.0257702i
\(413\) −9.67438 + 16.7565i −0.476045 + 0.824535i
\(414\) 0 0
\(415\) −0.245948 + 0.425994i −0.0120731 + 0.0209112i
\(416\) −32.8299 + 18.9543i −1.60962 + 0.929312i
\(417\) 0 0
\(418\) 0.570379 + 13.7535i 0.0278981 + 0.672706i
\(419\) −6.86848 + 3.96552i −0.335547 + 0.193728i −0.658301 0.752755i \(-0.728725\pi\)
0.322754 + 0.946483i \(0.395391\pi\)
\(420\) 0 0
\(421\) −24.4352 + 14.1077i −1.19090 + 0.687565i −0.958510 0.285058i \(-0.907987\pi\)
−0.232387 + 0.972623i \(0.574654\pi\)
\(422\) −6.83221 + 3.94458i −0.332587 + 0.192019i
\(423\) 0 0
\(424\) 3.05236 + 5.28684i 0.148236 + 0.256752i
\(425\) −20.2437 11.6877i −0.981966 0.566938i
\(426\) 0 0
\(427\) 0.976648 1.69160i 0.0472633 0.0818625i
\(428\) −9.14839 + 15.8455i −0.442204 + 0.765920i
\(429\) 0 0
\(430\) 0.0879933 + 0.0508029i 0.00424341 + 0.00244994i
\(431\) −3.39423 5.87899i −0.163494 0.283181i 0.772625 0.634863i \(-0.218943\pi\)
−0.936120 + 0.351682i \(0.885610\pi\)
\(432\) 0 0
\(433\) 29.7286 17.1638i 1.42866 0.824839i 0.431648 0.902042i \(-0.357932\pi\)
0.997015 + 0.0772030i \(0.0245990\pi\)
\(434\) 6.38418 3.68591i 0.306450 0.176929i
\(435\) 0 0
\(436\) 13.8044 7.96999i 0.661112 0.381693i
\(437\) 4.20342 + 2.19985i 0.201077 + 0.105233i
\(438\) 0 0
\(439\) −11.9531 + 6.90114i −0.570492 + 0.329373i −0.757346 0.653014i \(-0.773504\pi\)
0.186854 + 0.982388i \(0.440171\pi\)
\(440\) 0.775318 1.34289i 0.0369618 0.0640198i
\(441\) 0 0
\(442\) −10.4051 + 18.0222i −0.494922 + 0.857231i
\(443\) 26.9532i 1.28058i −0.768131 0.640292i \(-0.778813\pi\)
0.768131 0.640292i \(-0.221187\pi\)
\(444\) 0 0
\(445\) 1.87077 1.08009i 0.0886829 0.0512011i
\(446\) 12.2100 + 7.04944i 0.578160 + 0.333801i
\(447\) 0 0
\(448\) 0.862167 1.49332i 0.0407335 0.0705526i
\(449\) −1.78199 −0.0840972 −0.0420486 0.999116i \(-0.513388\pi\)
−0.0420486 + 0.999116i \(0.513388\pi\)
\(450\) 0 0
\(451\) −31.4369 18.1501i −1.48030 0.854654i
\(452\) 3.36982 0.158503
\(453\) 0 0
\(454\) 16.1483 0.757879
\(455\) 0.796915 + 1.38030i 0.0373599 + 0.0647093i
\(456\) 0 0
\(457\) −5.41688 + 9.38231i −0.253391 + 0.438886i −0.964457 0.264239i \(-0.914879\pi\)
0.711066 + 0.703125i \(0.248213\pi\)
\(458\) 6.05303 10.4842i 0.282839 0.489892i
\(459\) 0 0
\(460\) −0.116352 0.201527i −0.00542494 0.00939626i
\(461\) 17.9559 10.3669i 0.836290 0.482833i −0.0197111 0.999806i \(-0.506275\pi\)
0.856002 + 0.516973i \(0.172941\pi\)
\(462\) 0 0
\(463\) −13.1769 22.8231i −0.612384 1.06068i −0.990837 0.135060i \(-0.956877\pi\)
0.378453 0.925620i \(-0.376456\pi\)
\(464\) −0.698616 1.21004i −0.0324324 0.0561746i
\(465\) 0 0
\(466\) 0.916736i 0.0424670i
\(467\) 12.0210i 0.556265i 0.960543 + 0.278133i \(0.0897155\pi\)
−0.960543 + 0.278133i \(0.910285\pi\)
\(468\) 0 0
\(469\) −6.72670 + 3.88366i −0.310610 + 0.179331i
\(470\) 0.587218 + 1.01709i 0.0270863 + 0.0469149i
\(471\) 0 0
\(472\) −26.4318 −1.21662
\(473\) 5.05967i 0.232644i
\(474\) 0 0
\(475\) 21.6921 0.899605i 0.995302 0.0412767i
\(476\) 12.6976i 0.581992i
\(477\) 0 0
\(478\) 4.16384 + 2.40400i 0.190450 + 0.109956i
\(479\) 35.1118i 1.60430i −0.597124 0.802149i \(-0.703690\pi\)
0.597124 0.802149i \(-0.296310\pi\)
\(480\) 0 0
\(481\) 15.3703 26.6222i 0.700827 1.21387i
\(482\) 9.71847 5.61096i 0.442664 0.255572i
\(483\) 0 0
\(484\) 16.6548 0.757038
\(485\) 1.00906 + 1.74774i 0.0458189 + 0.0793607i
\(486\) 0 0
\(487\) 14.1105i 0.639409i 0.947517 + 0.319705i \(0.103584\pi\)
−0.947517 + 0.319705i \(0.896416\pi\)
\(488\) 2.66835 0.120790
\(489\) 0 0
\(490\) 0.318556 + 0.183918i 0.0143909 + 0.00830859i
\(491\) 29.5713i 1.33453i −0.744818 0.667267i \(-0.767464\pi\)
0.744818 0.667267i \(-0.232536\pi\)
\(492\) 0 0
\(493\) −3.87851 2.23926i −0.174679 0.100851i
\(494\) −0.800884 19.3117i −0.0360335 0.868873i
\(495\) 0 0
\(496\) −7.87869 4.54877i −0.353764 0.204246i
\(497\) −7.01496 12.1503i −0.314664 0.545014i
\(498\) 0 0
\(499\) −35.7490 −1.60034 −0.800172 0.599770i \(-0.795259\pi\)
−0.800172 + 0.599770i \(0.795259\pi\)
\(500\) −1.84802 1.06696i −0.0826460 0.0477157i
\(501\) 0 0
\(502\) −2.99900 1.73147i −0.133852 0.0772794i
\(503\) −3.21576 + 1.85662i −0.143384 + 0.0827826i −0.569976 0.821662i \(-0.693047\pi\)
0.426592 + 0.904444i \(0.359714\pi\)
\(504\) 0 0
\(505\) −1.04333 −0.0464275
\(506\) −1.71859 + 2.97668i −0.0764006 + 0.132330i
\(507\) 0 0
\(508\) 7.91162i 0.351021i
\(509\) −17.4709 + 30.2606i −0.774386 + 1.34128i 0.160753 + 0.986995i \(0.448608\pi\)
−0.935139 + 0.354281i \(0.884726\pi\)
\(510\) 0 0
\(511\) 0.984625 + 1.70542i 0.0435572 + 0.0754434i
\(512\) −15.4837 −0.684291
\(513\) 0 0
\(514\) 2.27117 0.100177
\(515\) −0.0235024 0.0407073i −0.00103564 0.00179378i
\(516\) 0 0
\(517\) −29.2417 + 50.6481i −1.28605 + 2.22750i
\(518\) 5.56353i 0.244448i
\(519\) 0 0
\(520\) −1.08864 + 1.88559i −0.0477402 + 0.0826884i
\(521\) 39.1773 1.71639 0.858195 0.513324i \(-0.171586\pi\)
0.858195 + 0.513324i \(0.171586\pi\)
\(522\) 0 0
\(523\) −35.3599 + 20.4151i −1.54618 + 0.892689i −0.547754 + 0.836639i \(0.684517\pi\)
−0.998428 + 0.0560491i \(0.982150\pi\)
\(524\) 21.0162 + 12.1337i 0.918099 + 0.530064i
\(525\) 0 0
\(526\) 16.4713 + 9.50970i 0.718182 + 0.414643i
\(527\) −29.1601 −1.27024
\(528\) 0 0
\(529\) −10.9077 18.8927i −0.474247 0.821420i
\(530\) 0.206863 + 0.119432i 0.00898554 + 0.00518780i
\(531\) 0 0
\(532\) −6.31478 9.96019i −0.273780 0.431829i
\(533\) 44.1413 + 25.4850i 1.91197 + 1.10388i
\(534\) 0 0
\(535\) 1.64418i 0.0710840i
\(536\) −9.18917 5.30537i −0.396911 0.229157i
\(537\) 0 0
\(538\) −6.73569 −0.290396
\(539\) 18.3172i 0.788977i
\(540\) 0 0
\(541\) −14.5634 25.2245i −0.626129 1.08449i −0.988321 0.152384i \(-0.951305\pi\)
0.362192 0.932104i \(-0.382028\pi\)
\(542\) 2.76278 0.118672
\(543\) 0 0
\(544\) −23.5029 + 13.5694i −1.00768 + 0.581784i
\(545\) 0.716196 1.24049i 0.0306785 0.0531367i
\(546\) 0 0
\(547\) 18.2325i 0.779566i 0.920907 + 0.389783i \(0.127450\pi\)
−0.920907 + 0.389783i \(0.872550\pi\)
\(548\) 4.38744 + 2.53309i 0.187422 + 0.108208i
\(549\) 0 0
\(550\) 15.7292i 0.670697i
\(551\) 4.15600 0.172356i 0.177052 0.00734260i
\(552\) 0 0
\(553\) 5.97411i 0.254045i
\(554\) −10.6155 −0.451008
\(555\) 0 0
\(556\) 12.4695 + 21.5978i 0.528823 + 0.915949i
\(557\) −30.1772 + 17.4228i −1.27865 + 0.738230i −0.976600 0.215062i \(-0.931005\pi\)
−0.302051 + 0.953292i \(0.597671\pi\)
\(558\) 0 0
\(559\) 7.10441i 0.300485i
\(560\) 0.355983i 0.0150430i
\(561\) 0 0
\(562\) −2.31817 4.01519i −0.0977862 0.169371i
\(563\) 13.2981 + 23.0329i 0.560446 + 0.970722i 0.997457 + 0.0712655i \(0.0227038\pi\)
−0.437011 + 0.899456i \(0.643963\pi\)
\(564\) 0 0
\(565\) 0.262248 0.151409i 0.0110328 0.00636981i
\(566\) 0.188337 + 0.326209i 0.00791638 + 0.0137116i
\(567\) 0 0
\(568\) 9.58294 16.5981i 0.402091 0.696442i
\(569\) −14.6846 + 25.4344i −0.615610 + 1.06627i 0.374668 + 0.927159i \(0.377757\pi\)
−0.990277 + 0.139108i \(0.955577\pi\)
\(570\) 0 0
\(571\) 0.947842 + 1.64171i 0.0396660 + 0.0687035i 0.885177 0.465255i \(-0.154037\pi\)
−0.845511 + 0.533958i \(0.820704\pi\)
\(572\) −47.2096 −1.97393
\(573\) 0 0
\(574\) −9.22470 −0.385031
\(575\) 4.69484 + 2.71057i 0.195788 + 0.113038i
\(576\) 0 0
\(577\) 15.2421 0.634537 0.317268 0.948336i \(-0.397234\pi\)
0.317268 + 0.948336i \(0.397234\pi\)
\(578\) −1.69961 + 2.94382i −0.0706946 + 0.122447i
\(579\) 0 0
\(580\) −0.176691 0.102013i −0.00733669 0.00423584i
\(581\) −5.39077 + 3.11236i −0.223647 + 0.129123i
\(582\) 0 0
\(583\) 11.8947i 0.492630i
\(584\) −1.34507 + 2.32973i −0.0556594 + 0.0964049i
\(585\) 0 0
\(586\) 1.53933 2.66620i 0.0635892 0.110140i
\(587\) −36.2705 + 20.9408i −1.49705 + 0.864319i −0.999994 0.00340197i \(-0.998917\pi\)
−0.497051 + 0.867721i \(0.665584\pi\)
\(588\) 0 0
\(589\) 22.8737 14.5020i 0.942495 0.597544i
\(590\) −0.895661 + 0.517110i −0.0368738 + 0.0212891i
\(591\) 0 0
\(592\) 5.94608 3.43297i 0.244382 0.141094i
\(593\) 6.19893 3.57896i 0.254560 0.146970i −0.367291 0.930106i \(-0.619715\pi\)
0.621850 + 0.783136i \(0.286381\pi\)
\(594\) 0 0
\(595\) 0.570512 + 0.988156i 0.0233887 + 0.0405105i
\(596\) −8.01465 4.62726i −0.328293 0.189540i
\(597\) 0 0
\(598\) 2.41312 4.17964i 0.0986796 0.170918i
\(599\) 3.11637 5.39771i 0.127331 0.220544i −0.795311 0.606202i \(-0.792692\pi\)
0.922642 + 0.385658i \(0.126026\pi\)
\(600\) 0 0
\(601\) 19.8585 + 11.4653i 0.810044 + 0.467679i 0.846971 0.531639i \(-0.178424\pi\)
−0.0369272 + 0.999318i \(0.511757\pi\)
\(602\) 0.642889 + 1.11352i 0.0262022 + 0.0453835i
\(603\) 0 0
\(604\) −16.8011 + 9.70011i −0.683626 + 0.394692i
\(605\) 1.29612 0.748316i 0.0526948 0.0304234i
\(606\) 0 0
\(607\) 1.44140 0.832190i 0.0585044 0.0337775i −0.470462 0.882420i \(-0.655913\pi\)
0.528967 + 0.848642i \(0.322580\pi\)
\(608\) 11.6877 22.3326i 0.474000 0.905707i
\(609\) 0 0
\(610\) 0.0904188 0.0522033i 0.00366095 0.00211365i
\(611\) 41.0590 71.1163i 1.66107 2.87706i
\(612\) 0 0
\(613\) 18.5832 32.1871i 0.750570 1.30003i −0.196977 0.980408i \(-0.563112\pi\)
0.947547 0.319617i \(-0.103554\pi\)
\(614\) 4.99860i 0.201727i
\(615\) 0 0
\(616\) 16.9937 9.81130i 0.684695 0.395309i
\(617\) 13.5270 + 7.80983i 0.544577 + 0.314412i 0.746932 0.664900i \(-0.231526\pi\)
−0.202355 + 0.979312i \(0.564859\pi\)
\(618\) 0 0
\(619\) −17.0708 + 29.5674i −0.686132 + 1.18842i 0.286948 + 0.957946i \(0.407359\pi\)
−0.973080 + 0.230469i \(0.925974\pi\)
\(620\) −1.32843 −0.0533511
\(621\) 0 0
\(622\) 17.6972 + 10.2175i 0.709591 + 0.409683i
\(623\) 27.3361 1.09520
\(624\) 0 0
\(625\) 24.7122 0.988487
\(626\) 0.427713 + 0.740821i 0.0170948 + 0.0296091i
\(627\) 0 0
\(628\) 12.1553 21.0536i 0.485048 0.840128i
\(629\) 11.0036 19.0589i 0.438744 0.759927i
\(630\) 0 0
\(631\) 9.09528 + 15.7535i 0.362077 + 0.627136i 0.988303 0.152506i \(-0.0487343\pi\)
−0.626225 + 0.779642i \(0.715401\pi\)
\(632\) −7.06769 + 4.08053i −0.281138 + 0.162315i
\(633\) 0 0
\(634\) −4.77336 8.26771i −0.189574 0.328353i
\(635\) 0.355476 + 0.615702i 0.0141066 + 0.0244334i
\(636\) 0 0
\(637\) 25.7196i 1.01905i
\(638\) 3.01358i 0.119309i
\(639\) 0 0
\(640\) −1.30848 + 0.755450i −0.0517221 + 0.0298618i
\(641\) 6.31100 + 10.9310i 0.249269 + 0.431747i 0.963323 0.268344i \(-0.0864762\pi\)
−0.714054 + 0.700091i \(0.753143\pi\)
\(642\) 0 0
\(643\) 26.4006 1.04114 0.520568 0.853820i \(-0.325720\pi\)
0.520568 + 0.853820i \(0.325720\pi\)
\(644\) 2.94476i 0.116040i
\(645\) 0 0
\(646\) −0.573354 13.8252i −0.0225583 0.543947i
\(647\) 17.9111i 0.704159i −0.935970 0.352079i \(-0.885475\pi\)
0.935970 0.352079i \(-0.114525\pi\)
\(648\) 0 0
\(649\) −44.6013 25.7505i −1.75075 1.01080i
\(650\) 22.0858i 0.866278i
\(651\) 0 0
\(652\) −5.13156 + 8.88812i −0.200967 + 0.348086i
\(653\) −3.92191 + 2.26431i −0.153476 + 0.0886094i −0.574771 0.818314i \(-0.694909\pi\)
0.421295 + 0.906924i \(0.361576\pi\)
\(654\) 0 0
\(655\) 2.18071 0.0852075
\(656\) 5.69209 + 9.85898i 0.222239 + 0.384929i
\(657\) 0 0
\(658\) 14.8620i 0.579380i
\(659\) −20.9972 −0.817936 −0.408968 0.912549i \(-0.634111\pi\)
−0.408968 + 0.912549i \(0.634111\pi\)
\(660\) 0 0
\(661\) −16.5587 9.56015i −0.644057 0.371847i 0.142118 0.989850i \(-0.454609\pi\)
−0.786176 + 0.618003i \(0.787942\pi\)
\(662\) 12.2714i 0.476943i
\(663\) 0 0
\(664\) −7.36419 4.25172i −0.285786 0.164999i
\(665\) −0.938951 0.491398i −0.0364110 0.0190556i
\(666\) 0 0
\(667\) 0.899487 + 0.519319i 0.0348283 + 0.0201081i
\(668\) 3.25314 + 5.63460i 0.125868 + 0.218009i
\(669\) 0 0
\(670\) −0.415175 −0.0160396
\(671\) 4.50259 + 2.59957i 0.173820 + 0.100355i
\(672\) 0 0
\(673\) 8.12324 + 4.68995i 0.313128 + 0.180784i 0.648325 0.761363i \(-0.275470\pi\)
−0.335197 + 0.942148i \(0.608803\pi\)
\(674\) −3.61084 + 2.08472i −0.139084 + 0.0803004i
\(675\) 0 0
\(676\) 46.2361 1.77831
\(677\) 15.3198 26.5347i 0.588787 1.01981i −0.405604 0.914049i \(-0.632939\pi\)
0.994392 0.105761i \(-0.0337278\pi\)
\(678\) 0 0
\(679\) 25.5384i 0.980072i
\(680\) −0.779361 + 1.34989i −0.0298871 + 0.0517660i
\(681\) 0 0
\(682\) 9.81087 + 16.9929i 0.375678 + 0.650693i
\(683\) −30.9867 −1.18567 −0.592837 0.805323i \(-0.701992\pi\)
−0.592837 + 0.805323i \(0.701992\pi\)
\(684\) 0 0
\(685\) 0.455255 0.0173944
\(686\) 6.47996 + 11.2236i 0.247406 + 0.428520i
\(687\) 0 0
\(688\) 0.793387 1.37419i 0.0302476 0.0523904i
\(689\) 16.7017i 0.636285i
\(690\) 0 0
\(691\) 8.00656 13.8678i 0.304584 0.527555i −0.672585 0.740020i \(-0.734816\pi\)
0.977169 + 0.212465i \(0.0681493\pi\)
\(692\) −16.8061 −0.638872
\(693\) 0 0
\(694\) 9.46625 5.46534i 0.359334 0.207462i
\(695\) 1.94081 + 1.12053i 0.0736191 + 0.0425040i
\(696\) 0 0
\(697\) 31.6008 + 18.2447i 1.19697 + 0.691069i
\(698\) 15.6089 0.590807
\(699\) 0 0
\(700\) −6.73793 11.6704i −0.254670 0.441101i
\(701\) 29.7676 + 17.1863i 1.12431 + 0.649119i 0.942497 0.334215i \(-0.108471\pi\)
0.181810 + 0.983334i \(0.441804\pi\)
\(702\) 0 0
\(703\) 0.846950 + 20.4224i 0.0319433 + 0.770247i
\(704\) 3.97480 + 2.29485i 0.149806 + 0.0864904i
\(705\) 0 0
\(706\) 20.6127i 0.775770i
\(707\) −11.4340 6.60143i −0.430020 0.248272i
\(708\) 0 0
\(709\) −3.35195 −0.125885 −0.0629425 0.998017i \(-0.520048\pi\)
−0.0629425 + 0.998017i \(0.520048\pi\)
\(710\) 0.749920i 0.0281440i
\(711\) 0 0
\(712\) 18.6715 + 32.3401i 0.699746 + 1.21199i
\(713\) 6.76269 0.253265
\(714\) 0 0
\(715\) −3.67397 + 2.12117i −0.137399 + 0.0793272i
\(716\) −3.98695 + 6.90559i −0.148999 + 0.258074i
\(717\) 0 0
\(718\) 0.914242i 0.0341192i
\(719\) −21.7299 12.5458i −0.810389 0.467878i 0.0367021 0.999326i \(-0.488315\pi\)
−0.847091 + 0.531448i \(0.821648\pi\)
\(720\) 0 0
\(721\) 0.594824i 0.0221524i
\(722\) 7.32534 + 10.5596i 0.272621 + 0.392988i
\(723\) 0 0
\(724\) 8.38330i 0.311563i
\(725\) 4.75303 0.176523
\(726\) 0 0
\(727\) −23.4261 40.5752i −0.868825 1.50485i −0.863198 0.504866i \(-0.831542\pi\)
−0.00562747 0.999984i \(-0.501791\pi\)
\(728\) −23.8613 + 13.7763i −0.884357 + 0.510584i
\(729\) 0 0
\(730\) 0.105259i 0.00389582i
\(731\) 5.08606i 0.188115i
\(732\) 0 0
\(733\) −11.0279 19.1009i −0.407325 0.705508i 0.587264 0.809396i \(-0.300205\pi\)
−0.994589 + 0.103888i \(0.966872\pi\)
\(734\) 0.536867 + 0.929880i 0.0198161 + 0.0343225i
\(735\) 0 0
\(736\) 5.45070 3.14696i 0.200915 0.115999i
\(737\) −10.3372 17.9046i −0.380777 0.659526i
\(738\) 0 0
\(739\) −6.35102 + 11.0003i −0.233626 + 0.404652i −0.958872 0.283837i \(-0.908392\pi\)
0.725247 + 0.688489i \(0.241726\pi\)
\(740\) 0.501286 0.868253i 0.0184276 0.0319176i
\(741\) 0 0
\(742\) 1.51136 + 2.61776i 0.0554839 + 0.0961009i
\(743\) 27.2706 1.00046 0.500230 0.865893i \(-0.333249\pi\)
0.500230 + 0.865893i \(0.333249\pi\)
\(744\) 0 0
\(745\) −0.831627 −0.0304685
\(746\) 17.5960 + 10.1590i 0.644235 + 0.371949i
\(747\) 0 0
\(748\) −33.7974 −1.23576
\(749\) −10.4032 + 18.0188i −0.380124 + 0.658394i
\(750\) 0 0
\(751\) −35.6693 20.5937i −1.30159 0.751475i −0.320916 0.947108i \(-0.603991\pi\)
−0.980677 + 0.195633i \(0.937324\pi\)
\(752\) 15.8839 9.17055i 0.579225 0.334416i
\(753\) 0 0
\(754\) 4.23144i 0.154100i
\(755\) −0.871668 + 1.50977i −0.0317232 + 0.0549463i
\(756\) 0 0
\(757\) 0.190902 0.330651i 0.00693844 0.0120177i −0.862535 0.505997i \(-0.831125\pi\)
0.869474 + 0.493979i \(0.164458\pi\)
\(758\) 12.0027 6.92977i 0.435958 0.251701i
\(759\) 0 0
\(760\) −0.0599874 1.44647i −0.00217597 0.0524691i
\(761\) 35.7329 20.6304i 1.29532 0.747852i 0.315726 0.948850i \(-0.397752\pi\)
0.979592 + 0.200998i \(0.0644185\pi\)
\(762\) 0 0
\(763\) 15.6978 9.06315i 0.568300 0.328108i
\(764\) 16.7609 9.67689i 0.606387 0.350098i
\(765\) 0 0
\(766\) −10.0547 17.4153i −0.363293 0.629242i
\(767\) 62.6258 + 36.1570i 2.26129 + 1.30555i
\(768\) 0 0
\(769\) −8.54407 + 14.7988i −0.308107 + 0.533657i −0.977948 0.208847i \(-0.933029\pi\)
0.669841 + 0.742504i \(0.266362\pi\)
\(770\) 0.383895 0.664926i 0.0138346 0.0239623i
\(771\) 0 0
\(772\) −0.159319 0.0919829i −0.00573402 0.00331054i
\(773\) 2.79674 + 4.84409i 0.100592 + 0.174230i 0.911929 0.410349i \(-0.134593\pi\)
−0.811337 + 0.584579i \(0.801260\pi\)
\(774\) 0 0
\(775\) 26.8013 15.4737i 0.962732 0.555833i
\(776\) −30.2133 + 17.4436i −1.08459 + 0.626190i
\(777\) 0 0
\(778\) 10.0732 5.81575i 0.361141 0.208505i
\(779\) −33.8617 + 1.40430i −1.21322 + 0.0503142i
\(780\) 0 0
\(781\) 32.3406 18.6719i 1.15724 0.668132i
\(782\) 1.72755 2.99221i 0.0617771 0.107001i
\(783\) 0 0
\(784\) 2.87225 4.97488i 0.102580 0.177674i
\(785\) 2.18459i 0.0779712i
\(786\) 0 0
\(787\) −5.68500 + 3.28224i −0.202648 + 0.116999i −0.597890 0.801578i \(-0.703994\pi\)
0.395242 + 0.918577i \(0.370661\pi\)
\(788\) 19.9028 + 11.4909i 0.709008 + 0.409346i
\(789\) 0 0
\(790\) −0.159662 + 0.276543i −0.00568053 + 0.00983898i
\(791\) 3.83202 0.136251
\(792\) 0 0
\(793\) −6.32220 3.65012i −0.224508 0.129620i
\(794\) −16.3842 −0.581452
\(795\) 0 0
\(796\) 12.3322 0.437102
\(797\) −14.0122 24.2699i −0.496339 0.859684i 0.503652 0.863906i \(-0.331989\pi\)
−0.999991 + 0.00422263i \(0.998656\pi\)
\(798\) 0 0
\(799\) 29.3942 50.9122i 1.03989 1.80115i
\(800\) 14.4011 24.9435i 0.509158 0.881887i
\(801\) 0 0
\(802\) −5.88981 10.2015i −0.207976 0.360226i
\(803\) −4.53936 + 2.62080i −0.160191 + 0.0924860i
\(804\) 0 0
\(805\) −0.132311 0.229169i −0.00466334 0.00807714i
\(806\) −13.7757 23.8602i −0.485228 0.840440i
\(807\) 0 0
\(808\) 18.0361i 0.634506i
\(809\) 32.3776i 1.13834i −0.822221 0.569168i \(-0.807266\pi\)
0.822221 0.569168i \(-0.192734\pi\)
\(810\) 0 0
\(811\) 6.65521 3.84239i 0.233696 0.134924i −0.378580 0.925569i \(-0.623588\pi\)
0.612276 + 0.790644i \(0.290254\pi\)
\(812\) −1.29092 2.23595i −0.0453025 0.0784663i
\(813\) 0 0
\(814\) −14.8086 −0.519041
\(815\) 0.922261i 0.0323054i
\(816\) 0 0
\(817\) 2.52941 + 3.98959i 0.0884928 + 0.139578i
\(818\) 15.7816i 0.551791i
\(819\) 0 0
\(820\) 1.43962 + 0.831164i 0.0502737 + 0.0290255i
\(821\) 55.2775i 1.92920i 0.263724 + 0.964598i \(0.415049\pi\)
−0.263724 + 0.964598i \(0.584951\pi\)
\(822\) 0 0
\(823\) −7.96903 + 13.8028i −0.277783 + 0.481134i −0.970833 0.239755i \(-0.922933\pi\)
0.693051 + 0.720889i \(0.256266\pi\)
\(824\) 0.703709 0.406287i 0.0245149 0.0141537i
\(825\) 0 0
\(826\) −13.0876 −0.455376
\(827\) −5.61139 9.71922i −0.195127 0.337970i 0.751815 0.659374i \(-0.229179\pi\)
−0.946942 + 0.321404i \(0.895845\pi\)
\(828\) 0 0
\(829\) 27.7051i 0.962238i 0.876655 + 0.481119i \(0.159769\pi\)
−0.876655 + 0.481119i \(0.840231\pi\)
\(830\) −0.332721 −0.0115489
\(831\) 0 0
\(832\) −5.58112 3.22226i −0.193490 0.111712i
\(833\) 18.4127i 0.637963i
\(834\) 0 0
\(835\) 0.506335 + 0.292333i 0.0175224 + 0.0101166i
\(836\) 26.5113 16.8082i 0.916912 0.581324i
\(837\) 0 0
\(838\) −4.64587 2.68229i −0.160489 0.0926583i
\(839\) 19.5478 + 33.8578i 0.674865 + 1.16890i 0.976508 + 0.215480i \(0.0691317\pi\)
−0.301643 + 0.953421i \(0.597535\pi\)
\(840\) 0 0
\(841\) −28.0894 −0.968599
\(842\) −16.5281 9.54249i −0.569595 0.328856i
\(843\) 0 0
\(844\) 15.5802 + 8.99523i 0.536293 + 0.309629i
\(845\) 3.59821 2.07743i 0.123782 0.0714656i
\(846\) 0 0
\(847\) 18.9392 0.650759
\(848\) 1.86517 3.23057i 0.0640501 0.110938i
\(849\) 0 0
\(850\) 15.8113i 0.542322i
\(851\) −2.55192 + 4.42005i −0.0874785 + 0.151517i
\(852\) 0 0
\(853\) −2.98578 5.17153i −0.102231 0.177070i 0.810372 0.585915i \(-0.199265\pi\)
−0.912604 + 0.408845i \(0.865932\pi\)
\(854\) 1.32122 0.0452112
\(855\) 0 0
\(856\) −28.4230 −0.971478
\(857\) −25.2365 43.7108i −0.862061 1.49313i −0.869936 0.493165i \(-0.835840\pi\)
0.00787473 0.999969i \(-0.497493\pi\)
\(858\) 0 0
\(859\) 6.41938 11.1187i 0.219026 0.379365i −0.735484 0.677542i \(-0.763045\pi\)
0.954511 + 0.298177i \(0.0963786\pi\)
\(860\) 0.231702i 0.00790098i
\(861\) 0 0
\(862\) 2.29588 3.97658i 0.0781979 0.135443i
\(863\) 23.6047 0.803512 0.401756 0.915747i \(-0.368400\pi\)
0.401756 + 0.915747i \(0.368400\pi\)
\(864\) 0 0
\(865\) −1.30789 + 0.755112i −0.0444697 + 0.0256746i
\(866\) 20.1085 + 11.6097i 0.683316 + 0.394513i
\(867\) 0 0
\(868\) −14.5585 8.40535i −0.494148 0.285296i
\(869\) −15.9014 −0.539419
\(870\) 0 0
\(871\) 14.5148 + 25.1404i 0.491815 + 0.851848i
\(872\) 21.4444 + 12.3809i 0.726198 + 0.419271i
\(873\) 0 0
\(874\) 0.132970 + 3.20629i 0.00449777 + 0.108454i
\(875\) −2.10149 1.21330i −0.0710435 0.0410170i
\(876\) 0 0
\(877\) 32.1508i 1.08566i 0.839844 + 0.542828i \(0.182647\pi\)
−0.839844 + 0.542828i \(0.817353\pi\)
\(878\) −8.08515 4.66797i −0.272861 0.157536i
\(879\) 0 0
\(880\) −0.947528 −0.0319412
\(881\) 51.5651i 1.73727i 0.495449 + 0.868637i \(0.335003\pi\)
−0.495449 + 0.868637i \(0.664997\pi\)
\(882\) 0 0
\(883\) 11.6957 + 20.2576i 0.393592 + 0.681722i 0.992920 0.118781i \(-0.0378988\pi\)
−0.599328 + 0.800504i \(0.704565\pi\)
\(884\) 47.4559 1.59611
\(885\) 0 0
\(886\) 15.7887 9.11564i 0.530433 0.306246i
\(887\) 10.7007 18.5341i 0.359294 0.622315i −0.628549 0.777770i \(-0.716351\pi\)
0.987843 + 0.155455i \(0.0496843\pi\)
\(888\) 0 0
\(889\) 8.99677i 0.301742i
\(890\) 1.26540 + 0.730577i 0.0424162 + 0.0244890i
\(891\) 0 0
\(892\) 32.1511i 1.07650i
\(893\) 2.26247 + 54.5548i 0.0757107 + 1.82561i
\(894\) 0 0
\(895\) 0.716547i 0.0239515i
\(896\) −19.1198 −0.638747
\(897\) 0 0
\(898\) −0.602673 1.04386i −0.0201115 0.0348341i
\(899\) 5.13488 2.96463i 0.171258 0.0988758i
\(900\) 0 0
\(901\) 11.9568i 0.398338i
\(902\) 24.5536i 0.817546i
\(903\) 0 0
\(904\) 2.61741 + 4.53349i 0.0870538 + 0.150782i
\(905\) −0.376668 0.652409i −0.0125209 0.0216868i
\(906\) 0 0
\(907\) 30.4962 17.6070i 1.01261 0.584631i 0.100656 0.994921i \(-0.467906\pi\)
0.911955 + 0.410290i \(0.134573\pi\)
\(908\) −18.4124 31.8911i −0.611036 1.05834i
\(909\) 0 0
\(910\) −0.539037 + 0.933640i −0.0178689 + 0.0309499i
\(911\) 5.48367 9.49800i 0.181682 0.314683i −0.760771 0.649020i \(-0.775179\pi\)
0.942454 + 0.334337i \(0.108512\pi\)
\(912\) 0 0
\(913\) −8.28426 14.3488i −0.274169 0.474874i
\(914\) −7.32801 −0.242389
\(915\) 0 0
\(916\) −27.6067 −0.912151
\(917\) 23.8988 + 13.7980i 0.789208 + 0.455650i
\(918\) 0 0
\(919\) −34.7810 −1.14732 −0.573659 0.819094i \(-0.694477\pi\)
−0.573659 + 0.819094i \(0.694477\pi\)
\(920\) 0.180746 0.313061i 0.00595902 0.0103213i
\(921\) 0 0
\(922\) 12.1455 + 7.01219i 0.399990 + 0.230934i
\(923\) −45.4103 + 26.2177i −1.49470 + 0.862965i
\(924\) 0 0
\(925\) 23.3562i 0.767947i
\(926\) 8.91295 15.4377i 0.292898 0.507314i
\(927\) 0 0
\(928\) 2.75913 4.77895i 0.0905727 0.156877i
\(929\) −31.7219 + 18.3147i −1.04076 + 0.600885i −0.920049 0.391803i \(-0.871852\pi\)
−0.120714 + 0.992687i \(0.538518\pi\)
\(930\) 0 0
\(931\) 9.15705 + 14.4432i 0.300110 + 0.473358i
\(932\) −1.81045 + 1.04526i −0.0593033 + 0.0342388i
\(933\) 0 0
\(934\) −7.04171 + 4.06553i −0.230412 + 0.133028i
\(935\) −2.63020 + 1.51855i −0.0860167 + 0.0496618i
\(936\) 0 0
\(937\) −7.00421 12.1317i −0.228818 0.396324i 0.728640 0.684897i \(-0.240153\pi\)
−0.957458 + 0.288573i \(0.906819\pi\)
\(938\) −4.54998 2.62693i −0.148562 0.0857723i
\(939\) 0 0
\(940\) 1.33909 2.31938i 0.0436764 0.0756497i
\(941\) −7.30531 + 12.6532i −0.238146 + 0.412481i −0.960182 0.279374i \(-0.909873\pi\)
0.722036 + 0.691855i \(0.243206\pi\)
\(942\) 0 0
\(943\) −7.32872 4.23124i −0.238656 0.137788i
\(944\) 8.07569 + 13.9875i 0.262841 + 0.455254i
\(945\) 0 0
\(946\) −2.96387 + 1.71119i −0.0963638 + 0.0556357i
\(947\) 17.0322 9.83353i 0.553471 0.319547i −0.197050 0.980394i \(-0.563136\pi\)
0.750521 + 0.660847i \(0.229803\pi\)
\(948\) 0 0
\(949\) 6.37383 3.67993i 0.206903 0.119456i
\(950\) 7.86330 + 12.4026i 0.255119 + 0.402395i
\(951\) 0 0
\(952\) −17.0823 + 9.86247i −0.553641 + 0.319645i
\(953\) −5.16671 + 8.94901i −0.167366 + 0.289887i −0.937493 0.348004i \(-0.886860\pi\)
0.770127 + 0.637891i \(0.220193\pi\)
\(954\) 0 0
\(955\) 0.869582 1.50616i 0.0281390 0.0487382i
\(956\) 10.9642i 0.354606i
\(957\) 0 0
\(958\) 20.5679 11.8749i 0.664519 0.383660i
\(959\) 4.98921 + 2.88052i 0.161110 + 0.0930170i
\(960\) 0 0
\(961\) 3.80301 6.58701i 0.122678 0.212484i
\(962\) 20.7931 0.670398
\(963\) 0 0
\(964\) −22.1620 12.7953i −0.713791 0.412107i
\(965\) −0.0165315 −0.000532167
\(966\) 0 0
\(967\) −19.6447 −0.631732 −0.315866 0.948804i \(-0.602295\pi\)
−0.315866 + 0.948804i \(0.602295\pi\)
\(968\) 12.9362 + 22.4061i 0.415784 + 0.720160i
\(969\) 0 0
\(970\) −0.682532 + 1.18218i −0.0219148 + 0.0379575i
\(971\) −11.8669 + 20.5541i −0.380828 + 0.659614i −0.991181 0.132516i \(-0.957694\pi\)
0.610353 + 0.792130i \(0.291028\pi\)
\(972\) 0 0
\(973\) 14.1798 + 24.5601i 0.454583 + 0.787360i
\(974\) −8.26572 + 4.77222i −0.264851 + 0.152912i
\(975\) 0 0
\(976\) −0.815257 1.41207i −0.0260957 0.0451991i
\(977\) 8.38318 + 14.5201i 0.268202 + 0.464539i 0.968397 0.249412i \(-0.0802373\pi\)
−0.700196 + 0.713951i \(0.746904\pi\)
\(978\) 0 0
\(979\) 72.7611i 2.32546i
\(980\) 0.838817i 0.0267950i
\(981\) 0 0
\(982\) 17.3224 10.0011i 0.552780 0.319148i
\(983\) 4.29295 + 7.43561i 0.136924 + 0.237159i 0.926331 0.376711i \(-0.122945\pi\)
−0.789407 + 0.613870i \(0.789612\pi\)
\(984\) 0 0
\(985\) 2.06518 0.0658021
\(986\) 3.02929i 0.0964723i
\(987\) 0 0
\(988\) −37.2252 + 23.6008i −1.18429 + 0.750843i
\(989\) 1.17954i 0.0375071i
\(990\) 0 0
\(991\) 10.7837 + 6.22600i 0.342557 + 0.197775i 0.661402 0.750031i \(-0.269962\pi\)
−0.318845 + 0.947807i \(0.603295\pi\)
\(992\) 35.9300i 1.14078i
\(993\) 0 0
\(994\) 4.74495 8.21850i 0.150501 0.260675i
\(995\) 0.959719 0.554094i 0.0304251 0.0175660i
\(996\) 0 0
\(997\) −3.50898 −0.111130 −0.0555652 0.998455i \(-0.517696\pi\)
−0.0555652 + 0.998455i \(0.517696\pi\)
\(998\) −12.0904 20.9412i −0.382715 0.662881i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 513.2.k.a.8.10 36
3.2 odd 2 171.2.k.a.65.9 yes 36
9.4 even 3 171.2.t.a.122.9 yes 36
9.5 odd 6 513.2.t.a.179.10 36
19.12 odd 6 513.2.t.a.278.10 36
57.50 even 6 171.2.t.a.164.9 yes 36
171.31 odd 6 171.2.k.a.50.9 36
171.50 even 6 inner 513.2.k.a.449.10 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.9 36 171.31 odd 6
171.2.k.a.65.9 yes 36 3.2 odd 2
171.2.t.a.122.9 yes 36 9.4 even 3
171.2.t.a.164.9 yes 36 57.50 even 6
513.2.k.a.8.10 36 1.1 even 1 trivial
513.2.k.a.449.10 36 171.50 even 6 inner
513.2.t.a.179.10 36 9.5 odd 6
513.2.t.a.278.10 36 19.12 odd 6