Properties

Label 171.2.t.a.164.9
Level $171$
Weight $2$
Character 171.164
Analytic conductor $1.365$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [171,2,Mod(122,171)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(171, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("171.122"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 164.9
Character \(\chi\) \(=\) 171.164
Dual form 171.2.t.a.122.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.676405 q^{2} +(-1.39343 + 1.02876i) q^{3} -1.54248 q^{4} +(-0.120039 - 0.0693047i) q^{5} +(0.942525 - 0.695858i) q^{6} +(0.877021 - 1.51904i) q^{7} +2.39615 q^{8} +(0.883308 - 2.86701i) q^{9} +(0.0811952 + 0.0468781i) q^{10} +(-4.04328 - 2.33439i) q^{11} +(2.14934 - 1.58684i) q^{12} -6.55555i q^{13} +(-0.593221 + 1.02749i) q^{14} +(0.238565 - 0.0269201i) q^{15} +1.46419 q^{16} +(-4.06437 + 2.34656i) q^{17} +(-0.597474 + 1.93926i) q^{18} +(4.35516 + 0.180615i) q^{19} +(0.185158 + 0.106901i) q^{20} +(0.340662 + 3.01893i) q^{21} +(2.73489 + 1.57899i) q^{22} +1.08841i q^{23} +(-3.33887 + 2.46506i) q^{24} +(-2.49039 - 4.31349i) q^{25} +4.43421i q^{26} +(1.71864 + 4.90370i) q^{27} +(-1.35278 + 2.34309i) q^{28} +(-0.477136 - 0.826424i) q^{29} +(-0.161366 + 0.0182089i) q^{30} +(-5.38094 + 3.10669i) q^{31} -5.78268 q^{32} +(8.03556 - 0.906750i) q^{33} +(2.74916 - 1.58723i) q^{34} +(-0.210554 + 0.121563i) q^{35} +(-1.36248 + 4.42230i) q^{36} -4.68926i q^{37} +(-2.94585 - 0.122169i) q^{38} +(6.74408 + 9.13472i) q^{39} +(-0.287632 - 0.166064i) q^{40} +(3.88755 - 6.73343i) q^{41} +(-0.230426 - 2.04202i) q^{42} -1.08373 q^{43} +(6.23666 + 3.60074i) q^{44} +(-0.304729 + 0.282937i) q^{45} -0.736205i q^{46} +(-10.8483 + 6.26324i) q^{47} +(-2.04024 + 1.50629i) q^{48} +(1.96167 + 3.39771i) q^{49} +(1.68451 + 2.91767i) q^{50} +(3.24937 - 7.45103i) q^{51} +10.1118i q^{52} +(1.27386 - 2.20639i) q^{53} +(-1.16250 - 3.31689i) q^{54} +(0.323568 + 0.560437i) q^{55} +(2.10147 - 3.63986i) q^{56} +(-6.25442 + 4.22873i) q^{57} +(0.322737 + 0.558997i) q^{58} +(5.51548 - 9.55309i) q^{59} +(-0.367980 + 0.0415237i) q^{60} +(-0.556799 - 0.964404i) q^{61} +(3.63969 - 2.10138i) q^{62} +(-3.58044 - 3.85621i) q^{63} +0.983063 q^{64} +(-0.454331 + 0.786924i) q^{65} +(-5.43529 + 0.613330i) q^{66} -4.42825i q^{67} +(6.26919 - 3.61952i) q^{68} +(-1.11971 - 1.51662i) q^{69} +(0.142420 - 0.0822261i) q^{70} +(3.99931 + 6.92701i) q^{71} +(2.11654 - 6.86979i) q^{72} +(-0.561346 - 0.972280i) q^{73} +3.17184i q^{74} +(7.90774 + 3.44854i) q^{75} +(-6.71772 - 0.278594i) q^{76} +(-7.09208 + 4.09461i) q^{77} +(-4.56173 - 6.17877i) q^{78} +3.40591i q^{79} +(-0.175760 - 0.101475i) q^{80} +(-7.43954 - 5.06491i) q^{81} +(-2.62956 + 4.55452i) q^{82} +(3.07334 + 1.77440i) q^{83} +(-0.525464 - 4.65663i) q^{84} +0.650512 q^{85} +0.733037 q^{86} +(1.51505 + 0.660708i) q^{87} +(-9.68830 - 5.59354i) q^{88} +(7.79231 - 13.4967i) q^{89} +(0.206120 - 0.191380i) q^{90} +(-9.95817 - 5.74935i) q^{91} -1.67885i q^{92} +(4.30194 - 9.86465i) q^{93} +(7.33782 - 4.23649i) q^{94} +(-0.510272 - 0.323514i) q^{95} +(8.05777 - 5.94899i) q^{96} +14.5597i q^{97} +(-1.32688 - 2.29823i) q^{98} +(-10.2642 + 9.53015i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 6 q^{2} - 3 q^{3} + 30 q^{4} - 3 q^{5} - 11 q^{6} - q^{7} - 12 q^{8} + 5 q^{9} - 6 q^{10} - 9 q^{11} - 15 q^{12} - 3 q^{14} + 18 q^{15} + 18 q^{16} + 27 q^{17} - 6 q^{18} + q^{19} + 9 q^{20} + 6 q^{21}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.676405 −0.478291 −0.239145 0.970984i \(-0.576867\pi\)
−0.239145 + 0.970984i \(0.576867\pi\)
\(3\) −1.39343 + 1.02876i −0.804499 + 0.593955i
\(4\) −1.54248 −0.771238
\(5\) −0.120039 0.0693047i −0.0536832 0.0309940i 0.472918 0.881106i \(-0.343201\pi\)
−0.526601 + 0.850112i \(0.676534\pi\)
\(6\) 0.942525 0.695858i 0.384784 0.284083i
\(7\) 0.877021 1.51904i 0.331483 0.574145i −0.651320 0.758803i \(-0.725784\pi\)
0.982803 + 0.184658i \(0.0591178\pi\)
\(8\) 2.39615 0.847167
\(9\) 0.883308 2.86701i 0.294436 0.955671i
\(10\) 0.0811952 + 0.0468781i 0.0256762 + 0.0148241i
\(11\) −4.04328 2.33439i −1.21909 0.703845i −0.254370 0.967107i \(-0.581868\pi\)
−0.964724 + 0.263262i \(0.915201\pi\)
\(12\) 2.14934 1.58684i 0.620460 0.458080i
\(13\) 6.55555i 1.81818i −0.416597 0.909091i \(-0.636777\pi\)
0.416597 0.909091i \(-0.363223\pi\)
\(14\) −0.593221 + 1.02749i −0.158545 + 0.274608i
\(15\) 0.238565 0.0269201i 0.0615971 0.00695075i
\(16\) 1.46419 0.366046
\(17\) −4.06437 + 2.34656i −0.985754 + 0.569125i −0.904002 0.427528i \(-0.859385\pi\)
−0.0817513 + 0.996653i \(0.526051\pi\)
\(18\) −0.597474 + 1.93926i −0.140826 + 0.457089i
\(19\) 4.35516 + 0.180615i 0.999141 + 0.0414359i
\(20\) 0.185158 + 0.106901i 0.0414025 + 0.0239038i
\(21\) 0.340662 + 3.01893i 0.0743386 + 0.658784i
\(22\) 2.73489 + 1.57899i 0.583081 + 0.336642i
\(23\) 1.08841i 0.226949i 0.993541 + 0.113474i \(0.0361980\pi\)
−0.993541 + 0.113474i \(0.963802\pi\)
\(24\) −3.33887 + 2.46506i −0.681544 + 0.503178i
\(25\) −2.49039 4.31349i −0.498079 0.862698i
\(26\) 4.43421i 0.869620i
\(27\) 1.71864 + 4.90370i 0.330752 + 0.943718i
\(28\) −1.35278 + 2.34309i −0.255652 + 0.442802i
\(29\) −0.477136 0.826424i −0.0886019 0.153463i 0.818318 0.574765i \(-0.194907\pi\)
−0.906920 + 0.421302i \(0.861573\pi\)
\(30\) −0.161366 + 0.0182089i −0.0294613 + 0.00332448i
\(31\) −5.38094 + 3.10669i −0.966445 + 0.557977i −0.898151 0.439688i \(-0.855089\pi\)
−0.0682946 + 0.997665i \(0.521756\pi\)
\(32\) −5.78268 −1.02224
\(33\) 8.03556 0.906750i 1.39881 0.157845i
\(34\) 2.74916 1.58723i 0.471477 0.272207i
\(35\) −0.210554 + 0.121563i −0.0355901 + 0.0205480i
\(36\) −1.36248 + 4.42230i −0.227080 + 0.737050i
\(37\) 4.68926i 0.770909i −0.922727 0.385455i \(-0.874045\pi\)
0.922727 0.385455i \(-0.125955\pi\)
\(38\) −2.94585 0.122169i −0.477880 0.0198184i
\(39\) 6.74408 + 9.13472i 1.07992 + 1.46273i
\(40\) −0.287632 0.166064i −0.0454786 0.0262571i
\(41\) 3.88755 6.73343i 0.607133 1.05158i −0.384578 0.923092i \(-0.625653\pi\)
0.991711 0.128492i \(-0.0410136\pi\)
\(42\) −0.230426 2.04202i −0.0355555 0.315090i
\(43\) −1.08373 −0.165267 −0.0826333 0.996580i \(-0.526333\pi\)
−0.0826333 + 0.996580i \(0.526333\pi\)
\(44\) 6.23666 + 3.60074i 0.940212 + 0.542832i
\(45\) −0.304729 + 0.282937i −0.0454264 + 0.0421778i
\(46\) 0.736205i 0.108548i
\(47\) −10.8483 + 6.26324i −1.58238 + 0.913588i −0.587870 + 0.808955i \(0.700033\pi\)
−0.994511 + 0.104633i \(0.966633\pi\)
\(48\) −2.04024 + 1.50629i −0.294484 + 0.217415i
\(49\) 1.96167 + 3.39771i 0.280238 + 0.485387i
\(50\) 1.68451 + 2.91767i 0.238226 + 0.412620i
\(51\) 3.24937 7.45103i 0.455003 1.04335i
\(52\) 10.1118i 1.40225i
\(53\) 1.27386 2.20639i 0.174978 0.303071i −0.765176 0.643822i \(-0.777348\pi\)
0.940154 + 0.340751i \(0.110681\pi\)
\(54\) −1.16250 3.31689i −0.158196 0.451371i
\(55\) 0.323568 + 0.560437i 0.0436299 + 0.0755693i
\(56\) 2.10147 3.63986i 0.280821 0.486396i
\(57\) −6.25442 + 4.22873i −0.828419 + 0.560109i
\(58\) 0.322737 + 0.558997i 0.0423775 + 0.0733999i
\(59\) 5.51548 9.55309i 0.718054 1.24371i −0.243715 0.969847i \(-0.578366\pi\)
0.961770 0.273860i \(-0.0883005\pi\)
\(60\) −0.367980 + 0.0415237i −0.0475060 + 0.00536068i
\(61\) −0.556799 0.964404i −0.0712908 0.123479i 0.828176 0.560467i \(-0.189378\pi\)
−0.899467 + 0.436988i \(0.856045\pi\)
\(62\) 3.63969 2.10138i 0.462242 0.266875i
\(63\) −3.58044 3.85621i −0.451093 0.485837i
\(64\) 0.983063 0.122883
\(65\) −0.454331 + 0.786924i −0.0563528 + 0.0976059i
\(66\) −5.43529 + 0.613330i −0.669038 + 0.0754957i
\(67\) 4.42825i 0.540996i −0.962721 0.270498i \(-0.912812\pi\)
0.962721 0.270498i \(-0.0871884\pi\)
\(68\) 6.26919 3.61952i 0.760251 0.438931i
\(69\) −1.11971 1.51662i −0.134797 0.182580i
\(70\) 0.142420 0.0822261i 0.0170224 0.00982790i
\(71\) 3.99931 + 6.92701i 0.474631 + 0.822085i 0.999578 0.0290503i \(-0.00924829\pi\)
−0.524947 + 0.851135i \(0.675915\pi\)
\(72\) 2.11654 6.86979i 0.249436 0.809613i
\(73\) −0.561346 0.972280i −0.0657006 0.113797i 0.831304 0.555818i \(-0.187595\pi\)
−0.897005 + 0.442021i \(0.854262\pi\)
\(74\) 3.17184i 0.368719i
\(75\) 7.90774 + 3.44854i 0.913107 + 0.398203i
\(76\) −6.71772 0.278594i −0.770576 0.0319569i
\(77\) −7.09208 + 4.09461i −0.808217 + 0.466625i
\(78\) −4.56173 6.17877i −0.516515 0.699608i
\(79\) 3.40591i 0.383195i 0.981474 + 0.191597i \(0.0613668\pi\)
−0.981474 + 0.191597i \(0.938633\pi\)
\(80\) −0.175760 0.101475i −0.0196505 0.0113452i
\(81\) −7.43954 5.06491i −0.826615 0.562768i
\(82\) −2.62956 + 4.55452i −0.290386 + 0.502963i
\(83\) 3.07334 + 1.77440i 0.337343 + 0.194765i 0.659097 0.752058i \(-0.270939\pi\)
−0.321753 + 0.946824i \(0.604272\pi\)
\(84\) −0.525464 4.65663i −0.0573328 0.508080i
\(85\) 0.650512 0.0705579
\(86\) 0.733037 0.0790454
\(87\) 1.51505 + 0.660708i 0.162430 + 0.0708353i
\(88\) −9.68830 5.59354i −1.03278 0.596273i
\(89\) 7.79231 13.4967i 0.825983 1.43065i −0.0751819 0.997170i \(-0.523954\pi\)
0.901165 0.433476i \(-0.142713\pi\)
\(90\) 0.206120 0.191380i 0.0217270 0.0201732i
\(91\) −9.95817 5.74935i −1.04390 0.602696i
\(92\) 1.67885i 0.175032i
\(93\) 4.30194 9.86465i 0.446091 1.02292i
\(94\) 7.33782 4.23649i 0.756838 0.436961i
\(95\) −0.510272 0.323514i −0.0523528 0.0331918i
\(96\) 8.05777 5.94899i 0.822393 0.607166i
\(97\) 14.5597i 1.47832i 0.673532 + 0.739158i \(0.264776\pi\)
−0.673532 + 0.739158i \(0.735224\pi\)
\(98\) −1.32688 2.29823i −0.134035 0.232156i
\(99\) −10.2642 + 9.53015i −1.03159 + 0.957816i
\(100\) 3.84137 + 6.65345i 0.384137 + 0.665345i
\(101\) 6.51866 3.76355i 0.648631 0.374487i −0.139300 0.990250i \(-0.544485\pi\)
0.787932 + 0.615763i \(0.211152\pi\)
\(102\) −2.19789 + 5.03992i −0.217624 + 0.499026i
\(103\) −0.293683 + 0.169558i −0.0289375 + 0.0167071i −0.514399 0.857551i \(-0.671985\pi\)
0.485461 + 0.874258i \(0.338652\pi\)
\(104\) 15.7081i 1.54030i
\(105\) 0.168333 0.386000i 0.0164276 0.0376697i
\(106\) −0.861646 + 1.49241i −0.0836904 + 0.144956i
\(107\) −11.8620 −1.14674 −0.573369 0.819297i \(-0.694364\pi\)
−0.573369 + 0.819297i \(0.694364\pi\)
\(108\) −2.65096 7.56384i −0.255089 0.727831i
\(109\) 8.94952 5.16701i 0.857209 0.494910i −0.00586793 0.999983i \(-0.501868\pi\)
0.863077 + 0.505073i \(0.168534\pi\)
\(110\) −0.218863 0.379082i −0.0208678 0.0361441i
\(111\) 4.82412 + 6.53416i 0.457885 + 0.620195i
\(112\) 1.28412 2.22416i 0.121338 0.210164i
\(113\) 1.09234 + 1.89199i 0.102759 + 0.177983i 0.912820 0.408361i \(-0.133900\pi\)
−0.810062 + 0.586345i \(0.800566\pi\)
\(114\) 4.23052 2.86034i 0.396225 0.267895i
\(115\) 0.0754319 0.130652i 0.00703406 0.0121834i
\(116\) 0.735971 + 1.27474i 0.0683332 + 0.118357i
\(117\) −18.7949 5.79057i −1.73758 0.535338i
\(118\) −3.73070 + 6.46176i −0.343439 + 0.594853i
\(119\) 8.23194i 0.754621i
\(120\) 0.571636 0.0645046i 0.0521830 0.00588844i
\(121\) 5.39874 + 9.35088i 0.490794 + 0.850080i
\(122\) 0.376622 + 0.652328i 0.0340977 + 0.0590590i
\(123\) 1.51004 + 13.3819i 0.136156 + 1.20661i
\(124\) 8.29997 4.79199i 0.745360 0.430334i
\(125\) 1.38343i 0.123738i
\(126\) 2.42183 + 2.60836i 0.215754 + 0.232371i
\(127\) −4.44199 2.56458i −0.394163 0.227570i 0.289799 0.957087i \(-0.406411\pi\)
−0.683962 + 0.729517i \(0.739745\pi\)
\(128\) 10.9004 0.963469
\(129\) 1.51010 1.11489i 0.132957 0.0981608i
\(130\) 0.307312 0.532279i 0.0269530 0.0466840i
\(131\) 13.6250 + 7.86640i 1.19042 + 0.687290i 0.958402 0.285421i \(-0.0921334\pi\)
0.232019 + 0.972711i \(0.425467\pi\)
\(132\) −12.3947 + 1.39864i −1.07882 + 0.121736i
\(133\) 4.09392 6.45727i 0.354988 0.559917i
\(134\) 2.99529i 0.258753i
\(135\) 0.133545 0.707747i 0.0114938 0.0609131i
\(136\) −9.73883 + 5.62271i −0.835097 + 0.482144i
\(137\) −2.84441 + 1.64222i −0.243014 + 0.140304i −0.616561 0.787307i \(-0.711475\pi\)
0.373547 + 0.927611i \(0.378141\pi\)
\(138\) 0.757378 + 1.02585i 0.0644723 + 0.0873264i
\(139\) 16.1681 1.37136 0.685681 0.727902i \(-0.259505\pi\)
0.685681 + 0.727902i \(0.259505\pi\)
\(140\) 0.324774 0.187509i 0.0274485 0.0158474i
\(141\) 8.67294 19.8877i 0.730393 1.67484i
\(142\) −2.70515 4.68546i −0.227011 0.393195i
\(143\) −15.3032 + 26.5059i −1.27972 + 2.21654i
\(144\) 1.29333 4.19784i 0.107777 0.349820i
\(145\) 0.132271i 0.0109845i
\(146\) 0.379698 + 0.657655i 0.0314240 + 0.0544279i
\(147\) −6.22888 2.71639i −0.513749 0.224044i
\(148\) 7.23307i 0.594555i
\(149\) −5.19597 2.99989i −0.425670 0.245761i 0.271830 0.962345i \(-0.412371\pi\)
−0.697500 + 0.716584i \(0.745704\pi\)
\(150\) −5.34883 2.33261i −0.436730 0.190457i
\(151\) 10.8923 + 6.28866i 0.886401 + 0.511764i 0.872764 0.488143i \(-0.162326\pi\)
0.0136375 + 0.999907i \(0.495659\pi\)
\(152\) 10.4356 + 0.432780i 0.846439 + 0.0351031i
\(153\) 3.13754 + 13.7253i 0.253655 + 1.10963i
\(154\) 4.79712 2.76962i 0.386563 0.223182i
\(155\) 0.861232 0.0691759
\(156\) −10.4026 14.0901i −0.832874 1.12811i
\(157\) −7.88036 + 13.6492i −0.628922 + 1.08932i 0.358847 + 0.933396i \(0.383170\pi\)
−0.987768 + 0.155928i \(0.950163\pi\)
\(158\) 2.30377i 0.183278i
\(159\) 0.494807 + 4.38495i 0.0392408 + 0.347749i
\(160\) 0.694149 + 0.400767i 0.0548773 + 0.0316834i
\(161\) 1.65334 + 0.954557i 0.130302 + 0.0752297i
\(162\) 5.03214 + 3.42593i 0.395362 + 0.269167i
\(163\) −6.65366 −0.521155 −0.260578 0.965453i \(-0.583913\pi\)
−0.260578 + 0.965453i \(0.583913\pi\)
\(164\) −5.99645 + 10.3861i −0.468244 + 0.811022i
\(165\) −1.02743 0.448057i −0.0799849 0.0348812i
\(166\) −2.07882 1.20021i −0.161348 0.0931544i
\(167\) 4.21808 0.326404 0.163202 0.986593i \(-0.447818\pi\)
0.163202 + 0.986593i \(0.447818\pi\)
\(168\) 0.816278 + 7.23380i 0.0629772 + 0.558100i
\(169\) −29.9752 −2.30579
\(170\) −0.440009 −0.0337472
\(171\) 4.36477 12.3268i 0.333782 0.942650i
\(172\) 1.67162 0.127460
\(173\) 10.8955 0.828372 0.414186 0.910192i \(-0.364066\pi\)
0.414186 + 0.910192i \(0.364066\pi\)
\(174\) −1.02479 0.446906i −0.0776889 0.0338799i
\(175\) −8.73651 −0.660418
\(176\) −5.92011 3.41798i −0.446245 0.257640i
\(177\) 2.14239 + 18.9857i 0.161032 + 1.42705i
\(178\) −5.27076 + 9.12922i −0.395060 + 0.684264i
\(179\) −5.16954 −0.386390 −0.193195 0.981160i \(-0.561885\pi\)
−0.193195 + 0.981160i \(0.561885\pi\)
\(180\) 0.470038 0.436424i 0.0350345 0.0325291i
\(181\) 4.70681 + 2.71748i 0.349855 + 0.201989i 0.664621 0.747180i \(-0.268593\pi\)
−0.314767 + 0.949169i \(0.601926\pi\)
\(182\) 6.73576 + 3.88889i 0.499288 + 0.288264i
\(183\) 1.76800 + 0.771020i 0.130694 + 0.0569954i
\(184\) 2.60799i 0.192264i
\(185\) −0.324988 + 0.562895i −0.0238936 + 0.0413849i
\(186\) −2.90986 + 6.67250i −0.213361 + 0.489251i
\(187\) 21.9112 1.60230
\(188\) 16.7332 9.66091i 1.22039 0.704594i
\(189\) 8.95622 + 1.68996i 0.651469 + 0.122926i
\(190\) 0.345151 + 0.218826i 0.0250399 + 0.0158753i
\(191\) −10.8662 6.27361i −0.786251 0.453942i 0.0523898 0.998627i \(-0.483316\pi\)
−0.838641 + 0.544684i \(0.816650\pi\)
\(192\) −1.36983 + 1.01134i −0.0988591 + 0.0729868i
\(193\) −0.103288 0.0596333i −0.00743482 0.00429250i 0.496278 0.868164i \(-0.334700\pi\)
−0.503713 + 0.863871i \(0.668033\pi\)
\(194\) 9.84827i 0.707065i
\(195\) −0.176476 1.56392i −0.0126377 0.111995i
\(196\) −3.02583 5.24089i −0.216131 0.374349i
\(197\) 14.8993i 1.06153i −0.847519 0.530765i \(-0.821905\pi\)
0.847519 0.530765i \(-0.178095\pi\)
\(198\) 6.94274 6.44624i 0.493399 0.458115i
\(199\) 3.99752 6.92391i 0.283377 0.490823i −0.688837 0.724916i \(-0.741879\pi\)
0.972214 + 0.234093i \(0.0752120\pi\)
\(200\) −5.96735 10.3358i −0.421956 0.730849i
\(201\) 4.55560 + 6.17046i 0.321327 + 0.435231i
\(202\) −4.40926 + 2.54568i −0.310234 + 0.179114i
\(203\) −1.67383 −0.117480
\(204\) −5.01208 + 11.4930i −0.350916 + 0.804674i
\(205\) −0.933316 + 0.538851i −0.0651856 + 0.0376350i
\(206\) 0.198649 0.114690i 0.0138405 0.00799083i
\(207\) 3.12048 + 0.961400i 0.216889 + 0.0668219i
\(208\) 9.59854i 0.665539i
\(209\) −17.1875 10.8969i −1.18888 0.753754i
\(210\) −0.113861 + 0.261092i −0.00785718 + 0.0180171i
\(211\) 10.1008 + 5.83168i 0.695366 + 0.401470i 0.805619 0.592434i \(-0.201833\pi\)
−0.110253 + 0.993904i \(0.535166\pi\)
\(212\) −1.96490 + 3.40331i −0.134950 + 0.233740i
\(213\) −12.6990 5.53799i −0.870121 0.379457i
\(214\) 8.02348 0.548474
\(215\) 0.130090 + 0.0751073i 0.00887204 + 0.00512227i
\(216\) 4.11811 + 11.7500i 0.280202 + 0.799486i
\(217\) 10.8985i 0.739840i
\(218\) −6.05350 + 3.49499i −0.409995 + 0.236711i
\(219\) 1.78244 + 0.777317i 0.120446 + 0.0525262i
\(220\) −0.499096 0.864460i −0.0336491 0.0582819i
\(221\) 15.3830 + 26.6442i 1.03477 + 1.79228i
\(222\) −3.26306 4.41974i −0.219002 0.296634i
\(223\) 20.8438i 1.39581i −0.716192 0.697903i \(-0.754116\pi\)
0.716192 0.697903i \(-0.245884\pi\)
\(224\) −5.07153 + 8.78415i −0.338856 + 0.586916i
\(225\) −14.5666 + 3.32986i −0.971108 + 0.221990i
\(226\) −0.738865 1.27975i −0.0491486 0.0851278i
\(227\) 11.9369 20.6753i 0.792279 1.37227i −0.132274 0.991213i \(-0.542228\pi\)
0.924553 0.381054i \(-0.124439\pi\)
\(228\) 9.64730 6.52272i 0.638908 0.431978i
\(229\) −8.94882 15.4998i −0.591355 1.02426i −0.994050 0.108923i \(-0.965260\pi\)
0.402695 0.915334i \(-0.368073\pi\)
\(230\) −0.0510225 + 0.0883736i −0.00336432 + 0.00582718i
\(231\) 5.66996 13.0016i 0.373056 0.855443i
\(232\) −1.14329 1.98023i −0.0750606 0.130009i
\(233\) −1.17373 + 0.677654i −0.0768936 + 0.0443946i −0.537954 0.842974i \(-0.680803\pi\)
0.461060 + 0.887369i \(0.347469\pi\)
\(234\) 12.7129 + 3.91677i 0.831070 + 0.256047i
\(235\) 1.73629 0.113263
\(236\) −8.50750 + 14.7354i −0.553791 + 0.959194i
\(237\) −3.50386 4.74590i −0.227600 0.308280i
\(238\) 5.56812i 0.360928i
\(239\) −6.15584 + 3.55408i −0.398188 + 0.229894i −0.685702 0.727882i \(-0.740505\pi\)
0.287514 + 0.957777i \(0.407171\pi\)
\(240\) 0.349303 0.0394161i 0.0225474 0.00254430i
\(241\) 14.3678 8.29527i 0.925513 0.534345i 0.0401234 0.999195i \(-0.487225\pi\)
0.885390 + 0.464849i \(0.153892\pi\)
\(242\) −3.65173 6.32499i −0.234742 0.406585i
\(243\) 15.5771 0.595883i 0.999269 0.0382259i
\(244\) 0.858849 + 1.48757i 0.0549822 + 0.0952319i
\(245\) 0.543812i 0.0347429i
\(246\) −1.02140 9.05160i −0.0651222 0.577109i
\(247\) 1.18403 28.5504i 0.0753380 1.81662i
\(248\) −12.8935 + 7.44408i −0.818740 + 0.472700i
\(249\) −6.10792 + 0.689231i −0.387074 + 0.0436782i
\(250\) 0.935760i 0.0591827i
\(251\) −4.43373 2.55982i −0.279855 0.161574i 0.353503 0.935433i \(-0.384990\pi\)
−0.633358 + 0.773859i \(0.718324\pi\)
\(252\) 5.52275 + 5.94812i 0.347900 + 0.374696i
\(253\) 2.54077 4.40074i 0.159737 0.276672i
\(254\) 3.00458 + 1.73470i 0.188524 + 0.108845i
\(255\) −0.906444 + 0.669220i −0.0567637 + 0.0419082i
\(256\) −9.33922 −0.583701
\(257\) −3.35771 −0.209448 −0.104724 0.994501i \(-0.533396\pi\)
−0.104724 + 0.994501i \(0.533396\pi\)
\(258\) −1.02144 + 0.754119i −0.0635919 + 0.0469494i
\(259\) −7.12319 4.11258i −0.442614 0.255543i
\(260\) 0.700794 1.21381i 0.0434614 0.0752774i
\(261\) −2.79083 + 0.637969i −0.172748 + 0.0394893i
\(262\) −9.21602 5.32087i −0.569367 0.328724i
\(263\) 28.1184i 1.73385i −0.498437 0.866926i \(-0.666092\pi\)
0.498437 0.866926i \(-0.333908\pi\)
\(264\) 19.2544 2.17271i 1.18503 0.133721i
\(265\) −0.305827 + 0.176569i −0.0187868 + 0.0108466i
\(266\) −2.76915 + 4.36773i −0.169788 + 0.267803i
\(267\) 3.02678 + 26.8231i 0.185236 + 1.64155i
\(268\) 6.83046i 0.417237i
\(269\) −4.97903 8.62394i −0.303577 0.525811i 0.673366 0.739309i \(-0.264848\pi\)
−0.976944 + 0.213498i \(0.931514\pi\)
\(270\) −0.0903308 + 0.478723i −0.00549736 + 0.0291342i
\(271\) 2.04225 + 3.53729i 0.124058 + 0.214875i 0.921364 0.388700i \(-0.127076\pi\)
−0.797306 + 0.603575i \(0.793742\pi\)
\(272\) −5.95099 + 3.43580i −0.360832 + 0.208326i
\(273\) 19.7907 2.23323i 1.19779 0.135161i
\(274\) 1.92397 1.11081i 0.116232 0.0671063i
\(275\) 23.2542i 1.40228i
\(276\) 1.72713 + 2.33936i 0.103961 + 0.140813i
\(277\) −7.84697 + 13.5914i −0.471479 + 0.816626i −0.999468 0.0326258i \(-0.989613\pi\)
0.527989 + 0.849251i \(0.322946\pi\)
\(278\) −10.9362 −0.655909
\(279\) 4.15389 + 18.1714i 0.248687 + 1.08789i
\(280\) −0.504519 + 0.291284i −0.0301508 + 0.0174075i
\(281\) 3.42719 + 5.93607i 0.204449 + 0.354117i 0.949957 0.312380i \(-0.101126\pi\)
−0.745508 + 0.666497i \(0.767793\pi\)
\(282\) −5.86642 + 13.4521i −0.349340 + 0.801062i
\(283\) −0.278438 + 0.482268i −0.0165514 + 0.0286679i −0.874182 0.485598i \(-0.838602\pi\)
0.857631 + 0.514265i \(0.171935\pi\)
\(284\) −6.16884 10.6847i −0.366053 0.634023i
\(285\) 1.04385 0.0741530i 0.0618322 0.00439245i
\(286\) 10.3512 17.9287i 0.612077 1.06015i
\(287\) −6.81892 11.8107i −0.402508 0.697164i
\(288\) −5.10789 + 16.5790i −0.300985 + 0.976928i
\(289\) 2.51272 4.35215i 0.147807 0.256009i
\(290\) 0.0894689i 0.00525379i
\(291\) −14.9785 20.2880i −0.878052 1.18930i
\(292\) 0.865863 + 1.49972i 0.0506708 + 0.0877644i
\(293\) −2.27576 3.94172i −0.132951 0.230278i 0.791862 0.610700i \(-0.209112\pi\)
−0.924813 + 0.380422i \(0.875779\pi\)
\(294\) 4.21325 + 1.83738i 0.245721 + 0.107158i
\(295\) −1.32415 + 0.764498i −0.0770949 + 0.0445108i
\(296\) 11.2362i 0.653088i
\(297\) 4.49821 23.8390i 0.261012 1.38328i
\(298\) 3.51458 + 2.02914i 0.203594 + 0.117545i
\(299\) 7.13512 0.412635
\(300\) −12.1975 5.31929i −0.704223 0.307109i
\(301\) −0.950449 + 1.64623i −0.0547830 + 0.0948869i
\(302\) −7.36759 4.25368i −0.423957 0.244772i
\(303\) −5.21153 + 11.9504i −0.299394 + 0.686532i
\(304\) 6.37676 + 0.264454i 0.365732 + 0.0151675i
\(305\) 0.154355i 0.00883835i
\(306\) −2.12225 9.28388i −0.121321 0.530724i
\(307\) 6.39989 3.69498i 0.365261 0.210883i −0.306125 0.951991i \(-0.599033\pi\)
0.671386 + 0.741108i \(0.265699\pi\)
\(308\) 10.9394 6.31584i 0.623328 0.359879i
\(309\) 0.234793 0.538397i 0.0133569 0.0306284i
\(310\) −0.582542 −0.0330862
\(311\) −26.1635 + 15.1055i −1.48360 + 0.856556i −0.999826 0.0186380i \(-0.994067\pi\)
−0.483772 + 0.875194i \(0.660734\pi\)
\(312\) 16.1598 + 21.8881i 0.914870 + 1.23917i
\(313\) −0.632333 1.09523i −0.0357416 0.0619062i 0.847601 0.530634i \(-0.178046\pi\)
−0.883343 + 0.468727i \(0.844713\pi\)
\(314\) 5.33032 9.23238i 0.300807 0.521013i
\(315\) 0.162540 + 0.711039i 0.00915809 + 0.0400625i
\(316\) 5.25353i 0.295534i
\(317\) 7.05696 + 12.2230i 0.396358 + 0.686513i 0.993274 0.115792i \(-0.0369405\pi\)
−0.596915 + 0.802304i \(0.703607\pi\)
\(318\) −0.334690 2.96600i −0.0187685 0.166325i
\(319\) 4.45528i 0.249448i
\(320\) −0.118006 0.0681309i −0.00659675 0.00380863i
\(321\) 16.5288 12.2031i 0.922549 0.681110i
\(322\) −1.11833 0.645667i −0.0623220 0.0359816i
\(323\) −18.1248 + 9.48556i −1.00849 + 0.527791i
\(324\) 11.4753 + 7.81250i 0.637517 + 0.434028i
\(325\) −28.2773 + 16.3259i −1.56854 + 0.905598i
\(326\) 4.50057 0.249264
\(327\) −7.15494 + 16.4068i −0.395669 + 0.907297i
\(328\) 9.31514 16.1343i 0.514342 0.890867i
\(329\) 21.9720i 1.21135i
\(330\) 0.694955 + 0.303068i 0.0382560 + 0.0166833i
\(331\) −15.7116 9.07108i −0.863586 0.498592i 0.00162545 0.999999i \(-0.499483\pi\)
−0.865212 + 0.501407i \(0.832816\pi\)
\(332\) −4.74056 2.73696i −0.260172 0.150210i
\(333\) −13.4442 4.14206i −0.736736 0.226983i
\(334\) −2.85313 −0.156116
\(335\) −0.306898 + 0.531563i −0.0167676 + 0.0290424i
\(336\) 0.498793 + 4.42027i 0.0272114 + 0.241146i
\(337\) 5.33828 + 3.08206i 0.290795 + 0.167890i 0.638300 0.769788i \(-0.279638\pi\)
−0.347505 + 0.937678i \(0.612971\pi\)
\(338\) 20.2754 1.10284
\(339\) −3.46851 1.51260i −0.188383 0.0821534i
\(340\) −1.00340 −0.0544169
\(341\) 29.0089 1.57092
\(342\) −2.95235 + 8.33788i −0.159645 + 0.450861i
\(343\) 19.1600 1.03454
\(344\) −2.59677 −0.140008
\(345\) 0.0293001 + 0.259656i 0.00157747 + 0.0139794i
\(346\) −7.36979 −0.396202
\(347\) −13.9949 8.07999i −0.751288 0.433756i 0.0748709 0.997193i \(-0.476146\pi\)
−0.826159 + 0.563437i \(0.809479\pi\)
\(348\) −2.33693 1.01913i −0.125272 0.0546309i
\(349\) 11.5382 19.9847i 0.617624 1.06976i −0.372294 0.928115i \(-0.621429\pi\)
0.989918 0.141641i \(-0.0452379\pi\)
\(350\) 5.90942 0.315872
\(351\) 32.1465 11.2666i 1.71585 0.601368i
\(352\) 23.3810 + 13.4990i 1.24621 + 0.719500i
\(353\) 26.3912 + 15.2370i 1.40466 + 0.810982i 0.994867 0.101196i \(-0.0322669\pi\)
0.409795 + 0.912178i \(0.365600\pi\)
\(354\) −1.44912 12.8420i −0.0770199 0.682546i
\(355\) 1.10868i 0.0588428i
\(356\) −12.0195 + 20.8183i −0.637030 + 1.10337i
\(357\) −8.46868 11.4706i −0.448210 0.607091i
\(358\) 3.49670 0.184806
\(359\) −1.17054 + 0.675809i −0.0617785 + 0.0356679i −0.530571 0.847640i \(-0.678023\pi\)
0.468793 + 0.883308i \(0.344689\pi\)
\(360\) −0.730177 + 0.677959i −0.0384837 + 0.0357316i
\(361\) 18.9348 + 1.57321i 0.996566 + 0.0828006i
\(362\) −3.18371 1.83812i −0.167332 0.0966093i
\(363\) −17.1426 7.47582i −0.899752 0.392379i
\(364\) 15.3602 + 8.86824i 0.805096 + 0.464822i
\(365\) 0.155616i 0.00814530i
\(366\) −1.19589 0.521521i −0.0625099 0.0272604i
\(367\) −0.793706 1.37474i −0.0414311 0.0717608i 0.844566 0.535451i \(-0.179858\pi\)
−0.885997 + 0.463690i \(0.846525\pi\)
\(368\) 1.59363i 0.0830739i
\(369\) −15.8709 17.0933i −0.826207 0.889843i
\(370\) 0.219823 0.380745i 0.0114281 0.0197940i
\(371\) −2.23440 3.87010i −0.116004 0.200926i
\(372\) −6.63564 + 15.2160i −0.344042 + 0.788912i
\(373\) −26.0140 + 15.0192i −1.34695 + 0.777663i −0.987817 0.155622i \(-0.950262\pi\)
−0.359135 + 0.933285i \(0.616928\pi\)
\(374\) −14.8208 −0.766366
\(375\) −1.42322 1.92772i −0.0734947 0.0995469i
\(376\) −25.9940 + 15.0077i −1.34054 + 0.773961i
\(377\) −5.41766 + 3.12789i −0.279024 + 0.161095i
\(378\) −6.05803 1.14310i −0.311592 0.0587946i
\(379\) 20.4900i 1.05250i 0.850330 + 0.526250i \(0.176402\pi\)
−0.850330 + 0.526250i \(0.823598\pi\)
\(380\) 0.787083 + 0.499012i 0.0403765 + 0.0255988i
\(381\) 8.82795 0.996165i 0.452270 0.0510351i
\(382\) 7.34996 + 4.24350i 0.376057 + 0.217116i
\(383\) 14.8650 25.7469i 0.759565 1.31561i −0.183507 0.983018i \(-0.558745\pi\)
0.943073 0.332587i \(-0.107922\pi\)
\(384\) −15.1890 + 11.2139i −0.775110 + 0.572257i
\(385\) 1.13510 0.0578503
\(386\) 0.0698644 + 0.0403362i 0.00355600 + 0.00205306i
\(387\) −0.957263 + 3.10705i −0.0486604 + 0.157940i
\(388\) 22.4580i 1.14013i
\(389\) 14.8922 8.59803i 0.755066 0.435938i −0.0724554 0.997372i \(-0.523084\pi\)
0.827521 + 0.561434i \(0.189750\pi\)
\(390\) 0.119369 + 1.05784i 0.00604451 + 0.0535660i
\(391\) −2.55402 4.42369i −0.129162 0.223716i
\(392\) 4.70045 + 8.14142i 0.237409 + 0.411204i
\(393\) −27.0781 + 3.05556i −1.36591 + 0.154132i
\(394\) 10.0779i 0.507720i
\(395\) 0.236046 0.408843i 0.0118767 0.0205711i
\(396\) 15.8323 14.7000i 0.795601 0.738705i
\(397\) −12.1112 20.9772i −0.607844 1.05282i −0.991595 0.129380i \(-0.958701\pi\)
0.383751 0.923437i \(-0.374632\pi\)
\(398\) −2.70394 + 4.68337i −0.135536 + 0.234756i
\(399\) 0.938374 + 13.2094i 0.0469775 + 0.661299i
\(400\) −3.64640 6.31575i −0.182320 0.315787i
\(401\) 8.70752 15.0819i 0.434833 0.753153i −0.562449 0.826832i \(-0.690141\pi\)
0.997282 + 0.0736792i \(0.0234741\pi\)
\(402\) −3.08143 4.17373i −0.153688 0.208167i
\(403\) 20.3660 + 35.2750i 1.01450 + 1.75717i
\(404\) −10.0549 + 5.80519i −0.500249 + 0.288819i
\(405\) 0.542014 + 1.12358i 0.0269329 + 0.0558313i
\(406\) 1.13219 0.0561896
\(407\) −10.9465 + 18.9600i −0.542600 + 0.939811i
\(408\) 7.78597 17.8538i 0.385463 0.883894i
\(409\) 23.3316i 1.15367i 0.816859 + 0.576837i \(0.195713\pi\)
−0.816859 + 0.576837i \(0.804287\pi\)
\(410\) 0.631300 0.364481i 0.0311777 0.0180004i
\(411\) 2.27404 5.21454i 0.112170 0.257214i
\(412\) 0.453000 0.261539i 0.0223177 0.0128851i
\(413\) −9.67438 16.7565i −0.476045 0.824535i
\(414\) −2.11071 0.650296i −0.103736 0.0319603i
\(415\) −0.245948 0.425994i −0.0120731 0.0209112i
\(416\) 37.9086i 1.85862i
\(417\) −22.5292 + 16.6331i −1.10326 + 0.814527i
\(418\) 11.6257 + 7.37072i 0.568632 + 0.360514i
\(419\) 6.86848 3.96552i 0.335547 0.193728i −0.322754 0.946483i \(-0.604609\pi\)
0.658301 + 0.752755i \(0.271275\pi\)
\(420\) −0.259650 + 0.595395i −0.0126696 + 0.0290523i
\(421\) 28.2153i 1.37513i 0.726123 + 0.687565i \(0.241320\pi\)
−0.726123 + 0.687565i \(0.758680\pi\)
\(422\) −6.83221 3.94458i −0.332587 0.192019i
\(423\) 8.37446 + 36.6345i 0.407180 + 1.78123i
\(424\) 3.05236 5.28684i 0.148236 0.256752i
\(425\) 20.2437 + 11.6877i 0.981966 + 0.566938i
\(426\) 8.58966 + 3.74592i 0.416170 + 0.181491i
\(427\) −1.95330 −0.0945267
\(428\) 18.2968 0.884408
\(429\) −5.94424 52.6775i −0.286991 2.54329i
\(430\) −0.0879933 0.0508029i −0.00424341 0.00244994i
\(431\) −3.39423 + 5.87899i −0.163494 + 0.283181i −0.936120 0.351682i \(-0.885610\pi\)
0.772625 + 0.634863i \(0.218943\pi\)
\(432\) 2.51641 + 7.17993i 0.121071 + 0.345444i
\(433\) 29.7286 + 17.1638i 1.42866 + 0.824839i 0.997015 0.0772030i \(-0.0245990\pi\)
0.431648 + 0.902042i \(0.357932\pi\)
\(434\) 7.37181i 0.353858i
\(435\) −0.136075 0.184311i −0.00652431 0.00883703i
\(436\) −13.8044 + 7.96999i −0.661112 + 0.381693i
\(437\) −0.196583 + 4.74019i −0.00940384 + 0.226754i
\(438\) −1.20565 0.525781i −0.0576083 0.0251228i
\(439\) 13.8023i 0.658747i 0.944200 + 0.329373i \(0.106837\pi\)
−0.944200 + 0.329373i \(0.893163\pi\)
\(440\) 0.775318 + 1.34289i 0.0369618 + 0.0640198i
\(441\) 11.4740 2.62291i 0.546383 0.124900i
\(442\) −10.4051 18.0222i −0.494922 0.857231i
\(443\) 23.3421 13.4766i 1.10902 0.640292i 0.170444 0.985367i \(-0.445480\pi\)
0.938575 + 0.345075i \(0.112147\pi\)
\(444\) −7.44109 10.0788i −0.353138 0.478318i
\(445\) −1.87077 + 1.08009i −0.0886829 + 0.0512011i
\(446\) 14.0989i 0.667601i
\(447\) 10.3264 1.16525i 0.488422 0.0551145i
\(448\) 0.862167 1.49332i 0.0407335 0.0705526i
\(449\) −1.78199 −0.0840972 −0.0420486 0.999116i \(-0.513388\pi\)
−0.0420486 + 0.999116i \(0.513388\pi\)
\(450\) 9.85293 2.25233i 0.464472 0.106176i
\(451\) −31.4369 + 18.1501i −1.48030 + 0.854654i
\(452\) −1.68491 2.91835i −0.0792515 0.137268i
\(453\) −21.6472 + 2.44271i −1.01707 + 0.114769i
\(454\) −8.07417 + 13.9849i −0.378940 + 0.656343i
\(455\) 0.796915 + 1.38030i 0.0373599 + 0.0647093i
\(456\) −14.9865 + 10.1327i −0.701809 + 0.474506i
\(457\) −5.41688 + 9.38231i −0.253391 + 0.438886i −0.964457 0.264239i \(-0.914879\pi\)
0.711066 + 0.703125i \(0.248213\pi\)
\(458\) 6.05303 + 10.4842i 0.282839 + 0.489892i
\(459\) −18.4920 15.8975i −0.863133 0.742034i
\(460\) −0.116352 + 0.201527i −0.00542494 + 0.00939626i
\(461\) 20.7337i 0.965665i −0.875713 0.482833i \(-0.839608\pi\)
0.875713 0.482833i \(-0.160392\pi\)
\(462\) −3.83519 + 8.79436i −0.178429 + 0.409150i
\(463\) −13.1769 22.8231i −0.612384 1.06068i −0.990837 0.135060i \(-0.956877\pi\)
0.378453 0.925620i \(-0.376456\pi\)
\(464\) −0.698616 1.21004i −0.0324324 0.0561746i
\(465\) −1.20007 + 0.886001i −0.0556519 + 0.0410873i
\(466\) 0.793917 0.458368i 0.0367775 0.0212335i
\(467\) 12.0210i 0.556265i −0.960543 0.278133i \(-0.910285\pi\)
0.960543 0.278133i \(-0.0897155\pi\)
\(468\) 28.9906 + 8.93181i 1.34009 + 0.412873i
\(469\) −6.72670 3.88366i −0.310610 0.179331i
\(470\) −1.17444 −0.0541727
\(471\) −3.06098 27.1262i −0.141043 1.24991i
\(472\) 13.2159 22.8906i 0.608312 1.05363i
\(473\) 4.38180 + 2.52983i 0.201475 + 0.116322i
\(474\) 2.37003 + 3.21015i 0.108859 + 0.147447i
\(475\) −10.0670 19.2357i −0.461904 0.882595i
\(476\) 12.6976i 0.581992i
\(477\) −5.20054 5.60110i −0.238116 0.256457i
\(478\) 4.16384 2.40400i 0.190450 0.109956i
\(479\) 30.4077 17.5559i 1.38936 0.802149i 0.396119 0.918199i \(-0.370357\pi\)
0.993243 + 0.116051i \(0.0370235\pi\)
\(480\) −1.37954 + 0.155671i −0.0629672 + 0.00710535i
\(481\) −30.7407 −1.40165
\(482\) −9.71847 + 5.61096i −0.442664 + 0.255572i
\(483\) −3.28583 + 0.370780i −0.149510 + 0.0168711i
\(484\) −8.32742 14.4235i −0.378519 0.655614i
\(485\) 1.00906 1.74774i 0.0458189 0.0793607i
\(486\) −10.5364 + 0.403059i −0.477941 + 0.0182831i
\(487\) 14.1105i 0.639409i −0.947517 0.319705i \(-0.896416\pi\)
0.947517 0.319705i \(-0.103584\pi\)
\(488\) −1.33417 2.31086i −0.0603952 0.104608i
\(489\) 9.27143 6.84502i 0.419268 0.309542i
\(490\) 0.367837i 0.0166172i
\(491\) −25.6095 14.7857i −1.15574 0.667267i −0.205461 0.978665i \(-0.565870\pi\)
−0.950280 + 0.311398i \(0.899203\pi\)
\(492\) −2.32921 20.6413i −0.105009 0.930582i
\(493\) 3.87851 + 2.23926i 0.174679 + 0.100851i
\(494\) −0.800884 + 19.3117i −0.0360335 + 0.868873i
\(495\) 1.89259 0.432637i 0.0850656 0.0194456i
\(496\) −7.87869 + 4.54877i −0.353764 + 0.204246i
\(497\) 14.0299 0.629327
\(498\) 4.13143 0.466199i 0.185134 0.0208909i
\(499\) 17.8745 30.9595i 0.800172 1.38594i −0.119330 0.992855i \(-0.538075\pi\)
0.919502 0.393084i \(-0.128592\pi\)
\(500\) 2.13391i 0.0954314i
\(501\) −5.87760 + 4.33939i −0.262592 + 0.193869i
\(502\) 2.99900 + 1.73147i 0.133852 + 0.0772794i
\(503\) −3.21576 1.85662i −0.143384 0.0827826i 0.426592 0.904444i \(-0.359714\pi\)
−0.569976 + 0.821662i \(0.693047\pi\)
\(504\) −8.57927 9.24006i −0.382151 0.411585i
\(505\) −1.04333 −0.0464275
\(506\) −1.71859 + 2.97668i −0.0764006 + 0.132330i
\(507\) 41.7685 30.8373i 1.85500 1.36953i
\(508\) 6.85166 + 3.95581i 0.303993 + 0.175511i
\(509\) 34.9419 1.54877 0.774386 0.632714i \(-0.218059\pi\)
0.774386 + 0.632714i \(0.218059\pi\)
\(510\) 0.613123 0.452664i 0.0271496 0.0200443i
\(511\) −1.96925 −0.0871145
\(512\) −15.4837 −0.684291
\(513\) 6.59926 + 21.6668i 0.291364 + 0.956612i
\(514\) 2.27117 0.100177
\(515\) 0.0470047 0.00207128
\(516\) −2.32929 + 1.71970i −0.102541 + 0.0757054i
\(517\) 58.4834 2.57210
\(518\) 4.81816 + 2.78177i 0.211698 + 0.122224i
\(519\) −15.1822 + 11.2089i −0.666424 + 0.492015i
\(520\) −1.08864 + 1.88559i −0.0477402 + 0.0826884i
\(521\) 39.1773 1.71639 0.858195 0.513324i \(-0.171586\pi\)
0.858195 + 0.513324i \(0.171586\pi\)
\(522\) 1.88773 0.431526i 0.0826237 0.0188874i
\(523\) −35.3599 20.4151i −1.54618 0.892689i −0.998428 0.0560491i \(-0.982150\pi\)
−0.547754 0.836639i \(-0.684517\pi\)
\(524\) −21.0162 12.1337i −0.918099 0.530064i
\(525\) 12.1737 8.98777i 0.531305 0.392258i
\(526\) 19.0194i 0.829285i
\(527\) 14.5801 25.2534i 0.635118 1.10006i
\(528\) 11.7655 1.32765i 0.512030 0.0577785i
\(529\) 21.8154 0.948494
\(530\) 0.206863 0.119432i 0.00898554 0.00518780i
\(531\) −22.5170 24.2513i −0.977154 1.05242i
\(532\) −6.31478 + 9.96019i −0.273780 + 0.431829i
\(533\) −44.1413 25.4850i −1.91197 1.10388i
\(534\) −2.04733 18.1433i −0.0885966 0.785137i
\(535\) 1.42390 + 0.822089i 0.0615606 + 0.0355420i
\(536\) 10.6107i 0.458314i
\(537\) 7.20340 5.31821i 0.310850 0.229498i
\(538\) 3.36784 + 5.83328i 0.145198 + 0.251490i
\(539\) 18.3172i 0.788977i
\(540\) −0.205991 + 1.09168i −0.00886443 + 0.0469785i
\(541\) −14.5634 + 25.2245i −0.626129 + 1.08449i 0.362192 + 0.932104i \(0.382028\pi\)
−0.988321 + 0.152384i \(0.951305\pi\)
\(542\) −1.38139 2.39264i −0.0593358 0.102773i
\(543\) −9.35426 + 1.05555i −0.401430 + 0.0452982i
\(544\) 23.5029 13.5694i 1.00768 0.581784i
\(545\) −1.43239 −0.0613569
\(546\) −13.3866 + 1.51057i −0.572892 + 0.0646463i
\(547\) −15.7898 + 9.11626i −0.675124 + 0.389783i −0.798015 0.602637i \(-0.794117\pi\)
0.122891 + 0.992420i \(0.460783\pi\)
\(548\) 4.38744 2.53309i 0.187422 0.108208i
\(549\) −3.25678 + 0.744485i −0.138996 + 0.0317738i
\(550\) 15.7292i 0.670697i
\(551\) −1.92874 3.68538i −0.0821670 0.157003i
\(552\) −2.68299 3.63406i −0.114196 0.154676i
\(553\) 5.17373 + 2.98705i 0.220009 + 0.127022i
\(554\) 5.30773 9.19326i 0.225504 0.390584i
\(555\) −0.126235 1.11869i −0.00535840 0.0474858i
\(556\) −24.9389 −1.05765
\(557\) −30.1772 17.4228i −1.27865 0.738230i −0.302051 0.953292i \(-0.597671\pi\)
−0.976600 + 0.215062i \(0.931005\pi\)
\(558\) −2.80971 12.2912i −0.118945 0.520329i
\(559\) 7.10441i 0.300485i
\(560\) −0.308290 + 0.177991i −0.0130276 + 0.00752151i
\(561\) −30.5317 + 22.5413i −1.28905 + 0.951695i
\(562\) −2.31817 4.01519i −0.0977862 0.169371i
\(563\) 13.2981 + 23.0329i 0.560446 + 0.970722i 0.997457 + 0.0712655i \(0.0227038\pi\)
−0.437011 + 0.899456i \(0.643963\pi\)
\(564\) −13.3778 + 30.6762i −0.563307 + 1.29170i
\(565\) 0.302818i 0.0127396i
\(566\) 0.188337 0.326209i 0.00791638 0.0137116i
\(567\) −14.2185 + 6.85895i −0.597119 + 0.288049i
\(568\) 9.58294 + 16.5981i 0.402091 + 0.696442i
\(569\) −14.6846 + 25.4344i −0.615610 + 1.06627i 0.374668 + 0.927159i \(0.377757\pi\)
−0.990277 + 0.139108i \(0.955577\pi\)
\(570\) −0.706064 + 0.0501575i −0.0295738 + 0.00210087i
\(571\) 0.947842 + 1.64171i 0.0396660 + 0.0687035i 0.885177 0.465255i \(-0.154037\pi\)
−0.845511 + 0.533958i \(0.820704\pi\)
\(572\) 23.6048 40.8847i 0.986967 1.70948i
\(573\) 21.5954 2.43687i 0.902159 0.101802i
\(574\) 4.61235 + 7.98882i 0.192516 + 0.333447i
\(575\) 4.69484 2.71057i 0.195788 0.113038i
\(576\) 0.868347 2.81845i 0.0361811 0.117436i
\(577\) 15.2421 0.634537 0.317268 0.948336i \(-0.397234\pi\)
0.317268 + 0.948336i \(0.397234\pi\)
\(578\) −1.69961 + 2.94382i −0.0706946 + 0.122447i
\(579\) 0.205273 0.0231634i 0.00853085 0.000962639i
\(580\) 0.204025i 0.00847168i
\(581\) 5.39077 3.11236i 0.223647 0.129123i
\(582\) 10.1315 + 13.7229i 0.419964 + 0.568832i
\(583\) −10.3011 + 5.94737i −0.426630 + 0.246315i
\(584\) −1.34507 2.32973i −0.0556594 0.0964049i
\(585\) 1.85481 + 1.99767i 0.0766868 + 0.0825934i
\(586\) 1.53933 + 2.66620i 0.0635892 + 0.110140i
\(587\) 41.8816i 1.72864i 0.502943 + 0.864319i \(0.332250\pi\)
−0.502943 + 0.864319i \(0.667750\pi\)
\(588\) 9.60790 + 4.18997i 0.396223 + 0.172792i
\(589\) −23.9959 + 12.5582i −0.988736 + 0.517453i
\(590\) 0.895661 0.517110i 0.0368738 0.0212891i
\(591\) 15.3278 + 20.7611i 0.630500 + 0.853999i
\(592\) 6.86594i 0.282189i
\(593\) 6.19893 + 3.57896i 0.254560 + 0.146970i 0.621850 0.783136i \(-0.286381\pi\)
−0.367291 + 0.930106i \(0.619715\pi\)
\(594\) −3.04261 + 16.1248i −0.124840 + 0.661609i
\(595\) 0.570512 0.988156i 0.0233887 0.0405105i
\(596\) 8.01465 + 4.62726i 0.328293 + 0.189540i
\(597\) 1.55276 + 13.7605i 0.0635504 + 0.563179i
\(598\) −4.82623 −0.197359
\(599\) −6.23274 −0.254663 −0.127331 0.991860i \(-0.540641\pi\)
−0.127331 + 0.991860i \(0.540641\pi\)
\(600\) 18.9481 + 8.26321i 0.773554 + 0.337344i
\(601\) −19.8585 11.4653i −0.810044 0.467679i 0.0369272 0.999318i \(-0.488243\pi\)
−0.846971 + 0.531639i \(0.821576\pi\)
\(602\) 0.642889 1.11352i 0.0262022 0.0453835i
\(603\) −12.6958 3.91150i −0.517015 0.159289i
\(604\) −16.8011 9.70011i −0.683626 0.394692i
\(605\) 1.49663i 0.0608467i
\(606\) 3.52510 8.08330i 0.143197 0.328362i
\(607\) −1.44140 + 0.832190i −0.0585044 + 0.0337775i −0.528967 0.848642i \(-0.677420\pi\)
0.470462 + 0.882420i \(0.344087\pi\)
\(608\) −25.1845 1.04444i −1.02137 0.0423576i
\(609\) 2.33237 1.72197i 0.0945125 0.0697778i
\(610\) 0.104407i 0.00422730i
\(611\) 41.0590 + 71.1163i 1.66107 + 2.87706i
\(612\) −4.83958 21.1710i −0.195629 0.855787i
\(613\) 18.5832 + 32.1871i 0.750570 + 1.30003i 0.947547 + 0.319617i \(0.103554\pi\)
−0.196977 + 0.980408i \(0.563112\pi\)
\(614\) −4.32891 + 2.49930i −0.174701 + 0.100864i
\(615\) 0.746166 1.71101i 0.0300883 0.0689946i
\(616\) −16.9937 + 9.81130i −0.684695 + 0.395309i
\(617\) 15.6197i 0.628824i 0.949287 + 0.314412i \(0.101807\pi\)
−0.949287 + 0.314412i \(0.898193\pi\)
\(618\) −0.158815 + 0.364175i −0.00638849 + 0.0146493i
\(619\) −17.0708 + 29.5674i −0.686132 + 1.18842i 0.286948 + 0.957946i \(0.407359\pi\)
−0.973080 + 0.230469i \(0.925974\pi\)
\(620\) −1.32843 −0.0533511
\(621\) −5.33723 + 1.87058i −0.214176 + 0.0750639i
\(622\) 17.6972 10.2175i 0.709591 0.409683i
\(623\) −13.6680 23.6737i −0.547598 0.948468i
\(624\) 9.87459 + 13.3749i 0.395300 + 0.535425i
\(625\) −12.3561 + 21.4014i −0.494244 + 0.856055i
\(626\) 0.427713 + 0.740821i 0.0170948 + 0.0296091i
\(627\) 35.1599 2.49769i 1.40415 0.0997483i
\(628\) 12.1553 21.0536i 0.485048 0.840128i
\(629\) 11.0036 + 19.0589i 0.438744 + 0.759927i
\(630\) −0.109943 0.480950i −0.00438023 0.0191615i
\(631\) 9.09528 15.7535i 0.362077 0.627136i −0.626225 0.779642i \(-0.715401\pi\)
0.988303 + 0.152506i \(0.0487343\pi\)
\(632\) 8.16107i 0.324630i
\(633\) −20.0741 + 2.26521i −0.797875 + 0.0900340i
\(634\) −4.77336 8.26771i −0.189574 0.328353i
\(635\) 0.355476 + 0.615702i 0.0141066 + 0.0244334i
\(636\) −0.763229 6.76369i −0.0302640 0.268198i
\(637\) 22.2739 12.8598i 0.882522 0.509525i
\(638\) 3.01358i 0.119309i
\(639\) 23.3924 5.34740i 0.925391 0.211540i
\(640\) −1.30848 0.755450i −0.0517221 0.0298618i
\(641\) −12.6220 −0.498539 −0.249269 0.968434i \(-0.580190\pi\)
−0.249269 + 0.968434i \(0.580190\pi\)
\(642\) −11.1802 + 8.25424i −0.441247 + 0.325769i
\(643\) −13.2003 + 22.8636i −0.520568 + 0.901651i 0.479146 + 0.877735i \(0.340947\pi\)
−0.999714 + 0.0239155i \(0.992387\pi\)
\(644\) −2.55024 1.47238i −0.100494 0.0580200i
\(645\) −0.258538 + 0.0291740i −0.0101799 + 0.00114873i
\(646\) 12.2597 6.41608i 0.482351 0.252437i
\(647\) 17.9111i 0.704159i 0.935970 + 0.352079i \(0.114525\pi\)
−0.935970 + 0.352079i \(0.885475\pi\)
\(648\) −17.8262 12.1363i −0.700281 0.476758i
\(649\) −44.6013 + 25.7505i −1.75075 + 1.01080i
\(650\) 19.1269 11.0429i 0.750219 0.433139i
\(651\) −11.2120 15.1863i −0.439431 0.595200i
\(652\) 10.2631 0.401935
\(653\) 3.92191 2.26431i 0.153476 0.0886094i −0.421295 0.906924i \(-0.638424\pi\)
0.574771 + 0.818314i \(0.305091\pi\)
\(654\) 4.83964 11.0976i 0.189245 0.433952i
\(655\) −1.09036 1.88855i −0.0426038 0.0737919i
\(656\) 5.69209 9.85898i 0.222239 0.384929i
\(657\) −3.28338 + 0.750565i −0.128097 + 0.0292823i
\(658\) 14.8620i 0.579380i
\(659\) 10.4986 + 18.1841i 0.408968 + 0.708353i 0.994774 0.102098i \(-0.0325554\pi\)
−0.585806 + 0.810451i \(0.699222\pi\)
\(660\) 1.58478 + 0.691117i 0.0616874 + 0.0269017i
\(661\) 19.1203i 0.743693i −0.928294 0.371847i \(-0.878725\pi\)
0.928294 0.371847i \(-0.121275\pi\)
\(662\) 10.6274 + 6.13572i 0.413045 + 0.238472i
\(663\) −48.8456 21.3014i −1.89701 0.827278i
\(664\) 7.36419 + 4.25172i 0.285786 + 0.164999i
\(665\) −0.938951 + 0.491398i −0.0364110 + 0.0190556i
\(666\) 9.09370 + 2.80171i 0.352374 + 0.108564i
\(667\) 0.899487 0.519319i 0.0348283 0.0201081i
\(668\) −6.50628 −0.251736
\(669\) 21.4433 + 29.0445i 0.829046 + 1.12292i
\(670\) 0.207588 0.359552i 0.00801981 0.0138907i
\(671\) 5.19914i 0.200711i
\(672\) −1.96994 17.4575i −0.0759922 0.673438i
\(673\) −8.12324 4.68995i −0.313128 0.180784i 0.335197 0.942148i \(-0.391197\pi\)
−0.648325 + 0.761363i \(0.724530\pi\)
\(674\) −3.61084 2.08472i −0.139084 0.0803004i
\(675\) 16.8720 19.6255i 0.649402 0.755385i
\(676\) 46.2361 1.77831
\(677\) 15.3198 26.5347i 0.588787 1.01981i −0.405604 0.914049i \(-0.632939\pi\)
0.994392 0.105761i \(-0.0337278\pi\)
\(678\) 2.34611 + 1.02313i 0.0901020 + 0.0392932i
\(679\) 22.1169 + 12.7692i 0.848767 + 0.490036i
\(680\) 1.55872 0.0597743
\(681\) 4.63666 + 41.0898i 0.177677 + 1.57456i
\(682\) −19.6217 −0.751355
\(683\) −30.9867 −1.18567 −0.592837 0.805323i \(-0.701992\pi\)
−0.592837 + 0.805323i \(0.701992\pi\)
\(684\) −6.73255 + 19.0137i −0.257425 + 0.727008i
\(685\) 0.455255 0.0173944
\(686\) −12.9599 −0.494812
\(687\) 28.4152 + 12.3918i 1.08411 + 0.472775i
\(688\) −1.58677 −0.0604952
\(689\) −14.4641 8.35086i −0.551039 0.318142i
\(690\) −0.0198187 0.175633i −0.000754487 0.00668622i
\(691\) 8.00656 13.8678i 0.304584 0.527555i −0.672585 0.740020i \(-0.734816\pi\)
0.977169 + 0.212465i \(0.0681493\pi\)
\(692\) −16.8061 −0.638872
\(693\) 5.47483 + 23.9499i 0.207971 + 0.909781i
\(694\) 9.46625 + 5.46534i 0.359334 + 0.207462i
\(695\) −1.94081 1.12053i −0.0736191 0.0425040i
\(696\) 3.63028 + 1.58315i 0.137605 + 0.0600093i
\(697\) 36.4895i 1.38214i
\(698\) −7.80447 + 13.5177i −0.295404 + 0.511654i
\(699\) 0.938371 2.15175i 0.0354925 0.0813867i
\(700\) 13.4759 0.509340
\(701\) 29.7676 17.1863i 1.12431 0.649119i 0.181810 0.983334i \(-0.441804\pi\)
0.942497 + 0.334215i \(0.108471\pi\)
\(702\) −21.7440 + 7.62080i −0.820675 + 0.287628i
\(703\) 0.846950 20.4224i 0.0319433 0.770247i
\(704\) −3.97480 2.29485i −0.149806 0.0864904i
\(705\) −2.41940 + 1.78622i −0.0911200 + 0.0672731i
\(706\) −17.8511 10.3064i −0.671836 0.387885i
\(707\) 13.2029i 0.496544i
\(708\) −3.30458 29.2850i −0.124194 1.10060i
\(709\) 1.67597 + 2.90287i 0.0629425 + 0.109020i 0.895779 0.444499i \(-0.146618\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(710\) 0.749920i 0.0281440i
\(711\) 9.76479 + 3.00847i 0.366208 + 0.112826i
\(712\) 18.6715 32.3401i 0.699746 1.21199i
\(713\) −3.38135 5.85666i −0.126632 0.219334i
\(714\) 5.72826 + 7.75880i 0.214375 + 0.290366i
\(715\) 3.67397 2.12117i 0.137399 0.0793272i
\(716\) 7.97389 0.297998
\(717\) 4.92146 11.2853i 0.183795 0.421455i
\(718\) 0.791756 0.457121i 0.0295481 0.0170596i
\(719\) −21.7299 + 12.5458i −0.810389 + 0.467878i −0.847091 0.531448i \(-0.821648\pi\)
0.0367021 + 0.999326i \(0.488315\pi\)
\(720\) −0.446180 + 0.414272i −0.0166282 + 0.0154390i
\(721\) 0.594824i 0.0221524i
\(722\) −12.8076 1.06413i −0.476648 0.0396028i
\(723\) −11.4868 + 26.3399i −0.427197 + 0.979593i
\(724\) −7.26015 4.19165i −0.269821 0.155781i
\(725\) −2.37651 + 4.11624i −0.0882615 + 0.152873i
\(726\) 11.5953 + 5.05669i 0.430343 + 0.187671i
\(727\) 46.8522 1.73765 0.868825 0.495119i \(-0.164875\pi\)
0.868825 + 0.495119i \(0.164875\pi\)
\(728\) −23.8613 13.7763i −0.884357 0.510584i
\(729\) −21.0926 + 16.8554i −0.781206 + 0.624273i
\(730\) 0.105259i 0.00389582i
\(731\) 4.40466 2.54303i 0.162912 0.0940573i
\(732\) −2.72710 1.18928i −0.100797 0.0439570i
\(733\) −11.0279 19.1009i −0.407325 0.705508i 0.587264 0.809396i \(-0.300205\pi\)
−0.994589 + 0.103888i \(0.966872\pi\)
\(734\) 0.536867 + 0.929880i 0.0198161 + 0.0343225i
\(735\) 0.559452 + 0.757765i 0.0206357 + 0.0279506i
\(736\) 6.29392i 0.231997i
\(737\) −10.3372 + 17.9046i −0.380777 + 0.659526i
\(738\) 10.7352 + 11.5620i 0.395167 + 0.425604i
\(739\) −6.35102 11.0003i −0.233626 0.404652i 0.725247 0.688489i \(-0.241726\pi\)
−0.958872 + 0.283837i \(0.908392\pi\)
\(740\) 0.501286 0.868253i 0.0184276 0.0319176i
\(741\) 27.7217 + 41.0012i 1.01838 + 1.50622i
\(742\) 1.51136 + 2.61776i 0.0554839 + 0.0961009i
\(743\) −13.6353 + 23.6170i −0.500230 + 0.866423i 0.499770 + 0.866158i \(0.333418\pi\)
−1.00000 0.000265368i \(0.999916\pi\)
\(744\) 10.3081 23.6372i 0.377913 0.866581i
\(745\) 0.415813 + 0.720210i 0.0152342 + 0.0263865i
\(746\) 17.5960 10.1590i 0.644235 0.371949i
\(747\) 7.80192 7.24398i 0.285457 0.265043i
\(748\) −33.7974 −1.23576
\(749\) −10.4032 + 18.0188i −0.380124 + 0.658394i
\(750\) 0.962672 + 1.30392i 0.0351518 + 0.0476124i
\(751\) 41.1874i 1.50295i −0.659762 0.751475i \(-0.729343\pi\)
0.659762 0.751475i \(-0.270657\pi\)
\(752\) −15.8839 + 9.17055i −0.579225 + 0.334416i
\(753\) 8.81154 0.994313i 0.321111 0.0362348i
\(754\) 3.66453 2.11572i 0.133454 0.0770500i
\(755\) −0.871668 1.50977i −0.0317232 0.0549463i
\(756\) −13.8148 2.60672i −0.502438 0.0948056i
\(757\) 0.190902 + 0.330651i 0.00693844 + 0.0120177i 0.869474 0.493979i \(-0.164458\pi\)
−0.862535 + 0.505997i \(0.831125\pi\)
\(758\) 13.8595i 0.503401i
\(759\) 0.986915 + 8.74598i 0.0358227 + 0.317459i
\(760\) −1.22269 0.775187i −0.0443516 0.0281190i
\(761\) −35.7329 + 20.6304i −1.29532 + 0.747852i −0.979592 0.200998i \(-0.935582\pi\)
−0.315726 + 0.948850i \(0.602248\pi\)
\(762\) −5.97127 + 0.673811i −0.216316 + 0.0244096i
\(763\) 18.1263i 0.656216i
\(764\) 16.7609 + 9.67689i 0.606387 + 0.350098i
\(765\) 0.574602 1.86503i 0.0207748 0.0674301i
\(766\) −10.0547 + 17.4153i −0.363293 + 0.629242i
\(767\) −62.6258 36.1570i −2.26129 1.30555i
\(768\) 13.0136 9.60781i 0.469587 0.346692i
\(769\) 17.0881 0.616214 0.308107 0.951352i \(-0.400305\pi\)
0.308107 + 0.951352i \(0.400305\pi\)
\(770\) −0.767790 −0.0276692
\(771\) 4.67874 3.45428i 0.168501 0.124403i
\(772\) 0.159319 + 0.0919829i 0.00573402 + 0.00331054i
\(773\) 2.79674 4.84409i 0.100592 0.174230i −0.811337 0.584579i \(-0.801260\pi\)
0.911929 + 0.410349i \(0.134593\pi\)
\(774\) 0.647497 2.10163i 0.0232738 0.0755414i
\(775\) 26.8013 + 15.4737i 0.962732 + 0.555833i
\(776\) 34.8873i 1.25238i
\(777\) 14.1565 1.59745i 0.507863 0.0573083i
\(778\) −10.0732 + 5.81575i −0.361141 + 0.208505i
\(779\) 18.1470 28.6230i 0.650184 1.02552i
\(780\) 0.272210 + 2.41231i 0.00974670 + 0.0863746i
\(781\) 37.3438i 1.33626i
\(782\) 1.72755 + 2.99221i 0.0617771 + 0.107001i
\(783\) 3.23251 3.76006i 0.115521 0.134373i
\(784\) 2.87225 + 4.97488i 0.102580 + 0.177674i
\(785\) 1.89191 1.09229i 0.0675251 0.0389856i
\(786\) 18.3158 2.06679i 0.653303 0.0737201i
\(787\) 5.68500 3.28224i 0.202648 0.116999i −0.395242 0.918577i \(-0.629339\pi\)
0.597890 + 0.801578i \(0.296006\pi\)
\(788\) 22.9818i 0.818692i
\(789\) 28.9270 + 39.1810i 1.02983 + 1.39488i
\(790\) −0.159662 + 0.276543i −0.00568053 + 0.00983898i
\(791\) 3.83202 0.136251
\(792\) −24.5945 + 22.8357i −0.873928 + 0.811430i
\(793\) −6.32220 + 3.65012i −0.224508 + 0.129620i
\(794\) 8.19208 + 14.1891i 0.290726 + 0.503552i
\(795\) 0.244502 0.560659i 0.00867158 0.0198845i
\(796\) −6.16608 + 10.6800i −0.218551 + 0.378541i
\(797\) −14.0122 24.2699i −0.496339 0.859684i 0.503652 0.863906i \(-0.331989\pi\)
−0.999991 + 0.00422263i \(0.998656\pi\)
\(798\) −0.634721 8.93493i −0.0224689 0.316293i
\(799\) 29.3942 50.9122i 1.03989 1.80115i
\(800\) 14.4011 + 24.9435i 0.509158 + 0.881887i
\(801\) −31.8122 34.2624i −1.12403 1.21060i
\(802\) −5.88981 + 10.2015i −0.207976 + 0.360226i
\(803\) 5.24160i 0.184972i
\(804\) −7.02690 9.51779i −0.247820 0.335667i
\(805\) −0.132311 0.229169i −0.00466334 0.00807714i
\(806\) −13.7757 23.8602i −0.485228 0.840440i
\(807\) 15.8099 + 6.89465i 0.556535 + 0.242703i
\(808\) 15.6197 9.01803i 0.549499 0.317253i
\(809\) 32.3776i 1.13834i 0.822221 + 0.569168i \(0.192734\pi\)
−0.822221 + 0.569168i \(0.807266\pi\)
\(810\) −0.366621 0.759997i −0.0128818 0.0267036i
\(811\) 6.65521 + 3.84239i 0.233696 + 0.134924i 0.612276 0.790644i \(-0.290254\pi\)
−0.378580 + 0.925569i \(0.623588\pi\)
\(812\) 2.58185 0.0906051
\(813\) −6.48476 2.82798i −0.227431 0.0991817i
\(814\) 7.40430 12.8246i 0.259521 0.449503i
\(815\) 0.798701 + 0.461130i 0.0279773 + 0.0161527i
\(816\) 4.75768 10.9097i 0.166552 0.381916i
\(817\) −4.71979 0.195737i −0.165125 0.00684797i
\(818\) 15.7816i 0.551791i
\(819\) −25.2796 + 23.4718i −0.883341 + 0.820170i
\(820\) 1.43962 0.831164i 0.0502737 0.0290255i
\(821\) −47.8717 + 27.6387i −1.67073 + 0.964598i −0.703505 + 0.710691i \(0.748383\pi\)
−0.967228 + 0.253908i \(0.918284\pi\)
\(822\) −1.53817 + 3.52714i −0.0536500 + 0.123023i
\(823\) 15.9381 0.555566 0.277783 0.960644i \(-0.410400\pi\)
0.277783 + 0.960644i \(0.410400\pi\)
\(824\) −0.703709 + 0.406287i −0.0245149 + 0.0141537i
\(825\) −23.9230 32.4031i −0.832891 1.12813i
\(826\) 6.54380 + 11.3342i 0.227688 + 0.394367i
\(827\) −5.61139 + 9.71922i −0.195127 + 0.337970i −0.946942 0.321404i \(-0.895845\pi\)
0.751815 + 0.659374i \(0.229179\pi\)
\(828\) −4.81327 1.48294i −0.167273 0.0515356i
\(829\) 27.7051i 0.962238i −0.876655 0.481119i \(-0.840231\pi\)
0.876655 0.481119i \(-0.159769\pi\)
\(830\) 0.166360 + 0.288145i 0.00577446 + 0.0100017i
\(831\) −3.04801 27.0113i −0.105734 0.937011i
\(832\) 6.44452i 0.223423i
\(833\) −15.9459 9.20636i −0.552492 0.318981i
\(834\) 15.2388 11.2507i 0.527678 0.389580i
\(835\) −0.506335 0.292333i −0.0175224 0.0101166i
\(836\) 26.5113 + 16.8082i 0.916912 + 0.581324i
\(837\) −24.4822 21.0472i −0.846227 0.727499i
\(838\) −4.64587 + 2.68229i −0.160489 + 0.0926583i
\(839\) −39.0956 −1.34973 −0.674865 0.737941i \(-0.735798\pi\)
−0.674865 + 0.737941i \(0.735798\pi\)
\(840\) 0.403351 0.924913i 0.0139169 0.0319125i
\(841\) 14.0447 24.3261i 0.484299 0.838831i
\(842\) 19.0850i 0.657712i
\(843\) −10.8824 4.74576i −0.374808 0.163453i
\(844\) −15.5802 8.99523i −0.536293 0.309629i
\(845\) 3.59821 + 2.07743i 0.123782 + 0.0714656i
\(846\) −5.66453 24.7797i −0.194750 0.851945i
\(847\) 18.9392 0.650759
\(848\) 1.86517 3.23057i 0.0640501 0.110938i
\(849\) −0.108154 0.958454i −0.00371183 0.0328940i
\(850\) −13.6930 7.90564i −0.469665 0.271161i
\(851\) 5.10383 0.174957
\(852\) 19.5879 + 8.54222i 0.671070 + 0.292651i
\(853\) 5.97157 0.204463 0.102231 0.994761i \(-0.467402\pi\)
0.102231 + 0.994761i \(0.467402\pi\)
\(854\) 1.32122 0.0452112
\(855\) −1.37825 + 1.17720i −0.0471350 + 0.0402592i
\(856\) −28.4230 −0.971478
\(857\) 50.4729 1.72412 0.862061 0.506804i \(-0.169173\pi\)
0.862061 + 0.506804i \(0.169173\pi\)
\(858\) 4.02072 + 35.6313i 0.137265 + 1.21643i
\(859\) −12.8388 −0.438053 −0.219026 0.975719i \(-0.570288\pi\)
−0.219026 + 0.975719i \(0.570288\pi\)
\(860\) −0.200660 0.115851i −0.00684245 0.00395049i
\(861\) 21.6521 + 9.44240i 0.737901 + 0.321796i
\(862\) 2.29588 3.97658i 0.0781979 0.135443i
\(863\) 23.6047 0.803512 0.401756 0.915747i \(-0.368400\pi\)
0.401756 + 0.915747i \(0.368400\pi\)
\(864\) −9.93834 28.3565i −0.338109 0.964709i
\(865\) −1.30789 0.755112i −0.0444697 0.0256746i
\(866\) −20.1085 11.6097i −0.683316 0.394513i
\(867\) 0.976017 + 8.64941i 0.0331473 + 0.293749i
\(868\) 16.8107i 0.570592i
\(869\) 7.95071 13.7710i 0.269710 0.467151i
\(870\) 0.0920419 + 0.124669i 0.00312051 + 0.00422667i
\(871\) −29.0296 −0.983630
\(872\) 21.4444 12.3809i 0.726198 0.419271i
\(873\) 41.7429 + 12.8607i 1.41278 + 0.435269i
\(874\) 0.132970 3.20629i 0.00449777 0.108454i
\(875\) 2.10149 + 1.21330i 0.0710435 + 0.0410170i
\(876\) −2.74937 1.19899i −0.0928927 0.0405102i
\(877\) 27.8434 + 16.0754i 0.940206 + 0.542828i 0.890025 0.455912i \(-0.150687\pi\)
0.0501813 + 0.998740i \(0.484020\pi\)
\(878\) 9.33593i 0.315072i
\(879\) 7.22620 + 3.15132i 0.243734 + 0.106291i
\(880\) 0.473764 + 0.820583i 0.0159706 + 0.0276619i
\(881\) 51.5651i 1.73727i −0.495449 0.868637i \(-0.664997\pi\)
0.495449 0.868637i \(-0.335003\pi\)
\(882\) −7.76110 + 1.77415i −0.261330 + 0.0597387i
\(883\) 11.6957 20.2576i 0.393592 0.681722i −0.599328 0.800504i \(-0.704565\pi\)
0.992920 + 0.118781i \(0.0378988\pi\)
\(884\) −23.7279 41.0980i −0.798057 1.38227i
\(885\) 1.05863 2.42751i 0.0355854 0.0815998i
\(886\) −15.7887 + 9.11564i −0.530433 + 0.306246i
\(887\) −21.4014 −0.718587 −0.359294 0.933225i \(-0.616982\pi\)
−0.359294 + 0.933225i \(0.616982\pi\)
\(888\) 11.5593 + 15.6568i 0.387905 + 0.525409i
\(889\) −7.79143 + 4.49839i −0.261316 + 0.150871i
\(890\) 1.26540 0.730577i 0.0424162 0.0244890i
\(891\) 18.2567 + 37.8456i 0.611621 + 1.26788i
\(892\) 32.1511i 1.07650i
\(893\) −48.3771 + 25.3180i −1.61888 + 0.847236i
\(894\) −6.98483 + 0.788183i −0.233608 + 0.0263608i
\(895\) 0.620548 + 0.358274i 0.0207426 + 0.0119758i
\(896\) 9.55989 16.5582i 0.319373 0.553171i
\(897\) −9.94231 + 7.34032i −0.331964 + 0.245086i
\(898\) 1.20535 0.0402229
\(899\) 5.13488 + 2.96463i 0.171258 + 0.0988758i
\(900\) 22.4687 5.13622i 0.748955 0.171207i
\(901\) 11.9568i 0.398338i
\(902\) 21.2640 12.2768i 0.708015 0.408773i
\(903\) −0.369184 3.27169i −0.0122857 0.108875i
\(904\) 2.61741 + 4.53349i 0.0870538 + 0.150782i
\(905\) −0.376668 0.652409i −0.0125209 0.0216868i
\(906\) 14.6423 1.65226i 0.486456 0.0548928i
\(907\) 35.2140i 1.16926i −0.811299 0.584631i \(-0.801239\pi\)
0.811299 0.584631i \(-0.198761\pi\)
\(908\) −18.4124 + 31.8911i −0.611036 + 1.05834i
\(909\) −5.03217 22.0135i −0.166907 0.730141i
\(910\) −0.539037 0.933640i −0.0178689 0.0309499i
\(911\) 5.48367 9.49800i 0.181682 0.314683i −0.760771 0.649020i \(-0.775179\pi\)
0.942454 + 0.334337i \(0.108512\pi\)
\(912\) −9.15764 + 6.19165i −0.303240 + 0.205026i
\(913\) −8.28426 14.3488i −0.274169 0.474874i
\(914\) 3.66401 6.34624i 0.121195 0.209915i
\(915\) −0.158794 0.215084i −0.00524958 0.00711044i
\(916\) 13.8033 + 23.9081i 0.456075 + 0.789946i
\(917\) 23.8988 13.7980i 0.789208 0.455650i
\(918\) 12.5081 + 10.7532i 0.412829 + 0.354908i
\(919\) −34.7810 −1.14732 −0.573659 0.819094i \(-0.694477\pi\)
−0.573659 + 0.819094i \(0.694477\pi\)
\(920\) 0.180746 0.313061i 0.00595902 0.0103213i
\(921\) −5.11657 + 11.7326i −0.168597 + 0.386604i
\(922\) 14.0244i 0.461869i
\(923\) 45.4103 26.2177i 1.49470 0.862965i
\(924\) −8.74578 + 20.0547i −0.287715 + 0.659750i
\(925\) −20.2271 + 11.6781i −0.665062 + 0.383973i
\(926\) 8.91295 + 15.4377i 0.292898 + 0.507314i
\(927\) 0.226713 + 0.991766i 0.00744623 + 0.0325739i
\(928\) 2.75913 + 4.77895i 0.0905727 + 0.156877i
\(929\) 36.6293i 1.20177i 0.799336 + 0.600885i \(0.205185\pi\)
−0.799336 + 0.600885i \(0.794815\pi\)
\(930\) 0.811733 0.599296i 0.0266178 0.0196517i
\(931\) 7.92970 + 15.1519i 0.259885 + 0.496582i
\(932\) 1.81045 1.04526i 0.0593033 0.0342388i
\(933\) 20.9172 47.9645i 0.684797 1.57029i
\(934\) 8.13106i 0.266056i
\(935\) −2.63020 1.51855i −0.0860167 0.0496618i
\(936\) −45.0353 13.8751i −1.47202 0.453521i
\(937\) −7.00421 + 12.1317i −0.228818 + 0.396324i −0.957458 0.288573i \(-0.906819\pi\)
0.728640 + 0.684897i \(0.240153\pi\)
\(938\) 4.54998 + 2.62693i 0.148562 + 0.0857723i
\(939\) 2.00784 + 0.875614i 0.0655235 + 0.0285746i
\(940\) −2.67819 −0.0873528
\(941\) 14.6106 0.476292 0.238146 0.971229i \(-0.423460\pi\)
0.238146 + 0.971229i \(0.423460\pi\)
\(942\) 2.07046 + 18.3483i 0.0674593 + 0.597820i
\(943\) 7.32872 + 4.23124i 0.238656 + 0.137788i
\(944\) 8.07569 13.9875i 0.262841 0.455254i
\(945\) −0.957977 0.823570i −0.0311630 0.0267907i
\(946\) −2.96387 1.71119i −0.0963638 0.0556357i
\(947\) 19.6671i 0.639094i −0.947570 0.319547i \(-0.896469\pi\)
0.947570 0.319547i \(-0.103531\pi\)
\(948\) 5.40462 + 7.32045i 0.175534 + 0.237757i
\(949\) −6.37383 + 3.67993i −0.206903 + 0.119456i
\(950\) 6.80935 + 13.0111i 0.220924 + 0.422137i
\(951\) −22.4079 9.77203i −0.726627 0.316880i
\(952\) 19.7249i 0.639289i
\(953\) −5.16671 8.94901i −0.167366 0.289887i 0.770127 0.637891i \(-0.220193\pi\)
−0.937493 + 0.348004i \(0.886860\pi\)
\(954\) 3.51767 + 3.78861i 0.113889 + 0.122661i
\(955\) 0.869582 + 1.50616i 0.0281390 + 0.0487382i
\(956\) 9.49524 5.48208i 0.307098 0.177303i
\(957\) −4.58342 6.20814i −0.148161 0.200681i
\(958\) −20.5679 + 11.8749i −0.664519 + 0.383660i
\(959\) 5.76105i 0.186034i
\(960\) 0.234524 0.0264642i 0.00756923 0.000854128i
\(961\) 3.80301 6.58701i 0.122678 0.212484i
\(962\) 20.7931 0.670398
\(963\) −10.4778 + 34.0084i −0.337641 + 1.09590i
\(964\) −22.1620 + 12.7953i −0.713791 + 0.412107i
\(965\) 0.00826573 + 0.0143167i 0.000266083 + 0.000460870i
\(966\) 2.22255 0.250798i 0.0715094 0.00806928i
\(967\) 9.82237 17.0128i 0.315866 0.547096i −0.663755 0.747950i \(-0.731038\pi\)
0.979621 + 0.200854i \(0.0643716\pi\)
\(968\) 12.9362 + 22.4061i 0.415784 + 0.720160i
\(969\) 15.4973 31.8635i 0.497844 1.02360i
\(970\) −0.682532 + 1.18218i −0.0219148 + 0.0379575i
\(971\) −11.8669 20.5541i −0.380828 0.659614i 0.610353 0.792130i \(-0.291028\pi\)
−0.991181 + 0.132516i \(0.957694\pi\)
\(972\) −24.0273 + 0.919136i −0.770674 + 0.0294813i
\(973\) 14.1798 24.5601i 0.454583 0.787360i
\(974\) 9.54444i 0.305823i
\(975\) 22.6071 51.8396i 0.724006 1.66019i
\(976\) −0.815257 1.41207i −0.0260957 0.0451991i
\(977\) 8.38318 + 14.5201i 0.268202 + 0.464539i 0.968397 0.249412i \(-0.0802373\pi\)
−0.700196 + 0.713951i \(0.746904\pi\)
\(978\) −6.27124 + 4.63001i −0.200532 + 0.148051i
\(979\) −63.0130 + 36.3806i −2.01390 + 1.16273i
\(980\) 0.838817i 0.0267950i
\(981\) −6.90870 30.2225i −0.220578 0.964929i
\(982\) 17.3224 + 10.0011i 0.552780 + 0.319148i
\(983\) −8.58590 −0.273848 −0.136924 0.990582i \(-0.543722\pi\)
−0.136924 + 0.990582i \(0.543722\pi\)
\(984\) 3.61829 + 32.0651i 0.115347 + 1.02220i
\(985\) −1.03259 + 1.78850i −0.0329011 + 0.0569863i
\(986\) −2.62344 1.51465i −0.0835475 0.0482362i
\(987\) −22.6039 30.6165i −0.719490 0.974533i
\(988\) −1.82634 + 44.0384i −0.0581036 + 1.40105i
\(989\) 1.17954i 0.0375071i
\(990\) −1.28016 + 0.292638i −0.0406861 + 0.00930063i
\(991\) 10.7837 6.22600i 0.342557 0.197775i −0.318845 0.947807i \(-0.603295\pi\)
0.661402 + 0.750031i \(0.269962\pi\)
\(992\) 31.1163 17.9650i 0.987942 0.570389i
\(993\) 31.2250 3.52349i 0.990895 0.111815i
\(994\) −9.48990 −0.301001
\(995\) −0.959719 + 0.554094i −0.0304251 + 0.0175660i
\(996\) 9.42133 1.06312i 0.298526 0.0336863i
\(997\) 1.75449 + 3.03886i 0.0555652 + 0.0962417i 0.892470 0.451107i \(-0.148971\pi\)
−0.836905 + 0.547348i \(0.815637\pi\)
\(998\) −12.0904 + 20.9412i −0.382715 + 0.662881i
\(999\) 22.9947 8.05914i 0.727521 0.254980i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.2.t.a.164.9 yes 36
3.2 odd 2 513.2.t.a.278.10 36
9.4 even 3 513.2.k.a.449.10 36
9.5 odd 6 171.2.k.a.50.9 36
19.8 odd 6 171.2.k.a.65.9 yes 36
57.8 even 6 513.2.k.a.8.10 36
171.103 odd 6 513.2.t.a.179.10 36
171.122 even 6 inner 171.2.t.a.122.9 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.k.a.50.9 36 9.5 odd 6
171.2.k.a.65.9 yes 36 19.8 odd 6
171.2.t.a.122.9 yes 36 171.122 even 6 inner
171.2.t.a.164.9 yes 36 1.1 even 1 trivial
513.2.k.a.8.10 36 57.8 even 6
513.2.k.a.449.10 36 9.4 even 3
513.2.t.a.179.10 36 171.103 odd 6
513.2.t.a.278.10 36 3.2 odd 2